

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 307 (2007) 748-749

www.elsevier.com/locate/disc

Counterexample to a conjecture of Györi on C_{2l} -free bipartite graphs $\stackrel{\ensuremath{\sigma}}{\sim}$

Note

C. Balbuena^a, P. García-Vázquez^b, X. Marcote^a, J.C. Valenzuela^c

^aDepartament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, Campus Nord, Edifici C2, C/ Jordi Girona 1 i 3, E-08034 Barcelona, Spain

E-08034 Barcelona, Spain

^bDepartamento de Matemática Aplicada I, Universidad de Sevilla, Avda Reina Mercedes 2, E-41012 Sevilla, Spain ^cDepartamento de Matemáticas, Universidad de Cádiz, Avda Ramón Puyol s/n, E-11202 Cádiz, Spain

> Received 24 November 2005; received in revised form 5 July 2006; accepted 10 July 2006 Available online 24 August 2006

Abstract

A counterexample on a conjecture of Györi related with C_{2l} -free bipartite graphs is described. © 2006 Elsevier B.V. All rights reserved.

Keywords: Cycles in bipartite graphs; Forbidden subgraphs

In 1997 Györi [2] studied the structure of C_6 -free bipartite graphs and the relationship between this problem and some interesting results of Erdös et al. [1] on a number-theoretic problem. Namely, Györi proved a conjecture of Erdös et al. [1] regarding the maximum number of edges that a C_6 -free bipartite graph can have. Moreover, he proved another theorem that generalizes the previous one for cycles of longer length. In this paper Györi stated a conjecture [2, p. 373] that apparently contains a misprint¹ and it should have been expressed in this way:

Conjecture 1. If G = (X, Y) is a bipartite graph with color classes X, Y where |X| = m, |Y| = n, $m^2 \le n$, $3 \le l \le m$ and G has at least (l - 1)n + m - l + 2 edges, then G must contain a cycle of length 2l.

In a recent paper [3], the same author disproves Conjecture 1 for l = 3, but leaves the proof or refutation for $l \ge 4$ as an open problem. In this note we provide a counterexample that disproves Conjecture 1 when $m \ge 2l - 1$. Let us denote by $K_{(m,n)}$ the complete bipartite graph with *m* vertices in the first class and *n* vertices in the second one. Let us also denote by $d_G(v)$ the degree of the vertex *v* in the graph *G*.

Let *l*, *m* be integers such that $3 \le l \le 2(l-1) \le m$. We consider the graphs $G_1 = K_{(m-l+1,l-1)}$ and $G_2 = K_{(l-1,n-l+2)}$. Take two vertices $u \in V(G_1)$ and $v \in V(G_2)$ with $d_{G_1}(u) = m - l + 1$ and $d_{G_2}(v) = l - 1$, and let *G* be the bipartite

0012-365X/\$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2006.07.003

[☆] Research supported by the Ministry of Education and Science, Spain, and the European Regional Development Fund (ERDF) under project MTM2005-08990-C02-02.

E-mail addresses: m.camino.balbuena@upc.edu (C. Balbuena), pgvazquez@us.es (P. García-Vázquez), francisco.javier.marcote@upc.edu (X. Marcote), jcarlos.valenzuela@uca.es (J.C. Valenzuela).

¹ The original conjectured value (l-1)n + m - l + 1 (see [2]) may be easily disproved by means of a graph roughly outlined by the author. We appreciate the referee's comments enlightening this misprint.

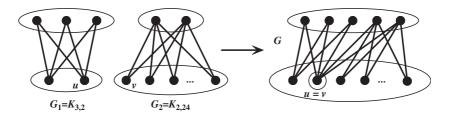


Fig. 1. The graph G with l = 3, m = 5 and n = 25.

graph on *m* and *n* vertices obtained by gluing the graphs G_1 and G_2 in such a way that the vertex *u* of G_1 is identified with the vertex *v* of G_2 (see Fig. 1).

Clearly, any cycle of G must be entirely contained in either G_1 or G_2 . But G_i , i = 1, 2, cannot contain a cycle of length 2*l* because one of its classes has cardinality l - 1. So G is free of C_{2l} and it has size e(G) = (m - l + 1) $(l - 1) + (l - 1)(n - l + 2) \ge (l - 1)n + m - l + 2$ because $m \ge 2l - 1$. Therefore, Conjecture 1 is disproved for $m \ge 2l - 1$.

In [2], Györi proved the following result:

Theorem. If G(X, Y) is a bipartite graph with color classes X, Y such that |X| = m, |Y| = n, $m^2 \le n$ and G has at least $(l-1)n + c(l)m^2$ edges for some constant c(l) then G must contain a cycle of length 2l.

Thus, we propose the following reformulation of the conjecture:

Conjecture 2. If G = (X, Y) is a bipartite graph with color classes X, Y where |X| = m, |Y| = n, $m^2 \le n$, $3 \le l \le m$ such that $m > (l-1)^2$ and G has at least $(l-1)n + 1/(l-1)m^2$ edges then G must contain a cycle of length 2l.

Corollary of Theorem 1 in [3] confirms our Conjecture 2 for l = 3. For $l \ge 4$ it is still an open problem.

References

[1] P. Erdös, A. Sarközy, V.T. Sós, On product representation of powers I, European J. Combin. 16 (1995) 567–588.

[2] E. Györi, C_6 -free bipartite graphs and product representation of squares, Discrete Math. 165/166 (1997) 371–375.

[3] E. Györi, Triangle-free hypergraphs, Combinatorics, Probab. Comput. 15 (1–2) (2006) 185–191.