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Abstract

In this paper we find new families of solutions for the (2 + 1)-dimensional integrable Schwarzian Korteweg–de Vries
equation, that depend up to two arbitrary functions and a solution of a Riemann wave equation. Some of these solu-
tions exhibit a rich dynamic, with a wide variety of qualitative behavior and structures that are exponentially localized.
We have also found several families of overturning and intertwining solutions for the equation, that correspond to the
nonconstant solutions of Riemann equations.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The Lax representation [12] is one of the main tools in the theory of integrable systems: this representation let the
construction of special solutions of the corresponding nonlinear system by means of a pair (L,T) of linear problems
(Lax pairs). If this pair possesses a nontrivial spectral parameter then the nonlinear system is called Lax integrable
(or inverse scattering transformation integrable). Many of these Lax integrable models have interesting properties:
an infinite number of symmetries and/or conservation laws, multi-soliton solutions, etc. However, although the physical
world has three spatial dimensions, the most known models are (1 + 1) dimensional. Therefore, in the last decade, many
efforts have been made to obtain higher-dimensional integrable systems from well-known (1 + 1) integrable systems. A
typical way, but not the unique, of constructing higher dimensional integrable systems is to modify the Lax pair (L,T)
of the basic equation, by adding dependence on more spatial variables, in such way that the new pair ðL̂; T̂ Þ verifies the
Lax equation ½L̂; T̂ � ¼ 0. The new corresponding system usually has solutions that have their counterpart in the basic
equation but does also have a great variety of new solutions. Many new properties can be seen to be exhibited by such
solutions which are not displayed by the corresponding basic (1 + 1) dimensional system.
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The basic Korteweg–de Vries (KdV) equation is integrable and it is the origin of many integrable equations. One of
these extensions is based on a result of Lie, who proved that the Schwarzian of a function f is the unique elementary
function of the derivatives Df of f, excluding f itself, which is invariant under Möbius transformations. An important
property of the KdV equation is that it possesses infinitely many symmetries. This fact has been related with the invari-
ance under Möbius transformation of the Schwarzian Korteweg–de Vries (SKdV) equation
� /t
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¼ /xx
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; ð1Þ
where the right hand side of this equation is the Schwarzian derivative of / [9]. This equation was introduced in [10,18]
and has been studied in [4,8,20].

Eq. (1) has been the basis for several generalizations and extensions. One of them can be obtained by the method we
have indicated above. The resulting equation is
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where we denote o�1
x f ¼

R
f dx. We will call this equation as the (2 + 1) Schwarzian Korteweg–de Vries equation

((2 + 1) SKdV equation). This model was first considered by Kudryashov and Pickering [11]. Toda and Yu [17] ob-
tained Eq. (2) by using Lax pairs and proved that this equation passes the integrability Painlevé test in the sense of
the Weiss–Tabor–Carnevale method; they also proved that (2) is invariant under Möbius transformation; therefore,
if W is a nonnull solution of (2) then 1/W is also a solution of (2).

The Calogero–Bogoyavlenskii–Schiff (CBS) equation.
uxt þ uxuxz þ
1

2
uzuxx þ

1

4
uxxxz ¼ 0 ð3Þ
can directly be obtained from the KdV equation by the method of extending the corresponding Lax pair. The CBS
equation is equivalent to the Ablowitz–Kaup–Newell–Segur (AKNS) equation
4hxt þ hxxxz þ 8hxzhx þ 4hzhxx ¼ 0. ð4Þ
Bogoyavlenskii [2] found overturning solutions for a CBS equivalent equation. These solutions include functions which
are solutions of the well known Riemann wave equation Ut + UUz = 0 , that is also called the inviscid Burgers equation
and has a great interest in hydrodynamics and traffic flow. Solutions of the Riemann wave equation have overturning
(whiplash) phenomena in the wave front for all nonconstant solutions, which become multiple valued [16]. Some aspects
of this class of solutions has been studied by Whitham in [19]. Although overturning solutions do not frequently appear
in the literature, they have been found for some nonlinear coupled systems and the breaking soliton equation [6,7].

By means of the transformations
W ¼ /x; / ¼ expðwÞ; wx ¼ u; wt ¼ v; ð5Þ
the (2 + 1) SKdV equation (2) can be transformed into the system
4u2vx � 4uuxvþ u2uxxz � uuxxuz � 3uuxuxz þ 3u2
xuz � u4uz ¼ 0;

ut � vx ¼ 0.
ð6Þ
Through Miura transform
hx ¼
uxx

4u
� 3u2

x

8u2
� u2

8
; hz ¼ �

v
u
; ð7Þ
system (6) is related to the Ablowitz–Kaup–Newell–Segur (AKNS) equation.
Some explicit solutions of (2) has been found [3,5,15]: travelling waves, kinks, solitons and multi-solitons, etc. In this

paper, we focus our attention in obtaining new classes of solutions for (2). The overturning and intertwining phenom-
ena have not been studied for the known solutions of (2 + 1) SKdV equation. So, to widen the family of exact solutions,
we have used the nonclassical method of symmetry reductions [1,13,14]. We have obtained and studied several families
of new solutions for Eq. (2) that exhibit overturning phenomena. A class of our new solutions can be transformed into
the solutions found by Bogoyavlenskii [2] for (3). Some of our solutions do also exhibit intertwining phenomena among
the branches of solutions.



684 J. Ramı́rez et al. / Chaos, Solitons and Fractals 32 (2007) 682–693
2. Nonclassical symmetries of the SKdV in (2 + 1)-dimensions

In order to obtain new solutions of Eq. (2), we use transformations (5) and we apply the nonclassical method of
reduction to system (6).

We consider a one-parameter Lie group of infinitesimal transformations in (x,z, t,u,v) and the associated Lie algebra
of infinitesimal symmetries of the form
G ¼ Xox þ Zoz þ T ot þ Uou þ V ov; ð8Þ
where X, Z, T, U and V depend on (x,z, t,u,v). We require that (8) leaves invariant system (6) and the invariant surface
conditions
Xux þ Zuz þ Tut � U ¼ 0; Xvx þ Zvz þ Tvt � V ¼ 0. ð9Þ
This yields to an overdetermined nonlinear system of equations for the infinitesimals X, Z, T, U and V. There are sev-
eral cases to consider:

Case 1. T 5 0. We can set T = 1 without loss of generality and we obtain
X ¼ aðtÞxþ bðtÞ; Z ¼ gðz; tÞ; T ¼ 1;

U ¼ �au; V ¼ vgt

g
þ uððaxþ bÞ gt

g
� ðatxþ btÞÞ;

ð10Þ
where b = b(t) is an arbitrary function and a and g must satisfy the following equations:
gt þ ggz þ 2ag ¼ 0; agz þ at þ 2a2 ¼ 0. ð11Þ
We can distinguish two subcases:
1.1. If a(t) 5 0 then system (11) implies that
a ¼ c3 � c1

2ðc3t þ c4Þ
; g ¼ c1zþ c2

c3t þ c4

.

This reduction has been obtained by Lie classical symmetries [15] and gives known solutions.
1.2. If a(t) � 0 then the first equation in (11) becomes the well known Riemann wave equation gt + ggz = 0; the

second equation becomes the identity 0 = 0.
By solving the corresponding characteristic equation, we obtain the reductions
u ¼ f ðw; gÞ; v ¼ gtgðw; gÞ � ctf ðw; gÞ; w ¼ x� c; ð12Þ
where cðtÞ ¼
R

bðtÞdt and the functions f(w,g) and g(w,g) satisfy the following system of partial differential equations in
(1 + 1) dimensions
f 4fg � 3f gf 2
w þ f ðfwð�4gg þ 3f wgÞ þ fgfwwÞ þ f 2ð4ggw � fwwgÞ ¼ 0;

gw � fg ¼ 0.
ð13Þ
We now obtain some exact solutions for the reduced system (13).
1.2.I. If we set f ¼ ffiffiffiffiffi

�g
p

hðwÞ and g ¼ kðwÞ= ffiffiffiffiffi
�g
p

, system (13) becomes
h4 � 8khw þ 8hkw ¼ 0; 2kw � �h ¼ 0; ð14Þ
where �2 = 1. System (14) is equivalent to the ordinary differential equation (ODE)
�ðk2
w � kkwwÞ þ k4

w ¼ 0. ð15Þ

This autonomous equation admits solutions that are implicitly defined by a rather complicated equation. However, if
� = �1, some particular solutions for Eq. (15) are of the form k = ±w + c1, so h = ±2. Consequently, Eq. (2) has solu-
tions of the form
W ¼ cðz; tÞqðz; tÞ expð�2qðz; tÞðxþ aðtÞÞÞ; ð16Þ
where q ¼ ffiffiffiffiffiffiffi�g
p

satisfies the Riemann equation qt � q2qz = 0 and c(z, t) is an arbitrary smooth function.
1.2.II. If we set f = qh(y), g = w2k(y), �2 = 1, y ¼ ffiffiffiffiffi

�g
p

w and q ¼ ffiffiffiffiffi
�g
p

then system (13) becomes
h5 þ yh4hy � 3yh3
y þ hhyð3hy þ 4yð�2yk þ hyyÞÞ þ h2ð�2hyy þ yð16k þ 8yky � hyyyÞÞ ¼ 0;

2y2ky þ 4yk � �ðhþ yhyÞ ¼ 0.
ð17Þ
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This system is equivalent to the ODE
4�h3 þ h5 þ yh4hy � 3yh3
y þ hhyð�8c1 þ 3hy þ 4yhyyÞ � h2ð2hyy þ yhyyyÞ ¼ 0. ð18Þ
By integrating this equation once with respect to y, Eq. (18) can be reduced to
�ð2y2h2hyy � 3y2hh2
y � y2h5Þ � 4y2h3 þ 2c2h3 þ 4c1ðyhhyy � yh2

y þ hhy � yh4 � 4�yh2Þ ¼ 0. ð19Þ
If we set c1 = 0, (19) has solutions in terms of Bessel functions.
Some particular solutions of (19) are

(i) for � = 1 and c1 = 0, h = ±2csc(2y);

(ii) for � = 1 and c1 ¼ �1
2

, h ¼ � tanhðyÞ
�1þy cothðyÞ;

(iii) for � = �1 and c1 = 0, h = ±2(sinh(2y))�1;

(iv) for � = �1 and c1 ¼ �1
2

, h ¼ � tan2 ðyÞ
�yþtanðyÞ.

Let us recall that if W is a solution of (2) then 1/W is a solution of (2). By considering the transformations (5) as well as
the reductions (12), we obtain, from solutions (i) and (ii), the following solutions of (2)
W ¼ cðzÞq�1ðz; tÞ cos�2ðqðz; tÞðxþ aðtÞÞÞ; ð20Þ
W ¼ cðzÞq�1ðz; tÞ sin�2ðqðz; tÞðxþ aðtÞÞÞ; ð21Þ
W ¼ cðzÞtanh�2ðqðz; tÞðxþ aðtÞÞÞ; ð22Þ
W ¼ cðzÞq�2ðz; tÞð1� qðz; tÞðxþ aðtÞÞ cothðqðz; tÞðxþ aðtÞÞÞÞ�2

; ð23Þ

where a, c are arbitrary smooth functions and q(z, t) satisfies the Riemann equation qt + q2qz = 0.

Similarly, from solutions (iii) and (iv) of (19), we obtain the solutions
W ¼ cðzÞq�1ðz; tÞ cosh�2ðqðz; tÞðxþ aðtÞÞÞ; ð24Þ
W ¼ cðzÞq�1ðz; tÞ sinh�2ðqðz; tÞðxþ aðtÞÞÞ; ð25Þ
W ¼ cðzÞ tan�2ðqðz; tÞðxþ aðtÞÞÞ; ð26Þ
W ¼ cðzÞq�2ðz; tÞð1� qðz; tÞðxþ aðtÞÞ cotðqðz; tÞðxþ aðtÞÞÞÞ�2; ð27Þ
where a, c are arbitrary smooth functions and q(z, t) satisfies the Riemann equation qt � q2qz = 0.
1.2.III. If we set f ¼ hðyÞ; gðwÞ ¼ bgðhðyÞ þ c1

g Þ, y = w + b(g) and b arbitrary, (13) becomes
hyð�h4 þ 3h2
y þ 4hðc1 � hyyÞÞ þ h2hyyy ¼ 0. ð28Þ
This autonomous equation can be reduced to a second order ODE whose solutions can be expressed in terms of elliptic
functions.

If c1 = 0 some particular solutions are h = ±c2 csc(c2y), h = ±c2(sinh(c2y))�1 and h = ±c2 sec(c2y), where c2 is con-
stant. From some of these solutions of (28), by setting c2 = 2 and by considering the transformations (5), we obtain the
following solutions of (2)
W ¼ cðzÞ sin�2ðxþ aðtÞ þ bðgÞÞ; ð29Þ
W ¼ cðzÞ cosh�2ðxþ aðtÞ þ bðgÞÞ; ð30Þ
W ¼ cðzÞ sinh�2ðxþ aðtÞ þ bðgÞÞ; ð31Þ
where c, a, b are arbitrary smooth functions and g(z, t) is a solution of the Riemann equation gt + ggz = 0.

Case 2. T � 0. We can distinguish two subcases:
2.1. If T � 0 and Z 5 0 then, without loss of generality, we can set Z = 1.
By solving the determining equations, we find the following infinitesimals:
2.1.1
X ¼ �x
2zþ c1

; Z ¼ 1; T ¼ 0; U ¼ u
2zþ c1

; V ¼ 0. ð32Þ
The similarity variables and solutions are given by
w ¼ x2ð2zþ c1Þ; u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zþ c1

p
f ðw; tÞ; v ¼ gðw; tÞ. ð33Þ
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These reductions have already been obtained in [15].
2.1.2
X ¼ 0; Z ¼ 1; T ¼ 0; U ¼ u
2zþ c1

; V ¼ v
2zþ c1

. ð34Þ
The corresponding similarity solutions can be written as
u ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zþ c1

p
f ðx; tÞ; v ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zþ c1

p
gðx; tÞ. ð35Þ
This transformation reduces system (6) to system
f 4 þ gf x � fgx ¼ 0;

ft � gx ¼ 0.
ð36Þ
Since g ¼ �f 4þff t
fx

, system (36) is reduced to the equation
ðf 3 � ftÞfxx � 4f 2f 2
x þ fxfxt ¼ 0. ð37Þ
We now obtain several exact solutions of Eq. (37), which lead to solutions of Eq. (2), by setting some specific ansatzs.

(i) Eq. (37) admits solutions of the form f ¼ �t�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðwÞ � t=2

p
where w ¼ x=

ffiffi
t
p
þ aðtÞ and F satisfies

5F 2
w � 2FF ww ¼ 0. This equation can easily be integrated and the corresponding exact solution of (2) is
W ¼ cðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t�1ð�1þ c2ðtxÞ�2=3Þ

q
exp t�3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2zþ c1Þ

p
ðc2 � ðtxÞ2=3Þ3=2

� �
; ð38Þ
where c1 and c2 are arbitrary constants.
(ii) A second solution of (37) has the form f = F(w), where w = x + a(t) and F satisfies the equation F wwF � 4F 2

w ¼ 0.
Clearly, this equation admits the solutions F = k2(3w + k1)�1/3, where k1 and k2 are arbitrary constants. These
solutions give us solutions of Eq. (2) of the form
W ¼
cðzÞ exp 3k4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zþ c1

p
ð2k2

4t þ ðxþ aðtÞÞ2=3Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ aðtÞ3

p ; ð39Þ
where a, c are arbitrary smooth functions and c1, k4 are arbitrary constants.
(iii) Eq. (37) does also admit solutions of the form f = F(w)(t + k1)�1/2 where w = (x + a(t))(t + k1)�n and F satisfies

F00(F + 2F3) � F 02(8F2 + 2n + 1) = 0. This equation admits solutions in terms of hypergeometrics functions and,
for n ¼ 3

2
, we again obtain solutions (39).

2.2. If T � 0, Z � 0 and X 5 0 then we can set X = 1, without loss of generality. By solving the determining equa-
tions, we find the infinitesimals:
X ¼ 1; Z ¼ 0; T ¼ 0; U ¼ 0; V ¼ hðz; t; uÞ; ð40Þ
where h is an arbitrary function.
The similarity solutions u = f(z, t), v = xh(z, t) + g(z, t) allow us to reduce system (6) to the following system:
h ¼ ft;

4f t � f 2fz ¼ 0.
ð41Þ
By means of the transformations (5), we obtain the following solution of the Eq. (2):
W ¼ cðz; tÞf ðz; tÞ expðxf ðz; tÞÞ; ð42Þ
where c is an arbitrary function and f satisfies the Riemann equation 4ft � f 2fz = 0.
3. Solutions of Riemann equations

In Section 2, we have obtained several solutions of Eq. (2) that depend on the solutions of Riemann equations of the
form
gt þ kgngz ¼ 0; ð43Þ
where k 2 R n f0g and n 2 N.
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It must be observed that by means of the change of the dependent variable
q ¼ kgn; ð44Þ
Eq. (43) becomes
qt þ qqz ¼ 0. ð45Þ
Hence, if g is a solution of (43) then q = kgn is a solution of (45). Conversely, if n is odd and q is a solution of (45) then
g ¼ q

k

� �1=n
is a solution of (43). When n is even and k > 0 (resp. k < 0) and q is a positive (resp. negative) solution of (45)

then g ¼ q
k

� �1=n
is also a solution of (43).

Riemann equations of the form (43) have been widely studied for several reasons. From the mathematical point of
view, Eq. (43) is a simple nonlinear equation that rises multiple-valued solutions. The dynamical system associated to
Eq. (43) is
dz
ds ¼ kgn;

dt
ds ¼ 1;

dg
ds ¼ 0.

8>>><
>>>:

ð46Þ
If h is some smooth function defined in some open interval of R then the solution of system (46) that satisfies the initial
condition (z(0), t(0),g(0)) = (u, 0,h(u)) is given by
ðzðsÞ; tðsÞ; gðsÞÞ ¼ ðkhðuÞnsþ u; s; hðuÞÞ. ð47Þ
Most of the properties of solutions of (43) can be derived from (47). For instance, (47) implies that, as t = s varies, the
points of the graph of g move parallel to the z axis with constant speed kh(u)n = kgn. This means that any solution �g of
(43) satisfies
�gðz; tÞ ¼ �gðz� k�gðz; tÞnt; 0Þ. ð48Þ
Therefore, the solutions can become multiple-valued and the phenomenon of the overturning (whiplash) of the wave
front occurs in all nonconstant solutions of our Riemann equations.

Eq. (47) can also be used to obtain a parametric representation of the solutions of (43). By eliminating s and u in
(47), we obtain that the solution g of (43) that satisfies the initial condition g(z, 0) = h(z) is implicitly given by
g ¼ hðz� kgntÞ. ð49Þ
In order to show some qualitative aspects of our solutions, we must choose specific initial conditions for (43). Clearly
any initial condition of the form g(z, 0) = C, where C is a constant, gives a constant solution of (43); therefore, we will
mainly consider nonconstant initial-conditions. Since the graph points of any solution g move parallel to the z axis with
constant speed kh(u)n = kgn, the points that correspond to local maxima of jhj move faster than the neighboring points;
if h is not bounded there are points in the graph that move with an arbitrary large speed. This leads us to consider only
functions h that are bounded. The simplest cases to consider are those where h is positive and attains an unique local
maximum or h is monotonous. To fix our ideas we will consider the initial conditions
gðz; 0Þ ¼ 1

z2 þ 1
; ð50Þ

gðz; 0Þ ¼ 1þ tanhðzÞ. ð51Þ
With these simple initial conditions we can show most of the qualitative aspects of our solutions. The analysis of solu-
tions that correspond to another initial conditions could be done by following the lines we now sketch. Of course, we
could consider many other sets of initial conditions. If, for instance, jg(z, 0)j attains two local maxima then there are
intervals, of the variable t, where g(z, t) is 3-valued and intervals where g(z, t) is 5-valued. Similarly, if jg(z, 0)j has an
infinite number of local maxima then there are intervals where g(z, t) is 3,5,7,. . .-valued.

For further reference, we will study the multiple-valuedness of the solutions in three different cases, appearing in
Section 2. We first consider the Riemann equation
gt � g2gz ¼ 0. ð52Þ
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We can choose any initial condition g(z, 0) = h(z) for Eq. (52); the corresponding solutions are implicitly given by (49),
with k = �1 and n = 2.

We first consider the initial condition (50). The solutions of (50)–(52) are implicitly given by
Fig. 1
(right)
Gðz; t; gÞ � g� 1

ðg2t þ zÞ2 þ 1
¼ 0. ð53Þ
The implicit function theorem cannot be applied, to obtain g as a function of (z, t), around the points (z, t,g) that satisfy
the system G(z, t,g) = 0, Gg(z, t,g) = 0. This system is given by (53) and the equation
1þ 4ðg2t þ zÞgt

½ðg2t þ zÞ2 þ 1�2
¼ 0. ð54Þ
System (53) and (54) can be considered with unknowns z and g, as functions of t. It can be checked that for
jtj < t0 ¼ 54

25
ffiffi
5
p this system has no solutions and that for jtj > t0 the system has exactly two real solutions. These two val-

ues of z, as functions of t, are represented in Fig. 1(left). The parametric equations of the curve are given by
ðtðsÞ; zðsÞÞ ¼ � ð1þ s2Þ3

4s
;

1

4s
þ 5

4
s

 !
.

It is clear that zðt0Þ ¼ �
ffiffi
5
p

2
. The points P of the graph are bifurcation points. The branch containing P divides a small

open neighborhood of P in two open regions; in one of them the problem (50)–(52) has only one solution and in the
other region this problem has three solutions. In Fig. 1(right) we represent the combined graph of the solutions for sev-
eral values of t, indicated in the figure.

If we now consider the initial condition (51) the results are similar; the bifurcation diagram that correspond to
Fig. 1(left) does only contain a graph like the right part of that figure. In this case, the parametric equations of the curve
are
ðtðsÞ; zðsÞÞ ¼ cosh2s
2ð1þ tanh sÞ ; s�

es

2
cosh s

� �
.

Now, in a neighborhood of ð�z;�tÞ with �t < t0 ¼ 27=64 the problem (51) and (52) has an unique solution defined in R and
when �t > t0 there is an interval of z where the problem (51) and (52) has three branches of solutions. It is clear that
z0 ¼ zðt0Þ ¼ 1

4
ðln 4� 3Þ.

Let us observe that equation gt + g2gz = 0 is equivalent to Eq. (52) through the change t M �t.
Our third case study will be the Riemann equation
gt þ ggz ¼ 0. ð55Þ
For this equation we can also consider any initial condition g(z, 0) = h(z). The corresponding solutions are implicitly
given by equation g = h(z � gt). We first consider, as before, initial condition (50). In this case the solutions of (50)–
(55) are implicitly given by equation g ¼ 1

ðz�gtÞ2þ1
. It can be checked, as before, that for jtj > t1 ¼ 8

3
ffiffi
3
p Eq. (55) has three

branches of solutions. The existence domain of these three branches and the graphs of the solutions of (55), for several
values of t, are similar to those appearing in Fig. 1.
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The analysis of the problem (51)–(55) is similar. Now, for t < 1 the problem (51)–(55) has an unique solution defined
in R; for t > 1 there is an interval of z where the problem (51)–(55) has three branches of solutions.
4. Multiple solutions

In this section we will study the behavior of some of the solutions of (2) we have found. We will only consider three
types of solutions; the properties of the remaining solutions can be derived by following similar arguments.

(I) Solution of type (24):
W 1ðx; z; tÞ ¼ cðzÞqðz; tÞ cosh�2ðqðz; tÞðxþ aðtÞÞÞ; ð56Þ
where qt � q2qz = 0. It must be observed that when q = constant the solution (56) corresponds to the classic sol-
iton. Clearly, q modulates the amplitude and the wave speed.

(II) Solution of type (22):
W 2ðx; z; tÞ ¼ cðzÞtanh2ðqðz; tÞðxþ aðtÞÞÞ; ð57Þ
where qt + q2qz = 0. When q = constant, this solution corresponds to a kink–antikink. The role of q in (57) is to
modulate the speed of the wave.

(III) Solution of type (30):
W 3ðx; z; tÞ ¼ cðzÞ cosh�2ðxþ aðtÞ þ bðqÞÞ; ð58Þ
where qt + qqz = 0. When q = constant, this solution corresponds to a classic soliton. When b(q) is not constant,
b(q) determines the displacement of the wave.

The behavior of these solutions will be studied when c(z) � 1, a(t) � 0 and b(q) = q. The initial condition we will con-
sider for these three types of solutions is qðz; 0Þ ¼ 1

z2þ1
; later, we will comment some aspects of the solutions that

corresponds to the initial condition q(z, 0) = 1 + tanh(z). With these conditions, let us observe that, for i = 1,2,3,
the dependence of Wi on (z, t) is through q(z, t). Hence we can also write W1 = H1(x,q) = q cosh�2(qx),
W2 = H2(x,q) = tanh2(qx) and W3 = H3(x,q) = cosh�2(x + q). It is clear that W1 and W2 are even functions of the
variable x.

I. For a fixed x 2 R we have
oH 1

oq
ðx; qÞ ¼ cosh�2ðqxÞ½1� 2qx tanhðqxÞ�.
We denote by y0 the unique positive solution of equation 1 � 2y tanh(y) = 0. It is clear that 1 � 2y tanh(y) > 0 for
0 < y < y0 and that 1 � 2y tanh(y) < 0 for y > y0. The sign of oH1

oq ðx; qÞ and, therefore, the growing of H1 with respect
to q depends on the product xq(z, t).

Let (z, t) be such that t > t0 and z 2 ]a(t),b(t)[ (see Fig. 1). Then in a neighborhood of (z, t) the Riemann equation (52)
has three solutions that will be denoted by qi, i 2 {1,2,3}, with q1(z, t) 6 q2(z, t) 6 q3(z, t). The corresponding solutions
of Eq. (1) will be denoted by W ðiÞ

1 ðx; z; tÞ ¼ qiðz; tÞ cosh�2ðqiðz; tÞxÞ, i 2 {1,2,3}. Let us observe that W ðiÞ
1 are even func-

tions of the variable x. It is clear that for any x > 0 we have that xq1(z, t) 6 xq2(z, t) 6 xq3(z, t). For x > 0 sufficiently
small we have that xq3(z, t) 6 y0 and therefore W ð1Þ

1 ðx; z; tÞ 6 W ð2Þ
1 ðx; z; tÞ 6 W ð3Þ

1 ðx; z; tÞ. However, if x > 0 is such that
y0 < xq1(z, t) then the relative order among the three branches is reversed: we have W ð1Þ

1 ðx; z; tÞP W ð2Þ
1 ðx; z; tÞP

W ð3Þ
1 ðx; z; tÞ. This change is produced through three intermediate steps:

• W ð1Þ
1 ðx; z; tÞ < W ð3Þ

1 ðx; z; tÞ < W ð2Þ
1 ðx; z; tÞ. This may occur when xq1(z, t) < xq2(z, t) < y0 < xq3(z, t) and when

xq1(z, t) < y0 < xq2(z, t) < xq3(z, t).
• W ð3Þ

1 ðx; z; tÞ < W ð1Þ
1 ðx; z; tÞ < W ð2Þ

1 ðx; z; tÞ. This may occur when xq1(z, t) < xq2(z, t) < y0 < xq3(z, t) and when
xq1(z, t) < y0 < xq2(z, t) < xq3(z, t).

• W ð3Þ
1 ðx; z; tÞ < W ð2Þ

1 ðx; z; tÞ < W ð1Þ
1 ðx; z; tÞ. This may occur when xq1(z, t) < y0 < xq2(z, t) < xq3(z, t) and when

y0 < xq1(z, t) < xq2(z, t) < xq3(z, t).

Therefore, we have an intertwining effect among the branches of solutions. In Fig. 2 we represent former situation
for a fixed (z, t) such that t > t0 and z 2 ]a(t),b(t)[. In Fig. 3(left) we represent W1 for t = 0. The right part of Fig. 3
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indicates, for t = 2.5, how the three branches of W1 are assembled; the intertwining phenomenon can clearly be
appreciated.

If we consider that q satisfies (51) and (52) then we obtain, for t = 0 and t = 1, the values of W1 that are represented
in Fig. 4. The overturning and intertwining phenomena do also appear. This is a bidimensional structure that is expo-
nentially localized on a line. If, instead of initial condition (50), we consider an initial condition for (52) with several
local maxima then the former intertwining phenomena appear several times for the corresponding solution.

II. We now analyze the solution given by W2(x,z, t) = c(z) tanh2(q(z, t)(x + a(t))), when a(t) � 0, c(z) � 1 and q is
implicitly defined by equation qðz; tÞ ¼ 1

ðq2 t�zÞ2þ1
. In this case the multiple-valuedness of W2 does also appears. However

let us check that the different branches of W do not mutually intersect; i.e. there is no intertwining among the branches
of solutions. As for I, for a fixed (z, t) such that t > t0 and z 2 ]a(t),b(t)[, we denote by qi(z, t), i 2 {1,2,3}, the three solu-
tions of the corresponding Riemann equation. We denote by W ðiÞ

2 , i 2 {1,2,3}, the corresponding branches of solutions
of Eq. (2). Let us observe that W ðiÞ

2 are even functions of the variable x. For any x > 0 the auxiliary function g : R! R

defined by g(a) = tanh2(ax) is increasing, because g 0(a) = 2x tanh(ax)/cosh(ax) > 0. Hence W2 grows with q and
W ð1Þ
2 ðx; z; tÞ 6 W ð2Þ

2 ðx; z; tÞ 6 W ð3Þ
2 ðx; z; tÞ.
Therefore the branches does not intertwine as x grows. In Fig. 5 we represent the graphs of W for t = 0 and t = 2. The
overturning phenomenon can be appreciated in the right figure.

If we consider that q satisfies the equation qt + q2qz = 0 and the initial condition (51) then we obtain, for t = 0 and
t = 1, the values of W2 that are represented in Fig. 6. The overturning phenomenon does also appear:
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III. We now consider solution W3(x,z, t) = c(z) cosh�2(x + a(t) + b(q)), where qt + qqz = 0, a(t) � 0, c(z) � 1 and
b(q) = q. In this case W3 = H3(x,q) = cosh�2(x + q). As for I and II, if (z, t) is such that t > t1 ¼ 8

3
ffiffi
3
p and z 2 ]a(t),b(t)[,

we denote by qi(z, t), i = 1,2,3, the three solutions of the corresponding Riemann equation. We denote by W ðiÞ
3 ,

i 2 {1,2,3}, the corresponding branches of solutions of Eq. (2). We observe that for a fixed x 2 R we have
oH3

oq ðx; qÞ ¼ ð�2Þ cosh�3ðxþ qÞ sinhðxþ qÞ. Hence oH3

oq ðx; qÞ is positive (resp. negative) for x + q < 0 (resp. x + q > 0).
Therefore, for a fixed (z, t), W3 attains a local maximum at x = �q(z, t). This fact implies, as in case I, that the relative
order among the branches of W3 can vary depending on the values of (x,z), and the intertwining phenomenon appears.
This can be appreciated in Fig. 7, where we represent the graphs of W3 for t = 0 and t = 3.

If we consider that q satisfies (51)–(55) then we obtain, for t = 0 and t = 3, the values of W3 that are represented in
Fig. 8. The overturning and intertwining phenomena do also appear.

We now comment some additional properties of the solutions we have found. We have chosen c(z) � 1 in solutions
(56)–(58). We could use nonconstant functions c(z) that rise different behavior. As an example, we have that, for solu-
tions of type (56) with q satisfying (50)–(52), the overturning phenomenon appears for z 2 ]a(t),b(t)[ (see the left part of
Fig. 1). If we take the function c = c(z) such that c(z) is null for z 62 [�z0,z0] the overturning and intertwining phenom-
ena disappear.

We have also chosen a(t) � 0 in solutions (56)–(58). Since these three solutions depends on x + a(t), the effect of con-
sidering a nonnull function a(t) is to obtain a displacement in x, as t varies.

It is easy to check that, for W of type (56),
Z 1

�1
W ðx; z; tÞdx ¼

Z 1

�1
cðzÞqðz; tÞ cosh�2ðqðz; tÞðxþ aðtÞÞÞdx ¼ 2cðzÞ;
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Fig. 7. Graphs of W = cosh�2(x + q), with qt + qqz = 0 and q(z,0) = 1/(z2 + 1), for t = 0 and t = 3.
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i.e.
R1
�1 W ðx; z; tÞdx does not depend on t. Hence, if q(z, t) is any solution of equation qt � q2qt = 0 defined for

(z, t) 2 (z1,z2) · (t1, t2) then the corresponding solution given by (56) is such that
Z z2

z1

Z 1

�1
W ðx; z; tÞdxdz ¼

Z z2

z1

cðzÞdz ð59Þ
for t 2 (t1, t2). This proves that the mass determined by W on the band fðx; zÞ : ðx; zÞ 2 R� ðz1; z2Þg is conserved for
t 2 (t1, t2). The solutions given by (58) have the same property.

Finally, let us observe that the overturning solutions of type II are related with the overturning solutions found by
Bogoyavlenskii [2] for Eq. (3): u = �2k tanh(kx) with kt + 4k2kz = 0, is a solution of (3) that corresponds to the solution
h = q(z, t) tanh(q(z, t)x), with qt + q2qz = 0, of the AKNS Eq. (4). By Miura transform (7), this last solution becomes
W = c(z) tanh�2(qx), which is a solution of (2) of type II.

Conversely, the solutions W = c(z) tanh±2(qx), W = c(z)q(z, t) cosh�2(qx), W = c(z) cosh�2(x + f(q(z, t))) of
Eq. (2), with q(z, t) satisfying the corresponding Riemann wave equation, give solutions for AKNS Eq. (4) like h =
q tanh�1(q x) + d(t), h ¼ �xq2

2
þ dðz; tÞ, h ¼ �x

2
þ dðz; tÞ, where d is an integration constant.
5. Conclusions

For the (2 + 1) SKdV equation we have found several families of solutions. Some of these families depend on two
arbitrary functions and an arbitrary solution of a Riemann wave equation. Since the Riemann equations admit multi-
ple-valued solutions, we obtain multiple-valued solutions for the (2 + 1) SKdV equation. This induces a great variety of
exotic exponentially localized solutions; for many of them, the phenomena of overturning and/or intertwining among
the branches of solutions do appear. These solutions include the corresponding to the overturning solutions found by
Bogoyavlenskii for a related equation.
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