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ABSTRACT: This project consists of two parts. In the first part, a series of test calculations is
performed to verify that the integrals involved in the determination of atomic and molecular
properties by standard self-consistent field (SCF) methods can be obtained through Halton,
Korobov, or Hammersley quasi-random integration procedures. Through these calculations, we
confirm that all three methods lead to results that meet the levels of precision required for their
use in the calculation of properties of small atoms or molecules at least at a Hartree–Fock level.
Moreover, we have ensured that the efficiency of quasi-random integration methods that we
have tested is Halton�Korobov�Hammersley��pseudo-random. We also find that these
results are comparable to those yielded by ordinary Monte Carlo (pseudo-random) integration,
with a calculation effort of two orders of smaller magnitude. The second part, which would not
have been possible without the integration method previously analyzed, contains a first study of
atoms constrained in spherical boxes through SCF calculations with basis functions adapted to
the features of the problem: Slater-type orbitals (STOs) trimmed by multiplying them by a
function that yields 1 for 0 � r � (R-�), polynomial values for (R-�) � r � R and null for r � R,
R being the radius of the box and � a variationally determined interval. As a result, we obtain a
equation of state for electrons of small systems, valid just in the limit of low temperatures, but
fairly simple. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem 107: 879–893, 2007
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1. Introduction

I n principle, numerical integration methods can be
used to calculate the expectation value of any

wave function applied to any quantum mechanical
operator. In practice, however, the convergence of
these calculations is often slow [1–6]. Recently, Rodri-
guez et al. [7] showed that quasi-random integration
methods could be used to compute efficiently the one-
and two-electron integrals needed by many quantum
chemistry calculations. In the present work, we use
this integration method to calculate the properties of
several small atoms and molecules.

We have developed a software able to carry out
restricted or unrestricted Hartree–Fock (RHF or UHF)
or second-order Møller–Plesset (MP2) calculations for
small atoms or molecules with several types of non-
standard basis functions, as well as the ordinary
Slater-type orbital (STO) or Gaussian-type orbital
(GTO) basis functions, through pseudo-random and
quasi-random numerical integrations [8]. By using
this software, we have verified the usefulness of
quasi-random integration methods by calculating the
atomic and molecular properties of a variety of small
systems. The atoms and molecules that we have used
for this verification (H, He, Li, H2, LiH) are very
simple; however, the properties to be calculated
(atomic energy, Re, De, �e, �eXe, dipole moment and
Mulliken atomic charges) depend on such a high num-
ber of independent integrals, where the results are a
very appropriate test framework in which to evaluate
the reliability of different numerical integration proce-
dures in the field of quantum chemistry, particularly in
relation to the study of systems within enclosures whose
volume is somewhat smaller than the volume occupied
by the systems under the usual conditions.

After ascertaining that quasi-random methods
allow for the calculation of properties of free hy-
drogen, helium, and lithium atoms and H2 and LiH
molecules within an acceptable precision level, we
have applied them to analyze the expected behav-
ior of hydrogen, helium, and lithium atoms, and the
H2 molecule, constrained in spherical boxes of di-
verse radii by using the Hartree–Fock–Roothaan
method with a new type of basis function, and we
have obtained an approach to an “equation of state”
for the electrons of these atoms.

Finally, we want to emphasize that quasi-ran-
dom integration has been essential for the manag-
ing of the nonstandard basis functions used to carry
out the confined atoms and molecules Hartree–
Fock calculations presented in Tables IV and VIII.

2. Integration Procedures

2.1. GENERATION OF INTEGRATION POINTS

Quasi-random integration methods [9] differ
from the pseudo-random method in the way inte-
gration points are chosen. Integration points are no
longer selected following a completely pseudo-ran-
dom method; instead, there is a purpose behind
their choice, which is to minimize the error in mul-
tiple dimension integrals. We compare the results
obtained when integration points are generated by
(i) Halton sequences [10], (ii) Korobov sequences
[11, 12], (iii) Hammersley sets of points [13], and
(iv) pseudo-random numbers (i.e., “traditional”
Monte Carlo). The inclusion of the last one allows
us to corroborate how substantially quasi-random
methods improve the pseudo-random method.

The Halton sequences have been obtained using
the subroutine proposed by Berblinger and Schlier
[14], which is substantially faster than the direct
programming of the Halton algorithm employed at
the beginning of our research [7, 15–17]. The
Korobov sequences have been chosen according to
the following criteria: If � is an irrational number,
and its decimal part � � ln t(�) is called (�), and
�1 �2 . . . �s is linearly independent in the field of
rational numbers, the coordinates of the nth point
of the Korobov sequence are

qi(n) � (n�i) i � 1, 2, . . . , S, (1)

where S is the dimension of the integral to be com-
puted. In [9] or [18], it has been proposed to use

��1, �2, �3, . . . , �S�

� 2�1/s�1�, 2�2/s�1�, 2�3/s�1�, . . . , 2�s/s�1�. (2)

After some preliminary tests, we have chosen the
square roots of the S first prime numbers as gener-
ators �i. The coordinates qi(n) can be subsequently
obtained in fortran writing the command:

RAN � DN*BAS � DINT�DN*BAS�, (3)

where RAN � qi(n) if BAS � �i (��2, �3, �5,
�7, . . .) and “DN” is the number n matching every
point generated expressed in double precision. It is
important to emphasize that the use of double pre-
cision has proved be essential to obtain a valid
generator for high values of n. This is because the
products n � �i are irrational numbers and its trun-

CUENCA ET AL.

880 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY DOI 10.1002/qua VOL. 107, NO. 4



cation error is negligible only when the number of
significant figures we are using is higher than the
number of digits in n2.

Hammersley integrations have been made
choosing the radial coordinate as

R � �DLOG�GR�/P, (4)

with GR the points obtained by uniformly dividing
the [0, 1] interval. This allows us to extend the
integration interval to [0, 	]. Parameter P is the
exponent of the density function described in the
next section, and the remaining coordinates are
generated through the Halton method. Finally, the
pseudo-random numbers used in the pseudo-ran-
dom integration have been obtained in the standard
fashion, by means of the subroutine proposed in
Numerical Recipes, page 199 [19].

2.2. CHOICE OF DENSITY FUNCTIONS

In quasi-random integration methods, as in
pseudo-random integration, the use of an appropri-
ate density function in sampling is very important
to accelerate the convergence ratio [15, 16]. To be
useful for random or quasi-random integrations,
density functions w(r�) must accomplish two condi-
tions: (i) sampling of w(r�) should be sufficiently
effective, and (ii) function w(r�) should be as similar
to the integrand as possible.

In our context, integrands have the form

rn��n��2e��rF��(�, 	)sin �,

where F��(�, 	) is not a very complicated function
of polar coordinates �, 	. For example, when all the
orbitals implicated in the integral are of type “s”,
F��(�, 	) � constant.

Density functions w(r) � Cr exp(�pr) for r coor-
dinate, w(�) � C� sin �, and w(	) � C	 fulfill the
first condition, and their product is reasonably sim-
ilar to the integrand rne��rsin �. Consequently,
when the integral calculated is a one-electron and
monocentric one, and the basis functions are STO or
quite similar to these, we use the density function
[7, 17]:

w(r, �, 	) �
p

4

exp(�pr)sin �. (5)

The value of the parameter p, optimized for overlap
integrals with STOs of type “s”, is

p �
�� � ��

n� � n� � 3 , (6)

where ��, ��, n�, n� are the parameters of the
Slater basis functions involved in the integral. For
integrals of a type other than overlap integrals,
this value is not the best choice, but it has proved
sufficiently good in previous calculations [7, 17].

When the integral has two centers M and N as in
molecular calculations, the weight function w(r, �,
	) can be centered at a point C determined by the
expression:

C� �
��

2 M� � ��
2N�

��
2 � ��

2 . (7)

Even though this choice is not optimized, we
have found that it yields very good results. It is
based in a well-known property of Gaussian
functions: the product of two Gaussians centered
at different points is another Gaussian centered
on a particular point by a formula similar to [7].
In addition to this property, we have the possi-
bility to represent approximately (“STO-1G”),
each Slater orbital, by a Gaussian exp(��r2) with
exponent � proportional to the square of the ex-
ponent “a” of the STO rn exp(�ar) considered
[20, 21].

For two electron integrals (pq�rs), the density
function used has been

W(r1, �1, 	1, r2, �2, 	2)

�
p1

4


p2

4

exp(�p1r1 � p2r2)sin �1 sin �2 (8)

with

p1 �
�p � �q

np � nq � 3 p2 �
�r � �s

nr � ns � 3 . (9)

That means that the position of the first electron is
generated with the help of a weight function, while
another weight function is used to generate the
position of the second electron. The center of the
first one is located in

O� (1) �
P� � �p

2 � Q� � �q
2

�p
2 � �q

2 , (10)

while the center of the second one is in
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O� (2) �
R� � �r

2 � S� � �s
2

�r
2 � �s

2 . (11)

(For a detailed explanation of these functions and
centers, see Refs. [15], [17], and [21].)

3. Study of the Feasibility of
Quasi-Random Integration Methods
Through Some Standard Calculations

The sets of integration points described in Sec-
tion 2.1 have been used to compute all the integrals
Spq, Tpq, Vpq, Xpq, and (pq�rs) necessary to evaluate
the energy, electronic distribution, and dipole mo-
ment of the atoms and molecules mentioned below.
Minimal basis sets with variationally optimised ex-
ponents have been used for the calculation of this
properties; the exponents are the same as those
given in [22] (atoms) and [23] (molecules):

H a1s�H� � 1.0000
He a1s�He� � 1.6875
Li a1s�Li� � 2.6906

a2s�Li� � 0.6396
H2 a1s�H� � 1.1892

LiH a1s�H� � 0.9766
a1s�Li� � 2.6909
a2s�Li� � 0.7075
a2p�Li� � 0.8449

The results of evaluating the energy of atoms
with the help of numeric integration using 104,
105, 106, and 107 points are shown in Table I. Each
of the three quasi-random methods lead to simi-
lar results, all of them significantly better than in
the case of the pseudo-random integration. For
the particular case of 107 points, the Halton
method seems to be slightly more precise than the
other two, even if the difference cannot be re-
garded as very significant. The results are much
worse for multielectronic systems than they are
for hydrogen, as it should be expected consider-
ing that the level of precision obtained for inte-
grals is much lower for two-electron (six-dimen-
sion) integrals than for one-electron (three-
dimensional) ones [7, 17]. As we can see in Table
I, the quasi-random Halton integration method
leads to an accuracy of 
10�4 a.u. in He or Li
energies. This can be enough for the study of
some problems and not for some other. We will
see at the end of this work that to build up a
equation of state for the atomic electrons, it is
enough to reach a precision of 
10�4 a.u. in
energies. So we will carry out calculations for
confined atoms using 107–108 integrations points.
The STO-18G results have been taken as “exact,”
as its error is smaller than the rounding error of
the data presented.

In the case of H2 and LiH molecules, values
were found for a set of properties that depend on

TABLE I ______________________________________________________________________________________________
Hartree–Fock energies obtained for H, He, and Li atoms by using quasi-random (Halton, Korobov,
Hammersley) and standard MC integration (RND).*

104 105 106 107

H (�0.5000000) HAL �0.4999189 �0.4999911 �0.4999993 �0.4999999
KOR �0.5000342 �0.5000020 �0.5000000 �0.5000001
HAM �0.4999862 �0.4999994 �0.5000000 �0.5000000
RND �0.5004050 �0.4991489 �0.5000228 �0.5001086

He (�2.8476563) HAL �2.8568489 �2.8492684 �2.8483132 �2.8476721
KOR �2.8504421 �2.8489009 �2.8478704 �2.8476252
HAM �2.8414565 �2.8473245 �2.8476986 �2.8475394
RND �2.8335285 �2.8438863 �2.8459965 �2.8479495

Li (�7.4184820) HAL �7.4324696 �7.4210610 �7.4195383 �7.4185012
KOR �7.4235902 �7.4204091 �7.4188369 �7.4184330
HAM �7.4094606 �7.4179209 �7.4186157 �7.4183001
RND �7.3949305 �7.4086246 �7.4150542 �7.4193901

* STO-18G values (in parentheses) is used as exact value to calculate errors. Correct numbers corresponding to 107 integration
points are underlined.
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one-electron and two-electron integrals: (i) the
bond distance Re, (ii) the total energy Ee, (iii) the
harmonic vibration frequency e, (iv) the anhar-
monicity constant e�e, and some other proper-
ties depending only on one-electron integrals: (v)
the electronic population of the H and Li atoms:
PH and PLi, and (vi) the dipole moment �e.

Tables II and III show the results of the eval-
uation of all these parameters integrating with
104, 105, 106, and 107 points. One can note that,
like in the case of atoms, the results of all three
quasi-random integration methods are similar (a
bit better Halton or Korobov, than Hammersley)
and much better in general than those of the
pseudo-random method.

4. Study of Some Atoms Constrained
in Spherical Boxes by Using
Quasi-Random Integration Methods

4.1. INTRODUCTION

The idea of studying atoms confined in spherical
boxes dates back to the early ages of quantum
mechanics [24] and has been applied in a wide
variety of fields of physics and chemical physics,
like the simulation of the effects of pressure on
atomic properties [24–40], the liquid state cell
model [41, 42], semiconductor quantum dots [43],
or the influence of solvents on molecular properties
[44]. For more references in this field, the reader

TABLE II _____________________________________________________________________________________________
Properties of the H2 molecule by using quasi-random and random integration.*

104 105 106 107

Re (a.u.) (1.383) HAL 1.402 1.383 1.382 1.383
KOR 1.373 1.384 1.384 1.383
HAM 1.413 1.403 1.383 1.382
RND 1.369 1.390 1.393 1.384

Ee (a.u.) (�1.12821) HAL �1.13483 �1.12840 �1.12865 �1.12843
KOR �1.13491 �1.13166 �1.12866 �1.12830
HAM �1.12749 �1.12825 �1.12834 �1.12825
RND �1.15182 �1.12962 �1.12533 �1.12824

e(cm�1) (5214.2) HAL 5446.4 5140.9 5232.9 5222.6
KOR 5666.5 5478.9 5223.4 5221.3
HAM 5281.6 5087.8 5226.4 5227.8
RND 6095.1 5253.5 5183.4 5254.5

e�e(cm�1) (172.3) HAL 74.5 160.5 171.0 171.6
KOR 196.1 166.5 166.4 171.8
HAM 57.9 110.0 169.6 171.8
RND 187.6 187.3 131.6 161.4

PH (1.000) HAL 1.009 1.001 1.000 1.000
KOR 0.997 1.000 1.000 1.000
HAM 1.001 1.000 1.000 1.000
RND 0.984 0.998 0.997 0.999

�e(D) (0.00000) HAL 0.0303 0.0025 0.0009 0.0000
KOR 0.0070 0.0013 0.0016 0.0007
HAM 0.0037 0.0007 0.0000 0.0001
RND 0.0245 0.0009 0.0062 0.0031

* Values used as reference (in parentheses) are obtained by STO-18G basis functions. Correct numbers corresponding to 107

integration points are underlined.
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may consult Fröman et al. [34], who present a list of
64 publications appearing up to 1984, or Varshni
[45].

From a qualitative point of view, the effect of
placing an atom inside a box should be an elevation
in its energy levels, which rise as the movement of
electrons becomes more restricted. That brings
about a relation of the atomic energy to the volume
of the box which, by analogy to the case of the
molecules of a gas constrained in the same volume,
suggests the idea of finding out the corresponding
equation of state.

The variety of existing methods for a quantita-
tive study of the energy of atoms in boxes spans
from the exact resolution of the Schrödinger equa-
tion in favorable cases [46] to perturbative theories,
also including the variational method, which has
become a very useful tool for researching systems
constrained in boxes with different symmetries [47–
52]. For example, research has been carried out in
the helium atom within a spherical box, with the
intention of modeling the effect of pressure in at-
oms with more than one electron [53–55]; this atom
has also been studied within a box with paraboloi-

TABLE III ____________________________________________________________________________________________
Properties of the LiH molecule by using quasi-random and random integration.*

104 105 106 107

Re (a.u.) (3.051) HAL 3.156 3.076 3.052 3.051
KOR 3.317 3.109 3.052 3.053
HAM 3.147 3.004 3.056 3.051
RND 2.993 3.045 3.055 3.049

Ee (a.u.) (�7.96997) HAL �7.98833 �7.97255 �7.97086 �7.97005
KOR �7.97886 �7.97332 �7.97069 �7.96990
HAM �7.96302 �7.96923 �7.97001 �7.96978
RND �7.84120 �7.90048 �7.97901 �7.96976

e(cm�1) (1501.0) HAL 2183.8 1610.5 1492.9 1512.6
KOR 2321.5 1339.1 1540.5 1492.8
HAM 1880.5 1614.2 1524.9 1507.8
RND 1489.9 1782.9 1470.2 1521.8

e�e(cm�1) (18.6) HAL 178.8 44.0 21.7 20.6
KOR 163.6 �126.3 24.3 12.2
HAM 113.0 68.9 24.4 19.8
RND 263.1 151.3 13.2 22.5

PH (1.352) HAL 1.329 1.355 1.356 1.355
KOR 1.375 1.354 1.355 1.355
HAM 1.337 1.360 1.355 1.355
RND 1.370 1.320 1.346 1.352

PLi (2.648) HAL 2.671 2.645 2.644 2.645
KOR 2.625 2.646 2.645 2.645
HAM 2.663 2.640 2.645 2.645
RND 2.630 2.680 2.654 2.648

�e(D) (5.946) HAL 5.868 5.893 5.918 5.914
KOR 5.934 5.933 5.915 5.914
HAM 5.842 5.934 5.914 5.914
RND 5.847 5.860 5.895 5.910

* Values used as reference (in parentheses) are obtained by STO-18G basis functions. Correct numbers corresponding to 107

integration points are underlined.
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dal limits [56], and inside a half-infinite space with
paraboloidal bounds [57], as well as in a spheroidal
box [58].

An interesting way to carry out this kind of
calculation is to use the Roothaan method with
basis functions adapted to the boundary conditions
of the problem. The main difficulty in this method
is focused on the evaluation of the atomic and
molecular integrals with nonstandard basis func-
tions. For example, an integral:

(pq�rs) � �� �p(1)�q(1)
1

r12
�r(2)�s(2)d�1d�2

with four basis functions with radial part rne��r

(STO), all of them within the interval 0 � r � 	
and referred to the same center, it is easy to solve.
When the centers of the basis functions are dif-
ferent, the problem is more difficult, but it can be
treated through STO-nG expansions. Neverthe-
less, these procedures are not valid for our case:
we want to test the usefulness, to study con-
strained systems, of basis functions that look like
standard basis functions in the permitted areas
and change softly when approaching the limits of
the forbidden areas. Specifically, we will propose
later to study atoms in spheres with radii R, by
using basis functions that are an STO within the
interval 0 � r � R-�, and are the product of the
STO and an adequate polynomial function within
R-� � r � R, with the value of � parameter
variationally calculated.

Integrals as (pq�rs) are not analitically solvable
with the type of basis functions that we have de-
scribed in the precedent paragraph (nor with the
corresponding integration limits). Not even when
they are only one-centered. Nevertheless, quasi-
random integration methods allow for carrying out
these calculations in a very simple and extendible
way, as they facilitate the use of Hartree–Fock–
Roothaan methods with basis functions adapted to
the contour conditions of the box containing the
atom. In the following pages we present calcula-
tions made for hydrogen, helium and lithium atoms
with the help of the software UCA–CMC, which
also gives the possibility to easily study other atoms
or molecules. This software has been entirely de-
veloped by us and is available for free at our web-
site [8].

4.2. BASIS FUNCTIONS FOR THE STUDY OF
ATOMS CONSTRAINED IN SPHERICAL
BOXES

Standard basis functions are obviously not valid
to study atoms constrained in boxes, since they fail
to comply with the boundary condition �(r � r0) �
0. Given that the first eigenfunctions of the atom in
the box should be similar to those of the free atoms
when the intersection radius r0 of the box is not too
small, a sound alternative can be based on “trim-
ming” the standard functions multiplying them by
a function that equals to zero for r � r0. Using the
most immediate choice, the simple step:

f(r; r0) � �constant for r � r0

0 for r � r0
(12)

as the trimming function will not be valid, since the
radial functions R(r) � R0(r) � F(r) obtained after
trimming would not fulfil the continuity conditions
needed for R(r) to belong to the same Hilbert space
as the exact functions.

In Ref. [23], focused on the case of the hydrogen
atom, hydrogenoid functions multiplied by a trim-
ming function of the type:

f(r; r0) � �(1�r/r0)k for r � r0

0 for r � r0
(13)

are used as a basis functions. In this work, we have
defined our trimming functions having three parts:
0 � r � r0 � � constant, r0 � � � r � r0 polynomial,
r � r0 null. In addition, we have used the Clementi
and Raimondi basis functions for atomic calcula-
tions [22] as a starting point. To make them fit
calculations within spherical boxes, we have multi-
plied them by two types of trimming functions f(r,
r0; �):

1. Corresponding to a rigid box fR(r, r0; �): Conti-
nuity of the first- and second-order deriva-
tives of basis functions in r � r0 � � is re-
quired. But only the basis functions—not its
derivatives—have to be continuous in r � r0.

2. Corresponding to a not completely rigid box fR(r,
r0; �): Continuity of the basis functions and
their first- and second-order derivatives both
in r � r0 � � and in r � r0 is required. We have
called this kind of no-rigid box “soft,” whose
energy levels are, as we will see, rather differ-
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ent from its equivalents in a “traditional”
rigid box. The parameter r0 will be called the
“trimming radius,” while the parameter �,
which determines where the basis function is
no longer a pure STO, will be called the “tran-
sition width” (Figs. 1 and 2).

The first case is related to the situation in which
electrons suddenly meet a totally rigid barrier upon
arriving to r � r0. It is the most appropriate choice
to calculate the pressure exerted by the electrons on
the box containing the atom. A four-parameter
polynomial has been chosen as trimming function
(Fig. 1), since the number of continuity conditions
to be applied is four (one in r � r0 and three in r �
r0 � �):

fR�r, r0; �) � �1 for 0 � r � r0 � �
a0 � a1(r � r0)a2(r � r0)2 � a3(r � r0)3 for r0 � � � r � r0

0 for r�r0.
(14)

The value of the ai coefficients can be calculated in
terms of the width � of the transition area, applying
the continuity conditions. The results are

a0 � 0 a1 � �3/� a2 � �3/�2 a3 � �1/�3.

The second case is related to a situation in which
the electrons arrive to the forbidden region not as
abruptly as in the first case. We consider this case
useful for modeling atoms for which, despite not

being actually confined, the probability of finding
the electrons beyond a given distance to the nu-
cleus is intended to be negligible (as when apply-
ing the ZDO approach of semi-empirical meth-
ods). For the trimming function of the soft box
(Figs. 2 and 3), a fifth-grade polynomial function
has been chosen, since it is the simplest function
among those giving a chance to apply the six
continuity conditions required (three in r � r0
and three in r � r0 � �):

fB(r, r0; �) � �1 for 0�r�r0 � �
a0 � a1(r � r0) � a2(r � r0)2 � a3(r � r0)3 � a4(r � r0)4 � a5(r � r0)5 for r0 � � � r � r0

0 for r�r0.
(15)

The values obtained for the ai coefficients of (15) are

a0 � a1 � a2 � 0 a3 � �10/�3

a4 � �15/�4 a5 � �6/�5

The energies calculated for the atoms depend on
the value chosen for �, especially when the inter-
section radius is small. For the calculations shown
onward, the value of this parameter has been vari-
ationally determined.

4.3. ENERGY OF ATOMS CONFINED IN
SPHERICAL BOXES

To compute the integrals required to apply the
Roothaan’s method, the Halton procedure with 106,
107, and 108 points has been used. As the first part
of this work places on record, it has proved to be
precise enough to study the three systems dis-
cussed below.

Tables IV and V show the energies of H, He, and
Li atoms confined in “rigid” and “soft” spherical
boxes for a variety of intersection radii, obtained

FIGURE 1. Trimming function for a rigid box.
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using our UCA–CMC software [8].1 In Table IV, the
transition width (�) has been variationally opti-
mized for each radius. In Table V, the � transition
width values have been calculated by means of a
parabolic relation � � a � bR � cR2 determined by
least-square fitting of the (Ri; �i

opt) data of Table IV,
leading to the small differences between compara-
ble results in Tables IV and V.

The first conclusion to be drawn from Table IV is
that, as can be expected, the results become similar
to those of an untrimmed basis as the intersection
radius grows. It is also remarkable that the results
change significantly depending on whether the box
is rigid or soft, given that the values obtained for
energy are lower in the case of rigid boxes. This
result may be somewhat unpredictable, since from
some standpoints it might seem plausible that plac-
ing a system inside a rigid box should elevate the
eigenvalues of the energy more than in the case of
the box being soft. That does not happen in the case
analyzed, for the sizes of the rigid and soft boxes
compared are identical, and more restrictions are
actually applied in the soft box than in the rigid
one.

4.4. EQUATION OF STATE OF THE
ELECTRONS OF ATOMS CONFINED IN
SPHERICAL BOXES

The results of the preceding section, obtained
employing continuous basis functions whose first-
and second-order derivatives are continuous in 0 �
r � R0, with the additional condition of being con-
tinuous in r � R0 (i.e., those corresponding to a
“rigid” box), can also be used to easily obtain an
equation of state for the electrons of H, He, and Li
atoms in spherical boxes. Taking the fundamental
equation of thermodynamics dU � TdS-PdV and
the Maxwell relations, one can easily establish the
relation [59]:

P � T��P
�T�

V

���U
�V�

T

. (16)

Assuming that the atom is in its ground state (T �
0), and identifying the internal energy U to the
lowest eigenvalue of the Schrödinger equation, we
can estimate the value of pressure P calculating the
derivative of the energy with respect to the volume
of the box containing the atom:

P � ���E
�v�

T

, (17)

where v is the volume occupied by electrons of the
confined atom, and E is the energy in this volume.
To assign a functional relation between the atom

1The UCA–CMC software has been thoroughly tested with
basis functions “s” and “p.” This software also supports “d” and
“f” basis functions; however, only simple cases are covered so
far by the tests performed with these types of functions.

FIGURE 2. Trimming function for a “soft” (i.e., no-
rigid) box. Continuity of derivatives of basis functions is
required in r � r0 � � and in r � r0.

FIGURE 3. 1s original and trimmed radial functions of
the type “soft box.”
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energy and the box volume, we can test a van der
Waals type equation as an initial approach:

P �
RT

v � b �
a
v2 (18)

replacing (17) in (18) and considering that the atom
is in its ground state (T � 0), we find that:

��E
�v�

T

�
a
v2 (19)

and integrating this relation:

E � E	 � �
a
v (20)

where E	 represents the internal energy for an atom
in a box of infinite volume.

Table V shows the values of the energies. In
Table VI we can see that the value of a � �v(E �
E	) depends on the value of the volume used to
compute it. A better relation between the energy of

the atom in the rigid box and the box volume can be
easily obtained from a virial-like expansion:

E � E	 �
c1

v �
c2

v2 �
c3

v3 � . . . , (21)

from which pressure can be deduced as the deriv-
ative with respect to the volume. In Figure 4 we can
see the result of a least square fitting the energies of
Li, calculated for R0 � 3 Bohr, to a three-term series
like (21) and to a van der Waals-like equation (20).
Table VII summarizes the results and predicts the
errors obtained by these fittings. In Figure 4 we can
see that a 3-term Virial type formulae is a reason-
able choice for the equation of state of the electrons
of the H, He, or Li atoms, for which using atomic
units for all variables, we can write:

PH �
�1.2

V2 �
3.7 � 103

V3 �
�2.5 � 105

V4 (22)

PHe �
�0.2

V2 �
1.7 � 102

V3 �
9.1 � 104

V4 (23)

TABLE IV ____________________________________________________________________________________________
Comparison of the energies of H, He, and Li atoms in rigid and soft boxes.*

R (a.u.) �opt (rigid) E(rigid box) �opt (soft) E(soft box)

H 3 2.568 �0.4228661 1.285 �0.3017934
4 2.581 �0.4825323 1.258 �0.4533223
6 2.331 �0.4992263 1.135 �0.4978895
8 2.284 �0.4999733 0.860 �0.4999231

10 2.099 �0.4999992 0.450 �0.4999978
	 — �0.4999999 — �0.4999999

He 3 1.115 �2.8221568 0.630 �2.7955391
4 1.014 �2.8459982 0.579 �2.8442944
6 0.717 �2.847667 0.633 �2.8476639
8 0.485 �2.8476722 0.383 �2.8476721

10 0.292 �2.8476719 0.317 �2.8476719
	 — �2.8476721 — �2.8476721

Li 3 3.4235 �6.7816557 1.496 �6.1126862
4 3.611 �7.1894324 1.956 �6.9616245
6 4.752 �7.3788369 2.645 �7.3226969
8 5.773 �7.4107702 2.688 �7.3937648

10 7.350 �7.4170283 2.326 �7.3226969
	 — �7.4185012 — �7.4185012

* Data are obtained through quasi-random Halton integration and 107 points. Transition width � has been variationally optimized for
each case. Calculations for He and Li are Hartree–Fock–Roothaan with Clementi–Raimondi best-atom basis functions [45].
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PLi �
2.9 � 101

V2 �
2.2 � 104

V3 �
�2.0 � 106

V4 . (24)

5. H2
� and H2 Confined Molecules

The quasi-random integration methods that we
have presented and the UCA–CMC software [8] can
be used directly to study molecules whose electrons
are confined inside intersecting spheres centred on
nuclei. We have done some preliminary calcula-
tions of this kind, on H2

� and H2 molecules at their
experimental internuclear distances. In Table VIII
we can see the results for H2

� and H2 by using
Halton integration with 107 and 108 points and a

minimal basis set of two 1s atomic orbitals. Expo-
nents has been optimized for the unconfined mol-
ecule, �(H2

�) � 1.238 a.u. and �(H2) � 1.189 a.u. The
transition widths � have been variationally opti-
mized for each trimming radius Ri of the basis
functions.

For the neutral molecule the expected behavior is
observed: the energy raise as the volume dimin-
ishes (E	 � E6.0 � E5.0 � . . .). In contrast, for the
ionized molecule the energy presents a small min-
imum in R � 4.5 a.u. for the rigid box, and in R �
6.0 a.u. for the “soft” box. By comparing the results
obtained with 107 and with 108 points, we realize
that the origin of the anomaly is not in the numer-
ical errors of the energies. We think that the mini-
mum is due to an inconvenient effect of having

TABLE V _____________________________________________________________________________________________
Energies of H, He, and Li atoms, in rigid spherical boxes, obtained through 106, 107, and 108 Halton integration
points.*

R (a.u.) � E(106) E(107) E(108)

H 3 2.593 �0.4228466 �0.4228466 �0.4228466
3.5 2.559 �0.4633344 �0.4633344 �0.4633344
4 2.525 �0.4825319 �0.4825319 �0.4825319
5 2.457 �0.4961865 �0.4961865 �0.4961865
6 2.388 �0.4992258 �0.4992258 �0.4992258
8 2.249 �0.4999733 �0.4999734 �0.4999734

10 2.108 �0.4999992 �0.4999992 �0.4999992
	 — �0.5 �0.5 �0.5

He 3 1.131 �2.8226068 �2.8221312 �2.8221258
3.5 1.059 �2.8413795 �2.8409415 �2.840938
4 0.988 �2.8463857 �2.8459717 �2.8459697
5 0.853 �2.8479357 �2.8475489 �2.8475488
6 0.725 �2.8480117 �2.8476369 �2.8476377
8 0.491 �2.848008 �2.847641 �2.8476423

10 0.288 �2.8480065 �2.8476408 �2.8476423
	 — �2.8480061 �2.8476721 �2.8476423

Li 3 3.373 �6.7816573 �6.7813978 �6.7814797
3.5 3.539 �7.0438785 �7.0437767 �7.0438586
4 3.723 �7.189192 �7.1892507 �7.1893071
5 4.145 �7.3257736 �7.3258756 �7.3259227
6 4.639 �7.3785338 �7.3786623 �7.3787311
8 5.842 �7.4105839 �7.4106424 �7.4106943

10 7.333 �7.4168517 �7.4169133 �7.4169595
	 — �7.4183079 �7.4185012 �7.4184331

* Details of calculations are the same as in Table IV except � values, that has been improved by a least-square fitting of the data {Ri;
�i

opt} obtained with 107 integration points. This improvement of � values is responsible for the slight differences between equivalent
results in this table and in Table IV.
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optimized the transition width � in an independent
way for each value of the radius of the interlocking
spheres: the variational optimization of the param-
eter � is more effective for some values of R than for
others, and it mask the confinement effects if these

are small. To confirm this hypothesis, we have re-
peated the calculation of E(Ri) maintaining a fixed
value of the transition width �. In this new calcu-
lation the minimum disappears, as we can see in
Figure 5.

TABLE VI ____________________________________________________________________________________________
Variation of the parameter a � �v(E � E�) of the van der Waals type equation upon variation of the volume
used to compute it and least-square fitting of the parameter.*

Points V � 113.1 V � 179.6 V � 268.1 V � 523.6 V � 904.8 V � 2144 V � 4189 Fitted “a”

H 106 �8.725864 �6.584951 �4.682904 �1.996749 �0.700481 �0.057263 �0.003351 7.48 � 0.75
107 �8.725864 �6.584951 �4.682904 �1.996749 �0.700481 �0.057263 �0.003351 7.48 � 0.75
108 �8.725864 �6.584951 �4.682904 �1.996749 �0.700481 �0.057263 �0.003351 7.48 � 0.75

He 106 �2.872600 �1.190103 �0.434402 �0.036861 0.005067 0.004075 0.001676 2.09 � 0.42
107 �2.888615 �1.208781 �0.455849 �0.064508 �0.031848 �0.066699 �0.131109 2.11 � 0.41
108 �2.885855 �1.204057 �0.448396 �0.048957 �0.004162 0.000000 0.000000 2.10 � 0.42

Li 106 �72.003655 �67.245573 �61.422124 �48.450960 �35.986842 �16.565397 �6.099731 68.57 � 2.62
107 �72.054866 �67.298572 �61.458208 �48.498764 �36.045472 �16.854498 �6.651396 68.62 � 2.62
108 �72.037901 �67.271632 �61.424831 �48.438445 �35.921607 �16.597138 �6.172616 68.60 � 2.62

* These values correspond to spheres whose radii are 3, 3.5, 4, 5, 6, 8, and 10 Bohr. Calculations have been done with 106, 107, and
108 Halton integration points. Volumes in Bohr3.

FIGURE 4. van der Waals (dotted line) and three-term virial (solid line) least-square fitting of the energy of Li in a
rigid spherical box as a function of volume. The points are the data {Ei; Vi} used to obtain the parameters shown in
Table V with 108 points. The dotted line is built using the parameter a � 68.60 a.u. in Table VI, and the solid line is
built through the Table VII parameters c1 � 28.5, c2 � 1.09 � 104, c3 � �6.73 � 105 (a.u.). The representations ob-
tained for He and H atoms are very similar.
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By using the rigid box data quoted in Table VIII
and operating as in the atomic case, it is possible to
deduce relations between the electronic energy or
the pressure, and the volume of the pair of inter-
locking spheres:

V �
2


3 (4r3 � h3 � 3h2r), (25)

where h � r � (R/2), r being the radius of spheres
and R the internuclear distance (R � 1.988 a.u. for
H2

� and R � 1.401 a.u. for H2). In this way, two
expressions comparable to (22)–(24) can be de-
duced:

PH2
� �

�3.6
V2 �

3.2 � 103

V3 �
1.4 � 104

V4 (26)

TABLE VII ____________________________________________________________________________________________
Three-term virial type fitting ¥k�1

3 (ck/vk) of the energy E(v)-E(�) of H, He, and Li in a rigid spherical box as a
function of volume for 3 ≤ R ≤ 10 Bohr.*

Atom N points c1 c2 c3

H 106 �1.16 � 0.15 (1.86 � 0.05) � 103 (�8.44 � 0.43) � 104

107 �1.16 � 0.15 (1.86 � 0.05) � 103 (�8.44 � 0.43) � 104

108 �1.16 � 0.15 (1.86 � 0.05) � 103 (�8.44 � 0.43) � 104

He 106 (�2.41 � 1.11) � 10�1 (8.30 � 3.92) � 101 (3.05 � 0.31) � 104

107 (�1.97 � 1.17) � 10�1 (7.58 � 4.13) � 101 (3.09 � 0.33) � 104

108 (�2.32 � 1.09) � 10�1 (8.49 � 3.87) � 101 (3.03 � 0.31) � 104

Li 106 (2.86 � 0.51) � 101 (1.08 � 0.18) � 104 (�6.71 � 1.44) � 105

107 (2.86 � 0.50) � 101 (1.08 � 0.18) � 104 (�6.70 � 1.43) � 105

108 (2.85 � 0.51) � 101 (1.09 � 0.18) � 104 (�6.73 � 1.44) � 105

* van der Waals and virial fittings for Li are shown in Figure 4. Data from 106, 107, and 108 Halton integration points.

TABLE VIII ___________________________________________________________________________________________
Comparison of the energies of H2

� and H2 in rigid and soft boxes defined by two intersecting spheres of
radius r.*

R
(a.u.)

V
(a.u.3)

�opt

(rigid box)

E(rigid box) �opt

(soft box)

E(soft box)

107 108 107 108

H2
� 3.0 167.25 2.313 �0.5397491 �0.5397722 1.184 �0.5369819 �0.5369587

3.5 254.04 2.713 �0.5723702 �0.5723897 1.187 �0.5692627 �0.5692815
4.0 365.95 3.187 �0.5834451 �0.5834466 1.424 �0.5805630 �0.5805674
4.5 506.12 3.734 �0.5870255 �0.5870073 1.896 �0.5845602 �0.5845494
5.0 677.68 4.354 �0.5880652 �0.5880435 2.601 �0.5861594 �0.5861335
6.0 1127.56 5.813 �0.5881777 �0.5881595 4.715 �0.5879638 �0.5879454
	 — — �0.5865159 �0.5864977 — �0.5865159 �0.5864977

H2 3.0 151.99 2.235 �1.0054862 �1.0055110 0.826 �0.9904087 �0.9904269
3.5 232.79 2.235 �1.0766593 �1.0766888 0.805 �1.0705654 �1.0705962
4.0 337.78 2.105 �1.1065389 �1.1066094 0.777 �1.1045815 �1.1046466
4.5 470.11 1.975 �1.1193212 �1.1194022 0.763 �1.1187619 �1.1188432
5.0 632.91 1.871 �1.1246355 �1.1247148 0.735 �1.1244872 �1.1245667
6.0 1062.51 1.760 �1.1276392 �1.1276704 0.702 �1.1276317 �1.1276630
	 — — �1.1281937 �1.1281835 — �1.1281937 �1.1281835

* Internuclear distances R(H2
�) � 1.988 a.u. and R(H2) � 1.401 a.u. are the experimental values for the unconfined molecules.

Calculations with minimal basis sets with exponents optimized for the unconfined molecules �(H2
�) � 1.238 a.u., �(H2) � 1.189 a.u.

and quasi-random integration (Halton) with 107 and 108 points.
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PH2 �
�4.2

V2 �
8.5 � 103

V3 �
�3.6 � 105

V4 (27)

It is interesting to point out that the pressure ex-
erted by the electrons of H2 is much more similar to
the pressure exerted by the electron of the hydro-
gen atom than to the corresponding to the helium
atom. These preliminary results are merely tenta-
tive, as a minimal basis set with STO exponents
optimized for free molecule is far from the best
choice. Nevertheless, it seems to us that is enough
to prove the usefulness of the quasi-random inte-
gration in a molecular context.
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