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Invited Review

The mitochondrial energy transduction system and the aging process

Ana Navarro1 and Alberto Boveris2
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and 2School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina

Navarro A, Boveris A. The mitochondrial energy transduction system and
the aging process. Am J Physiol Cell Physiol 292: C670 –C686, 2007;
doi:10.1152/ajpcell.00213.2006.—Aged mammalian tissues show a decreased
capacity to produce ATP by oxidative phosphorylation due to dysfunctional
mitochondria. The mitochondrial content of rat brain and liver is not reduced in
aging and the impairment of mitochondrial function is due to decreased rates of
electron transfer by the selectively diminished activities of complexes I and IV.
Inner membrane H� impermeability and F1-ATP synthase activity are only
slightly affected by aging. Dysfunctional mitochondria in aged rodents are
characterized, besides decreased electron transfer and O2 uptake, by an in-
creased content of oxidation products of phospholipids, proteins and DNA, a
decreased membrane potential, and increased size and fragility. Free radical-
mediated oxidations are determining factors of mitochondrial dysfunction and
turnover, cell apoptosis, tissue function, and lifespan. Inner membrane enzyme
activities, such as those of complexes I and IV and mitochondrial nitric oxide
synthase, decrease upon aging and afford aging markers. The activities of these
three enzymes in mice brain are linearly correlated with neurological perfor-
mance, as determined by the tightrope and the T-maze tests. The same
enzymatic activities correlated positively with mice survival and negatively
with the mitochondrial content of lipid and protein oxidation products. Condi-
tions that increase survival, as vitamin E dietary supplementation, caloric
restriction, high spontaneous neurological activity, and moderate physical
exercise, ameliorate mitochondrial dysfunction in aged brain and liver. The
pleiotropic signaling of mitochondrial H2O2 and nitric oxide diffusion to the
cytosol seems modified in aged animals and to contribute to the decreased
mitochondrial biogenesis in old animals.

oxidative damage; survival; complexes I and IV; nitric oxide synthase

EARLY OBSERVATIONS by Leloir and Muñoz (92) indicated that
fatty acid oxidation depends on a labile particulate material of
liver homogenates. Later, Kennedy and Lehninger (82) re-
ported that the oxidation of fatty acids and of citric acid cycle
intermediates was carried out by osmotically active structures
with coupled ADP phosphorylation to ATP. Simultaneously,
Sjostrand (146) and Palade (126) recognized by electron mi-
croscopy the characteristic double membrane of mitochondria.
The concept of oxidative phosphorylation as the mitochondrial
function evolved from the confluence of structural and bio-
chemical knowledge and by 1952, mitochondria were de-
scribed by Lehninger (91) as intracellular “power plants”.

BIOLOGICAL ENERGY TRANSDUCTION: INTRODUCTION AND
HISTORICAL PERSPECTIVE

The isolation of mitochondrial proteins with specific elec-
tron transfer properties by Green and co-workers provided the
concept of “complexes” of the respiratory chain (65) By 1955,
Chance and co-workers (32), by using spectrophotometric
techniques, described the reduction-oxidation levels of the
components of the respiratory chain in the transition following

ADP addition and identified the sites that are thermodynami-
cally and kinetically compatible with energy transduction.

The knowledge of ATP synthase followed contributions
from morphology and biochemistry. Electron microscopy of
heart mitochondria by Fernandez-Moran (52) revealed regu-
larly spaced “elementary particles” of 8–10 nm diameter, later
identified as the F1 subunit of ATP synthase. The properties of
ATP-synthase, called F1-ATPase at that time, were described
by the work of Racker and co-workers (130) and of Boyer (18).
The modern knowledge of the vectorial biochemistry of mito-
chondrial energy transduction was developed after the formu-
lation of Mitchell’s chemiosmotic theory (106, 107). The
subsequent landmark contribution of Walker (156) was the
understanding of the mechanism of ATP synthesis by the
molecular rotor driven by proton (H�) flow through the ATP
synthase complex.

We now understand oxidative phosphorylation as a process
catalyzed by constitutive proteins of the inner mitochondrial
membrane that encompasses electron transfer between the
complexes of the respiratory chain, vectorial H� release into
the intermembrane space, and H� reentry to the matrix through
F0 with ATP synthesis by the F1-ATP synthase. In addition,
mitochondria are recognized to contribute to intracellular sig-
naling and regulation with a central role in keeping homeo-
static cell ionic composition (44).
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The Mitochondrial Membranes

Mitochondria are characterized by two membranes, the inner
and the outer membranes, with two compartments separated by
the inner membrane. Cristae are invaginations of the inner
membrane and the intermembrane and intracristal spaces are
continuous and form a single compartment. The matrix, sur-
rounded by the folding of the inner membrane, comprises the
second compartment (126, 146).

The outer mitochondrial membrane is permeable to small
molecules and ions, which move through transmembrane chan-
nels formed by a family of integral membrane proteins called
porins. Voltage-dependent anion channels are the potential-
sensitive porins of the outer membrane that allow metabolite
exchange between mitochondria and the cytoplasm (67).

The inner membrane is impermeable to H� and this property
provides the basis of mitochondrial energy transduction.
Chemical species as ions and small molecules that cross the
inner membrane have specific transporters. The inner mem-
brane bears, as integral proteins, the key catalysts of oxidative
phosphorylation: the electron transfer respiratory complexes
and the ATP synthase complex (106).

Components of Mitochondrial Respiratory Chain and
Respiratory Assemblies

The mitochondrial respiratory chain consists of a series of
electron carriers that function as redox pairs and that are
mainly prosthetic groups of integral proteins. There are four
electron transfer or respiratory complexes (complexes I–IV),
each capable of catalyzing electron transfer in a partial reaction
of the respiratory chain.

Complex I (NADH-ubiquinone oxidoreductase; NADH de-
hydrogenase) is composed of 42–43 different polypeptides,
including a FMN-containing flavoprotein and 6 iron-sulfur
centers (73, 74). Complex I has an L-shaped form, with the
long arm as a hydrophobic integral membrane protein and the
short arm extending into the matrix with the hydrophilic part
that contains the FMN and the NADH active center (56). The
two arms of the L-shaped complex I have separated genetic
origin and independent assembly (75).

Rotenone is the specific and stoichiometric inhibitor of
complex I in mitochondrial fragments and in isolated mito-
chondria (33). Some complex I preparations, obtained by
membrane solubilization or by further resolution of the classic
rotenone-sensitive Hatefi’s complex I (73), catalyze rotenone-
insensitive NADH oxidation by artificial electron acceptors
(93). It is understood that all rotenone-insensitive NADH
dehydrogenase preparations are denatured forms of complex I,
a point that illustrates the convenience of using native prepa-
rations in the assessment of complex I dysfunction in aging and
neurological diseases.

Ubiquinone is a lipid soluble benzoquinone with a long
isoprenoid side chain that is laterally diffusible in each of the
two layers of the phospholipid bilayer of the inner membrane
and adapted to shuttle electrons between membrane proteins.
Complex I, prepared by the Hatefi’s procedure, contains �4
mol of ubiquinone per mol of FMN (74).

Complex II (succinate dehydrogenase; succinate-ubiquinone
reductase) is the membrane-bound component of the citric acid
cycle that also functions as a component of the mitochondrial
respiratory chain. The integral protein has a covalently bound

FAD and iron-sulfur centers in the membrane extrinsic domain
that catalyze electron transfer to ubiquinone and b heme in the
hydrophobic membrane domain (28).

Complex III (cytochrome bc1 complex; ubiquinol-cyto-
chrome c oxidoreductase) is composed of 9–10 polypeptides, 3
of which are associated with redox centers. These centers are
b562, b566, and c1 hemes and a [2Fe-2S] cluster (73). In
addition, two ubisemiquinone bind to two separate domains of
complex III (42).

Cytochrome c is a peripheral protein facing the intermem-
brane space, easily solubilized by salt treatments, that transfers
electrons from complex III to the CuA of complex IV.

Complex IV (cytochrome c oxidase, cytochrome oxidase;
cytochrome c-O2 oxidoreductase) is the final catalyst of the
respiratory chain. Complex IV reduces O2 to H2O with four
electrons from reduced cytochrome c in a process that con-
sumes 4 H� from the matrix. It is worth noting that complex IV
dysfunction is common in aging and in neurological diseases.

The stoichiometry of the complexes of the respiratory chain
is an interesting subject of current studies. The spectrophoto-
metric determination of the respiratory carriers in isolated
mitochondria (32) and the determination of the content of
respiratory complexes in mitochondrial fragments prepared by
sonic or chemical treatments (65) showed that they occur in
simple molar ratios. This finding indicates that respiratory
carriers and complexes are arranged in “assemblies” with
specific protein-protein interactions, which are effective for
rapid electron transfer by limiting the intermolecular distances
that slow-diffusing proteins should otherwise travel between
collisions (32). A single liver mitochondrion contain �10,000
complete respiratory assemblies, the number is higher in kid-
ney and about twice in heart mitochondria.

Complexes I, III, and IV interact to form supercomplexes
with defined stoichiometric composition in mitochondria from
yeast, higher plants, and mammals. Supercomplexes I1III2 and
I1III2IV1 were reported in bovine heart mitochondria (140).

Oxidation and electrochemical potentials in the
mitochondrial respiratory chain

The electron flow from the electron donors, NADH or
succinate, to the acceptor, O2, occurs following the oxidation
potential of the components of the electron transfer chain.
Electrons move toward compounds with more positive oxida-
tion potentials as given by the standard redox potential and the
ratio of the oxidized and reduced forms, according to the
Nernst equation. The differences in redox potential of the
electron carriers define the reactions that are exergonic enough
to provide the free energy required for the coupled endergonic
pumping of H� into the intermembrane space.

Complexes I, III, and IV function as H� pumps, acting in
series with respect to electron flux and in parallel with respect
to the H� circuit. The H� pumps are driven by the free energy
of the coupled oxidation reactions and have the characteristic
that the catalyzed oxidation and the H� release are both
vectorial and coupled. The movements of H� occur in a
specific direction from the matrix to the intermembrane space,
with the matrix becoming negatively charged with the depar-
ture of H� (N side, negative), and the intermembrane space
becoming positively charged (P side, positive). For instance,
complex I catalyzes two simultaneous and obligatory pro-
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cesses: the exergonic transfer of one hydrogen atom and one
electron from NADH and of a H� from the matrix to ubiqui-
none, coupled to the endergonic transfer of 4 H� from the
matrix to the intermembrane space (155).

The chemical free energy of the fall in redox potential of the
electrons passing through the respiratory complexes is used to
generate a H� electrochemical potential gradient, ��H, ex-
pressed in electric potential units as the proton-motive force
(�p) (106) as �p (mV) � ��m � (2.3 RT/F) �pH, that at
37°C, results: �p � ��m � 60 �pH. In the equation, ��m is
the electric potential across the inner mitochondrial membrane,
�pH is the pH gradient across the inner membrane, and R, T,
and F refer to the gas constant, the absolute temperature, and
the Faraday constant, respectively. Under most conditions,
��m is the dominant component of �p, accounting for 150–
180 mV of a �p of 200–220 mV (107). The �p drives ADP
phosphorylation and stops electron flow in the controlled
metabolic condition of absence of ADP. In the biophysical
basis of respiratory control, �p is able to stop exergonic
substrate oxidation by a free energy equilibrium between
electron flow between redox pairs and H� flow between
compartments. Moreover, membrane potential provides the
driving force for cation, such as K� and Ca2�, uptake by
mitochondria.

Electrochemical Potential and F1-ATPase Molecular Rotor
are used to Phosphorylate ADP

The whole process of oxidative phosphorylation depends
critically on the integrity and impermeability of the inner
mitochondrial membrane. The first part of the process converts
the chemical potential of NADH and succinate oxidation into
a H� electrochemical gradient, and the second part of the
process, catalyzed by the ATP synthase uses the H� electro-
chemical gradient to drive the endergonic ATP synthesis. The
process is thermodynamically possible because electron trans-
fer releases and the proton-motive force conserves enough free
energy, about 34 kJ per mol of electron pair, to drive the
formation of one mol of ATP, which requires �32 kJ.

Mitochondrial ATP synthase (complex V) is a F-type
ATPase that has two distinct components: F1, a peripheral
membrane protein, and F0, which is integral to the membrane
(18, 130, 156). The F1 catalytic domain is a globular assembly
of 5 proteins �, 	, 
, �, and � with the stoichiometry 3:3:1:1:1.
The 
-, �-, and �-subunits form a central stalk linking the (�	)3

subcomplex of the F1 domain to F0. The (�	)3 subcomplex and
the F0 domain are linked by a peripheral stalk. The 
-subunit
protrudes from (�	)3 subcomplex and the �- and �-subunits are
associated with its foot. The movement of the subunits of ATP
synthase is critical to its function, with the central stalk rotating
at 50–100 times/s. The rotation is produced in F0, which is in
contact with the foot of the central stalk and is fuelled by the
H� flow (156).

The rate of mitochondrial respiration depends on ADP
availability to F1-ATP synthase. The gradients of ADP and
ATP across the inner membrane are equilibrated by the adenine
nucleotide translocase activity, which is functional to provide
ADP to the matrix and ATP for energy-dependent processes to
the cytosol.

The experimental value for the H� required to drive the
synthesis of one ATP molecule is �3–4 (30, 106). The

phosphorylation efficiency is determined in isolated coupled
mitochondria as the ADP/O ratio, with experimental values of
2.6–2.7 for NAD-dependent substrates and 1.6–1.7 for succi-
nate oxidation. These values are close to the theoretical ADP/O
ratios of 2.5 and 1.5, respectively, considering that the H�

pumped out per pair of electron are 10 for NADH and 6 for
succinate.

Mitochondrial Ca2� Sequestration

When mitochondria are supplemented with Ca2�, even in
the presence of ADP, Ca2� ions are internalized into mito-
chondria in an energy-dependent process and ATP synthesis is
abolished. Mitochondria take up Ca2� in exchange for H� by
an ATP-powered or membrane potential driven Ca2�/H�

pump with a stoichiometry of 1:1. The stimulation of respira-
tion by 2 Ca2� ions yield the same amount of extra O2 uptake
as one molecule of ADP (26). Mitochondria accumulate large
amounts of Ca2� with simultaneous uptake of Pi and precipi-
tation in the matrix of an insoluble salt similar to hydroxylapa-
tite, in a way that the ionic Ca2� concentration in the matrix is
only moderately altered (26). Another route of Ca2� uptake is
functionally related with the opening of the Ca2�-mediated
permeability pore (136), a sudden increase in inner membrane
permeability induced by a large series of compounds that
collapses membrane potential and permits the efflux and influx
of large molecules and ions. Intramitochondrial Ca2� is rec-
ognized as an allosteric activator of matrix dehydrogenases,
such as NAD�-isocitrate dehydrogenase, pyruvate dehydroge-
nase and �-ketoglutarate dehydrogenase (104) and as co-factor
of mitochondrial nitric oxide (NO) synthase (mtNOS) (59).

REGULATION OF MITOCHONDRIAL RESPIRATION

It is now known that mitochondrial oxidative phosphoryla-
tion is regulated by three metabolites: ADP, O2, and NO. As
early recognized, the rate of respiration and of ATP synthesis
are determined by cellular energy needs, which are expressed
as cytosolic ADP concentration or as phosphorylation potential
([ATP]/[ADP][Pi]), in which the operational part is the [ATP]/
[ADP] ratio. When the cellular demand for energy increases,
ATP breakdown to ADP and Pi increases and lowers the
phosphorylation potential. With more ADP available, the rate
of respiration increases, causing regeneration of ATP. Usually,
the phosphorylation potential is finely regulated and fluctuates
only slightly in most tissues. Chance and Williams (32) defined
the operational concepts of mitochondrial metabolic states and
respiratory control. State 4, with availability of respiratory
substrate but not of ADP, was described as “controlled or
resting respiration”, whereas state 3, with ample respiratory
substrate and ADP availability, was defined as the “active
respiration”, i.e., the maximal physiological rate of ATP pro-
duction and O2 consumption. The rates of respiration of iso-
lated mitochondria are 5 to 8 times faster in state 3 than in state
4, i.e., the respiratory controls are 5 to 8. Considering the rates
of mitochondrial O2 uptake in both states 4 and 3, and of O2

uptake of perfused organs, it was estimated that mammalian
mitochondria under physiological conditions are mostly (60–
70%) in state 4, whereas the rest (30–40%) are in state 3 (15).
This means that in a physiological setting there is only a
30–40% utilization of the ATP-producing capacity. The linear
rates of O2 uptake shown by tissue slices and perfused organs
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are interpreted as a fast switching of mitochondria between
metabolic states 3 and 4.

NO is a physiological regulator of mitochondrial respiration.
In the arterioles, NO produces vasodilatation and increases
blood flow and O2 delivery to the tissues IV (37). However, in
mitochondria NO inhibits respiration, by a rapid, selective,
potent, and reversible inhibition of complex IV (21, 27, 35,
128). The inhibition occurs in competition with O2, so that NO
dramatically increases the O2 concentration that yield half-
maximal rate of O2 uptake (2), from 1.4 �M O2 in the absence
of NO to 3.4 �M O2 in the presence of 0.2 �M NO (16).

In mitochondria, synaptosomes and mitochondrial mem-
branes half-inhibition of respiration occurs at O2/NO ratios of
150 (2) to 600 (21). Macrophages, astrocytes, and endothelial
cells under inflammatory conditions and with increased iNOS
expression produce sufficient NO to inhibit their own respira-
tion and also the O2 uptake of surrounding cells (99).

GENERATION OF MITOCHONDRIAL FREE RADICALS

Mitochondria isolated from liver and heart were described
by Boveris and Chance in 1972–1973 as an active source of
H2O2 that diffuses to the cytosol (14, 17). Shortly after, O2

�

was recognized as the stoichiometric precursor of mitochon-
drial H2O2 and ubisemiquinone (UQH � ) was indicated as the
main source of O2

� upon autooxidation (13, 25, 47). Mitochon-
dria are considered the main quantitative source of O2

� and
H2O2 in mammalian organs (31). However, there is a standing
criticism by Nohl and colleagues that mitochondria in vivo are
not an effective source of O2

� and H2O2 and that the deter-
mined rates are artifactual (121).

A few years ago, mitochondria were also recognized as a
source of NO by two independent research groups, Ghafourifar
and Richter (58) and Giulivi et al. (62). Mitochondrial NO is
produced by an isoform of NOS, mtNOS, that carries out a
classic NOS reaction.

Mitochondrial production of O2
� and H2O2

The majority of mitochondrial O2
�, 70–80%, is vectorially

released to the mitochondrial matrix and 20–30% is released
into the intermembrane space. Two main O2

� generating reac-
tions have been described by auto-oxidation of intermediate
semiquinones: UQH � for the ubiquinol/ubiquinone redox pair
(UQH � � O2 � UQ � H� � O2

�) (13) and the FMN � of the
FMNH2/FMN coenzyme of NADH dehydrogenase (FMNH �

� O2 � FMN � H� � O2
�) (150). The semiquinones are

collisionally and nonenzymatically oxidized by molecular O2

to yield O2
�. Ubisemiquinone is the quantitative main source of

univalent O2
� reduction to yield O2

� (129, 150). A role of the
Fe-S cluster N1a of complex I has been reported in preventing
O2

� generation (74).
The mitochondrial production of H2O2 is modulated by the

mitochondrial metabolic state and by the intramitochondrial
concentration of NO. The production of H2O2 in state 4 is �4
to 5 times higher than in state 3: 0.3–0.8 nmol
H2O2 �min�1 �mg protein�1 for state 4 and 0.05–0.15 nmol
H2O2 �min�1 �mg protein�1 for state 3 (12). Ion movements
through the inner membrane strongly affect the rates of H2O2

production, indicating a membrane potential regulation of the
auto-oxidation of UQH � (24). In the rat heart and liver, mito-
chondrial H2O2 production accounts for �0.5% of the physi-

ological organ O2 uptake with succinate or malate-glutamate as
substrate (12) and for �0.15% with palmitoyl carnitine as
substrate (148).

Mitochondrial Production of NO

NO is synthesized by the NOS enzymatic reaction that
requires arginine, NADPH2 and O2 as substrates and that
produces citrulline, H2O, and NO (NADPH2 � Arg � O2 �
NADP � H2O � Cit � NO). Three different genomic NOS are
known: neuronal NOS (nNOS or NOS-1); inducible or mac-
rophage NOS (iNOS or NOS-2) and endothelial NOS (eNOS
or NOS-3). The mtNOS has been identified as the splice
variant � of the nNOS with the posttranslational modifications
of myristilation and phosphorylation (49, 55). The intramito-
chondrial concentrations of NADPH2, arginine, O2, and Ca2�

are in excess or in the range needed for enzymatic activity
(152). Mitochondria and submitochondrial preparations yield
rates of 0.25–0.90 nmol NO �min�1 �mg protein�1. However,
there is still some controversy concerning the existence of
mtNOS (20).

The intramitochondrial steady-state concentrations of NO
are calculated as 50–200 nM NO (129) and a release of 29 nM
NO was electrochemically measured after supplementation of
a single mitochondrion with Ca2� (80). Under physiological
conditions tissues are oxygenated at �25 �M O2 and mito-
chondria are exposed, by the NO generated by mtNOS, to
[O2]/[NO] ratios of �150–300, which inhibit cytochrome
oxidase by 50–25% (2, 16).

NO, produced by NO donors or by mtNOS, inhibits complex
III electron transfer (half inhibition of electron transfer be-
tween cytochromes b and c occurs at 0.2–0.4 �M NO) and
increases O2

� and H2O2 production in submitochondrial parti-
cles and in mitochondria (128). The reaction is frequently
referred as involved in the molecular mechanism of neurolog-
ical diseases.

Intramitochondrial metabolism of O2
�, H2O2, and NO and

diffusion of NO and H2O2 out of mitochondria

The intramitochondrial metabolites O2
�, H2O2, NO, and

ONOO� are pro-oxidants potentially leading to oxidative
stress and damage and are nowadays considered as the chem-
ical species that afford the molecular mechanism of tissue
dysfunction in inflammation, neurological diseases, and aging.
Two of them, O2

� and NO, are free radicals; however, they are
unreactive and sluggish and do not participate in propagation
reactions and only show termination reactions yielding H2O2

and ONOO�. The latter two species are potentially harmful
after homolytic scission due to the generation of the reactive
hydroxyl radical. In the case of ONOO�, the homolytic scis-
sion also yields the free radical NO2, which is involved in
protein nitration (12, 132).

The main part of mitochondrial O2
� is released into the

matrix where it encounters specific intramitochondrial mana-
ganese superoxide dismutase (MnSOD) that catalyzes the re-
action: 2 O2

� � 2 H� � O2 � H2O2. Steady-state concen-
trations of 0.2–0.3 nM O2

� were estimated for the mitochon-
drial matrix, with a content of 10–40 �M MnSOD reaction
centers (12). The O2

� released in the intermembrane space (69)
reacts with cytochrome c, located on the P side of the inner
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membrane, and with the Cu,Zn-SOD of the intermembrane
space (123).

Glutathione peroxidase catalyzes H2O2 and ROOH reduc-
tion by GSH [H2O2 (ROOH) � 2 GSH � GSSG � 2 H2O
(ROH � H2O)] and is the unique enzyme that uses H2O2 in the
mitochondria of most mammalian organs (31), the exception
being heart, where a mitochondrial catalase has been described
(133). Mitochondrial glutathione peroxidase activity accounts
for �60% of the rate of H2O2 production and indicates both a
role of H2O2 as messenger and a function of glutathione
peroxidase in the reduction of mitochondrial hydroperoxides.
Glutathione deficiency is associated with widespread mito-
chondrial dysfunction leading to cell damage (105). Glutathi-
one peroxidase requires a continuous supply of GSH, since the
co-factor becomes oxidized by H2O2 or hydroperoxide. A
separate enzyme, NADPH2-dependent glutathione reductase, is
located in the mitochondrial matrix and shows a high activity
that keeps the GSH/GSSG couple in a highly reduced state
(31).

Boveris and co-workers (152) reported that mitochondria
isolated from rat heart, liver, kidney, and brain release NO and
H2O2 with rates that are higher in state 4 than in state 3. NO
release from rat liver mitochondria shows an exponential
dependence on membrane potential (152), as reported for
mitochondrial H2O2 production by Korshunov et al. (84). The
data support the speculation that NO and H2O2 diffusion to the
cytosol reflect a high mitochondrial energy charge and signal
such metabolic situation to the cytosol promoting mitochon-
drial biogenesis.

NO and O2
� metabolism in the mitochondrial matrix are

linked by the very fast, diffusion limited, reaction between NO
and O2

� to produce peroxynitrite (NO � O2
� � ONOO�) (4,

83). This oxidative utilization of NO is the main (80%) path-
way of NO metabolism but only a minor part (15%) of O2

�

utilization, whereas the reductive utilization of NO by ubiqui-
nol and cytochrome oxidase provides minor (20%) pathways of
NO catabolism (129).

Peroxynitrite is a powerful oxidant that, as a charged spe-
cies, is badly diffusible from the intramitochondrial space.
Peroxynitrite inhibits both complex I and III (36, 135); the
effects are irreversible and are usually observed in situations in
which sustained high levels of ONOO� lead to mitochondrial
dysfunction and apoptosis. A level of 2–5 nM ONOO� has
been estimated for the mitochondrial matrix under physiolog-
ical conditions (129, 151), and levels above 20–30 nM are
considered cytotoxic. The existence of a stable low ONOO�

concentration is indicated by the detection of nitrotyrosine in
normal mitochondria. At high levels, ONOO� oxidizes and
nitrates lipids and proteins and impairs mitochondrial function.
The whole syndrome of mitochondrial dysfunction appears
driven by excess NO and ONOO� as postulated for ischemia-
reperfusion, inflammation, and aging (5, 63).

There are effective reductants for matrix ONOO� due to
their reaction constants and concentrations. In rat liver, 3.8 mM
NADH2, 2.6 mM UQH2 and 3.0 mM GSH in the matrix
account for 33, 46, and 21% of the matrix capacity to reduce
ONOO� (151). Peroxinitrite readily reacts with CO2 to yield
the adduct ONOOCO2

� (k � 6 � 104 M�1s�1) (11) that also
participates in oxidation and nitration reactions. Formation of
the adduct decreases the steady-state level of ONOO� from 30
nM to 2 nM (151) and is considered a detoxification pathway

for mitochondrial ONOO� that takes advantage of the high
mitochondrial CO2 concentration (1 mM) (132). Finally, NO
has been found an effective chain-breaker antioxidant by ter-
mination reactions with the free radical intermediates of lipid
peroxidation (137).

EFFECTS OF AGING ON MITOCHONDRIAL
ENERGY TRANSDUCTION

Mitochondria were brought to attention in aging biology due
to 1) the central role of mitochondria in producing chemical
energy (ATP) to meet cellular requirements, and 2) the de-
clines of basal metabolic rate and of physical performance in
energy-requiring tasks, which are characteristic of the aging
process (103).

An age-dependent impairment of mitochondrial function
may comprise: 1) decreased electron transfer rates, 2) in-
creased H� permeability of the inner membrane, and 3) im-
pairment of the H�-driven ATP synthesis.

Decreased Electron Transfer in Aging

A widely recognized experimental fact concerning aging and
energy transduction is that a decreased electron transfer activ-
ity is observed in mitochondrial membranes and mitochondria
isolated from rat and mice tissues upon aging. Complexes I and
IV show a selectively decreased enzymatic activity in mito-
chondria isolated from rat and mice liver, brain, heart, and
kidney upon aging, whereas complexes II and III are largely
unaffected (7, 87, 93, 101, 110, 112–115, 161). The decreased
activity of complex I is determined in mitochondrial fragments
as a decreased NADH-cytochrome c reductase activity with a
simultaneously unchanged succinate-cytochrome c reductase
activity (115) or as decreased NADH-ubiquinone reductase
activity (93), and in coupled mitochondria as a decreased
respiratory rate in state 3 with malate-glutamate, or other
NAD-dependent substrates with a simultaneous unchanged
respiratory rate with succinate as substrate (114) (Fig. 1). In
our experience, direct assay of complex I using artificial
quinone electron acceptors that exhibit relatively slow rates of
electron transfer, may underestimate enzyme activity and miss
the impairment in complex I function. Lenaz et al. (93) re-
ported decreased complex I activity in aging and proposed a
procedure to calculate complex I activity from aerobic NADH
oxidation.

The decreased activity of complex IV is usually determined
by the enzymatic assay in mitochondrial fragments (115).
Figure 1 illustrates the determination of the enzymatic activity
of mitochondrial electron transfer complexes.

The histochemical determinations of NADH-dehydrogenase
in rat kidney (111), and of cytochrome oxidase in human
substantia nigra (76), rat hippocampal dentate gyrus (8), and
monkey tissues (109) show decreased activities upon aging.

The decreased enzymatic activities of complexes I and IV
could be a consequence either of an enzyme inhibition by
aging-produced inhibitors, or of aging-mediated enzyme mod-
ification, or of decreased protein expression. Western blot
analysis showed that aging is associated with a selectively
decreased content of complexes I, II, and IV in human skeletal
muscle, whereas complex III was not altered (10). In the same
line, aging did not alter the content of catalytic centers of
complex III (cytochromes b and c1 and [Fe-S] protein) in heart
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interfibrillar mitochondria (94). The content of ubiquinone was
reported decreased in the skeletal muscle of old mice (90).

Northern blot analysis of the respiratory complexes in mice
brain mitochondria revealed an increased expression of mito-
chondrial-encoded genes in complexes I, III, IV, and V in 12-
and 18-mo-old mice compared with 2-mo-old mice, suggesting
a compensatory mechanism of overproduction of electron
transfer proteins. However, the mRNA expression of all genes
was decreased in 24-mo-old mice, suggesting that compensa-
tion by gene upregulation cannot be sustained for a long time
and that downregulation of expression shows up in the late
stage of aging (98).

Mitochondrial respiration can be limited by the activities of
the NAD-dependent dehydrogenases. There is no clear evi-
dence if the activities of the dehydrogenases of the citric acid
cycle are modified during aging. In mitochondria isolated from
kidneys of old mice, aconitase activity exhibited a significant

decrease with age (160), whereas �-ketoglutarate dehydroge-
nase exhibited a modest decrease and NADP�-isocitrate dehy-
drogenase activity increased moderately. The activities of ci-
trate synthase, NAD�-isocitrate dehydrogenase, succinyl-CoA
synthetase, succinate dehydrogenase, fumarase, and malate
dehydrogenase were not affected. The ratio of the intramito-
chondrial redox indicator, NADPH2/NADP, was higher in
young compared with old animals, while the NADH2/NAD
ratio remained unchanged (160). In another study, the activities
of citric acid cycle enzymes of heart and skeletal muscle
mitochondria, such as isocitrate dehydrogenase, �-ketogluta-
rate dehydrogenase, succinate dehydrogenase, and malate de-
hydrogenase, were found decreased in aged rats (87).

Acyl carnitine transferase, that catalyzes fatty acid transport
to the mitochondrial matrix, is essential for mitochondrial
function and has been reported selectively decreased in aging
(96). The proteomic analysis of aged male Macaca fascicularis

Fig. 1. Mitochondrial electron transfer activities
and O2 uptake. A: O2 uptake of rat brain mito-
chondria. Respiratory rates were determined
with mitochondria at 30°C and the additions
were 5 mM malate-glutamate or 10 mM succi-
nate and 0.5 mM ADP. The numbers near the
traces indicates O2 uptake in ng- at O/min � mg
protein. a, mitochondria (1.15 mg/ml) from a
young (3 mo) rat; b, mitochondria (1.12 mg/m)
from an old (24 mo) rat; c, mitochondria (1.07
mg/ml) from a young (3 mo) rat; and d, mito-
chondria (1.2 mg/m) from an old (24 mo) rat. B:
scheme of the mitochondrial respiratory chain.
In aging, the decreased activity of complex I is
usually determined in mitochondrial fragments
as a decreased NADH-cytochrome c reductase
activity with a simultaneously unchanged succi-
nate-cytochrome c reductase activity. The activ-
ity of complex IV is determined by the enzy-
matic assay in mitochondrial fragments.
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heart showed decreases in the expression of key glycolytic
enzymes (e.g., pyruvate kinase, �-enolase, triosephosphate
isomerase), glucose oxidation (e.g., pyruvate dehydrogenase
E1-	-subunit), and tricarboxylic acid cycle (�-ketoglutarate
dehydrogenase) in old male monkeys. Interestingly, these
changes were not observed in old female monkeys (158).

Increased H� Permeability of the Inner Membrane

There are speculations about an increased H� permeability
of the inner mitochondrial membrane and a consequent failure
in maintaining the H� electrochemical gradient in aging. How-
ever, there is no reported evidence of an increased H� perme-
ability in old animals. Indirect evidence from decreased mem-
brane potential in astrocytes from old animals is consistent
with an impairment of the H� impermeability of the inner
membrane (95). Brain mitochondria isolated from aged rats
had a larger volume and increased water permeability when
challenged by a hypotonic medium, but liver mitochondria did
not show such difference between young and old animals
(112). Liver mitochondria from old rats showed decreased
membrane potential, an impairment that was improved by
treatment with an antioxidant extract (139). Cortical and stri-
atal mitochondria of aged rats showed lower membrane poten-
tials with increased susceptibility to the permeability transition
at advanced ages (88). Mitochondria isolated from thoraces of
Drosophila melanogaster, mainly flight muscle mitochondria,
showed a significant decrease in state 3 respiration, respiratory
control ratios, and uncoupled respiration rates, as a function of
age, using either NAD- or FAD-linked substrates, but there
were no differences in state 4 respiration rates, which does not
indicate increased H� permeability in aging (51).

Conservation of the H�-Driven ATP Synthesis in Aging

The H�-driven ATP synthesis in aging has been estimated
from the determination of the ADP/O ratios in coupled mito-
chondria. There is no report on the effect of aging on the
biochemical activity of the ATP synthase complex or on
F1-ATPase activity. Two studies reported slightly depressed
and not affected ADP/O ratios in aged brain (114) and liver
(110, 114) mitochondria. In both cases, the almost no effect on
the ADP/O ratios was simultaneous to a decreased state 3
respiration rate, which indicated an impairment of electron
transfer.

The activity of adenine nucleotide translocase, that catalyzes
the fast ADP/ATP exchange between cytosol and mitochon-
dria, was reported decreased in aging (159).

FREE RADICALS, OXIDATIVE DAMAGE, MITOCHONDRIAL
DYSFUNCTION AND APOPTOSIS

The free radical theory of aging is based in the works of
Gerschman (57) and Harman (70), and when focused in mito-
chondria emerged as the mitochondrial hypothesis of aging (5,
71, 154). Mitochondria are considered the pacemakers of tissue
aging due to the continuous production of free radicals, oxy-
gen, and nitrogen free radicals and related reactive species, and
to the selective oxidative damage that leads to mitochondrial
dysfunction. Gerschman postulated in 1954 that oxygen free
radicals were the common biochemical mechanism of O2 and
radiation toxicity after finding synergism between radiation

and hyperbaric O2 in decreasing the survival of exposed mice
(57).

Oxidative Damage and Mitochondrial Dysfunction

Dysfunctional mitochondria are characterized by decreased
state 3 respiration, respiratory controls, and membrane poten-
tial, and increased rates of state 4 respiration and mitochondrial
size and fragility associated to an increased content of oxida-
tion products. Dysfunctional mitochondria are observed in
aging, and also in pathological situations as ische-
mia-reperfusion and inflammation (5, 63, 112, 114).

The experimental determination of increases in oxidation
products that correspond to the free-radical mediated oxidation
of mitochondrial constituents, such as phospholipids, proteins
and DNA, constitutes the usual finding in aging studies. Phos-
pholipid oxidation products, as TBARS (112–115) and ROOH
(139, 145), protein oxidation products, as protein carbonyls
(54, 112–114, 149), DNA oxidation products, as 8-HO-dG (5,
138) were found increased in aged animals. Protein oxidation
and nitration appear to have capital importance in the molec-
ular mechanisms involved in cell turnover and cell cycle and in
triggering apoptosis. Oxidized and nitrated proteins appear as
the sand grains of the sand clock that determines cell life. The
proteolytic enzymes that degrade modified proteins decline
with aging which implies a less efficient removal and an
accumulation of oxidized proteins (22, 66). Kozlov et al. (85)
identified skeletal muscle, heart and lung as the main sources
of oxygen radicals in vivo in old rats by injection of a spin trap.
The spin trap reacts with O2

� and with ONOO� and provides
conclusive evidence of the generation of these species under
physiological conditions.

Proteomic techniques used with rat heart homogenate and
mitochondria showed protein nitration in aging. A total of 48
nitrated proteins was identified; among them were �-enolase,
�-aldolase, desmin, aconitate hydratase, methylmalonate semi-
aldehyde dehydrogenase, 3-ketoacyl-CoA thiolase, acetyl-CoA
acetyltransferase, malate dehydrogenase, glyceraldehyde
3-phosphate dehydrogeanase, creatine kinase, electron-transfer
complex I flavoprotein, MnSOD, F1-ATPase, and the voltage-
dependent anion channel (81). The MnSOD activity in mice
brain mitochondria decreased linearly upon aging from 28 to
76 wk of age, up to 67% (114).

Aging is characterized by a general decline of physiological
performances with a more marked effect in the functions that
depend on the central nervous system. In a mechanistic ap-
proach, the decreases in neuromuscular coordination and maze
performance in mice upon aging were found directly related to
the brain content of lipid and protein oxidation products (54,
113–115).

Mitochondrial inner membrane enzymes that are markers
of aging

Accumulation of oxidative damage and decrease of mito-
chondrial energetic competence to produce ATP in the organs
and tissues of aged mammals are two underlying concepts of
the mitochondrial hypothesis of aging. Concerning the de-
creased capacity to produce ATP, a reduction of the mitochon-
drial mass in brain and liver as well as the phosphorylating
capacity of the ATP synthase were ruled out (112, 114) and
decreased rates of electron transfer were identified as the
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mechanism of mitochondrial dysfunction in aging (112–115).
Accordingly, the activities of mitochondrial complexes I and
IV were found decreased upon aging. A 17–33% decrease of
NADH-cytochrome c reductase activity (complexes I � III) at
52–76 wk of mice age, is interpreted as complex I decreased
activity, since succinate cytochrome c reductase activity (com-
plex I � II) was not affected by aging (113–115). Cytochrome
oxidase activity was also decreased by 24–36% at the same
time points (113–115). Thus the activities of both complex I
and complex IV were decreased by about one-third in senes-
cent mice and are considered effective markers of aging.
Moreover, brain mitochondrial enzyme activities keep a quan-
titative relationship and correlate significantly with survival
(Fig. 2).

Oxidative damage, as determined by the mitochondrial con-
tent of protein carbonyls and TBARS, correlated negatively
with the activities of complex I and complex IV. The obser-
vation supports the view that oxidatively modified proteins and
the increased level of lipid peroxidation products are part of the
molecular mechanism of the decreased enzymatic activity
(113–115). Moreover, it is likely that the inhibition of complex
I activity upon aging occurs with increased reduction of com-
plex I, i.e., higher levels of FMNH2 and FMNH � , which lead to
an increased rate of O2

� generation (Fig. 3).

Interestingly, mice neurological function, as determined by
the tightrope test to evaluate neuromuscular coordination and
by the T-maze test to evaluate memory and exploratory capac-
ity, was linearly related to brain complex I and IV enzymatic
activities (113, 114) and negatively correlated with the mito-
chondrial content of brain lipid and protein oxidation products
(54, 113, 115) (Fig. 4). Applying the concept of rate limiting
step in complex systems, it follows that decreased rates of
electron transfer and a limiting energy supply by brain mito-
chondria are factors in the neurological dysfunction inherent to
physiological aging.

The activity of mtNOS, an integral inner mitochondrial
membrane enzyme, decreased significantly (40–65%) in the
brain and liver of senescent mice and old rats (112, 114). The
magnitude of this change makes mtNOS the most sensitive
marker of aging, more sensitive than the already considered
complexes I and IV. The decreased activity of mtNOS suggests
a loss in critical regulatory roles of mitochondrial NO in aging
(114). The association between mtNOS activity and cellular
homeostasis has been called the pleiotropic effect of mtNOS
and was originally used to describe preserved kidney and heart
functions (161).

Recently, NO has been implicated in mitochondrial biogen-
esis by the stimulation of guanylate cyclase, generation of
cGMP and activation of PGC1-�(120). It was claimed that the
pleiotropic effect occurs through NO and H2O2 diffusion from
mitochondria to the cytosol, a signal that indicates a high
mitochondrial energy charge (117). MtNO production seems to
be the main signal for the cell changes in the ovarian cycle
(117) and to provide the 70% of cellular NO in the heart (161).
The general role of mitochondria as ATP provider, as source of
NO to signal for mitochondrial proliferation and for mitochon-
dria-dependent apoptosis, and as the main intracellular source
of O2

� and H2O2 (31) appears well adapted to serve the
proliferation-apoptosis sequence of the ovarian cycle (117).
Thus, the marked decrease in mtNOS activity in aged brain
mitochondria is interpreted as a decrease in mitochondrial
signaling that hinders a sustained neuronal homeostasis in
aging (114).

In summary, the inner membrane mitochondrial enzymes
mtNOS, complex I, and complex IV are markers of tissue
aging (Fig. 2).

Mitochondria-dependent cell death program

The pivotal role of mitochondria in the execution of cell
death is well established (86). The sequence of biochemical
and cellular events in mitochondria-dependent apoptosis has
been reported by Bustamante et al. (23) in thymocytes, describ-
ing the time course and the quantitative consideration of the
signals and the involved molecular markers. At the initial
phase (2.5–30 min), cytosolic [Ca2�] and [NO] exerted their
signaling by marked (7–8 times) changes in their levels (23).
The first intracellular signal was the increased cytosolic [Ca2�]
which occurred in a 2–3 min and is due to inhibition of
endoplasmic reticulum Ca2�-ATPase and to depletion of intra-
reticular Ca2� stores (78). The next rapid observed effects,
with a estimated half-life (t1/2) of �15 min, were the parallel
increases in mitochondrial NO production and in cellular H2O2

steady-state concentration (23). As said, the rate of mitochon-
drial H2O2 production is directly regulated by mtNOS activity,

Fig. 2. Activity of brain mitochondrial enzymes that are markers of aging in
relation to mice survival. Complex I, complex IV, and mitochondrial nitric
oxide (NO) synthase (mtNOS) activities in male (A) and female (B) mice.
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since the enzyme product NO augments the rate of O2
� pro-

duction by inhibition of electron transfer at complex III (128).
Increased intracellular Ca2� is associated with the activation of
the whole NOS family (34) and with cell death.

The increased levels of NO, O2
�, and H2O2 constitute the

molecular mechanism for the increased free radical-dependent
lipid peroxidation process, with increases in cellular ROOH
and TBARS production and with t1/2 of 27–30 min in thymo-
cytes. Thymocyte mitochondria were able to stand up cellular
oxidative stress and remained functional for �1 h, as an
indication of the resistance of these organelles to oxidants. At
the intermediate phase (30–130 min) in which apoptosis is still
reversible, the molecular contribution or signaling by H2O2 and
ROOH occurs with their intracellular levels increased by a
factor of �2 (23).

Mitochondrial dysfunction followed, with a t1/2 of 101–133
min in thymocytes, as described by the abolition of respiratory

control, inner membrane depolarization, and cytochrome c
release (23). Increased intramitochondrial steady-state levels of
NO and O2

� lead to increased rates of formation and steady-
state levels of ONOO� with further inhibition of complex III
(27, 128) and inactivation of complex I (36, 135). The molec-
ular markers of the final and irreversible phase of apoptosis,
such as caspases-3 activity and DNA fragmentation, were
again markedly increased, by a factor of 4, in agreement with
the irreversibility of the process at that point (23).

Tissues, such as brain and specific brain areas, as the
hippocampus, that have a slow turnover of mitochondria and
mitochondrial components, show a cellular accumulation of
dysfunctional mitochondria with increased apoptosis upon ag-
ing, a condition that drives the tissue to a physiological deficit
(64).

PHYSIOLOGY OF THE DECREASED CAPACITY OF
ENERGY SUPPLY

Reduction of the capacity to produce ATP in the organs and
tissues of old mammals is one of the basic concepts of the
mitochondrial hypothesis of aging. The experimental evidence,
as mentioned in section 5.2, points out to a selectively de-
creased rate of electron transfer as the molecular mechanism of
the mitochondrial impairment associated with aging.

The �35% decreased activity of complex I in brain and liver
of old rats is close to the limit of a tolerable functional damage
in terms of basal energy production. In rat liver, ATP is
provided by the respiration of about 36% of the mitochondrial
mass in metabolic state 3 (15). Under conditions of increased
ATP demand, liver mitochondria will be able to increase ATP
synthesis up to 2.8 times by switching more mitochondria from
the resting state 4 to the active state 3. Aged hepatocytes, with
a 30% reduction in complex I activity, will be able to increase
ATP production only up to 1.9 times by switching mitochon-
dria from state 4 to state 3. The situation is clearly worst in the
brain due to the lower mitochondrial mass and where aged
neurons are close to be unable to respond to any increased ATP
demands (112).

Fig. 3. Mitochondrial metabolism of O2
� and NO in physiological conditions and upon aging. A: numbers below the symbols indicate steady-state concentrations

for mammalian organs under physiological conditions. B: selective damage of mitochondrial enzymes in aging by increased complex I O2
� production and

intramitochondrial ONOO� generation with the positive feedback between complex I inhibition, O2
� generation, and oxidative damage and nitration.

Fig. 4. Correlation between mitochondrial inner membrane enzymatic activi-
ties [mean value of complex I (estimated as NADH-cytochrome c reductase],
complex IV and mtNOS activities) of brain mice at 28, 52, and 76 wk of age
with success in the T-maze and in the tightrope tests at the same age points. r2

� 0.78, P � 0.05 and with median lifespan, r2 � 0.87, P � 0.05.
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The observed age-dependent decrease in marker activities in
brain mitochondria that in senescent animals reaches 35–65%
is simultaneous with the existence of a mitochondrial subpopu-
lation with increased size (139) and fragility (112). Most
neurons are long living cells, with a slow turnover of mito-
chondria and of mitochondrial components, that age at the
same time as the animal ages with neurogenesis spatially
restricted and quantitatively negligible (64).

Liver mitochondria isolated from young and old animals did
not exhibit a significant difference in fragility (112). In hepa-
tocytes, mitochondria are continuously subjected to protein and
phospholipid turnover and to elimination of dysfunctional
organelles. The cellular population of damaged mitochondria is
likely to become determinant in the signaling for apoptosis as
hepatocytes reach their life span limit. A t1/2 of mitochondrial
proteins and mitochondrial fractions gives 7–10 days for liver
mitochondria and 4–6 wk for brain mitochondria (64). The
slower turnover of brain mitochondria makes possible the
detection of a fraction of dysfunctional mitochondria with
impaired electron transfer and increased fragility, which may
correspond to subpopulations of enlarged mitochondria in
morphological or flow cytometry studies.

Considering the evolution of the knowledge on brain aging
and the complexity and variety of metabolic conditions in brain
nuclei and areas, it is nowadays necessary to attempt the
determination of mitochondrial function in mitochondria iso-
lated from brain nuclei, as hippocampus, that are specially
sensitive to aging. Preliminary results in our laboratory show a
selective mitochondrial damage, similar to the one described
here for whole brain, in the hippocampus of aging rats.

CONDITIONS THAT IMPROVE SURVIVAL AND
MITOCHONDRIAL FUNCTION

Some conditions that are able to increase survival and to
improve the neurological deficits of mice senescence have been
found to also decrease the age-related oxidative damage and
dysfunction of brain mitochondria. The age-related oxidative
damage is, in a first approximation, due to an increased rate of
generation of oxidants. The hypothesis of a decrease in the
activity of the antioxidant enzymes, in spite of numerous
studies that measured age-related changes in antioxidants de-
fenses, failed to produce a clear evidence of decreased antiox-
idant enzymes in mice and rats in aging (5). However, the
interspecies comparisons of oxidative damage, antioxidant
content and oxidant generation provide some of the most
compelling evidence that oxidants are significant determinants
of life span (43).

The selected life conditions that were able to improve
survival in mice are similar to recommendations that are
commonly followed by many aging humans, i.e., antioxidant
supplementation, caloric restriction, high spontaneous neuro-
logical activity, and moderate physical exercise. There is evi-
dence that these conditions increase mice survival associated
with improved brain mitochondrial function (113–115). How-
ever, most of the studies show a clear increase in median
lifespan without a significant modification in maximal lifespan.
The kinetics of aging are described by the survival curves (Fig.
5) which shows mice survival curves with increased either
median or maximal life span in modified life conditions.

Antioxidant Supplementation

Mice of the strain CD-1/UCadiz chronically supplemented
with high doses of vitamin E (5.0 g dl-RRR-�-tocopherol
acetate/kg of food) showed increased survival, with a 40%
increased median life span and a 17% increased maximal life
span (Fig. 5) (114). The strain CD-1/UCadiz has similar
survival to AKR, SAM, NZB/Lac and SJL/J that are senes-
cence accelerated strains and that are used as models of aging,
considering that the whole aging process is similar to normal
mice and that can be extrapolated to primates (53). Vitamin E
also retarded the neurological deficits associated with aging,
since mice that received vitamin E exhibited better perfor-
mances in behavioral tests. Moreover, both the increase in
mitochondrial oxidative damage, and the diminished rates of
electron transfer in brain mitochondria of aged and senescent
mice were ameliorated by vitamin E supplementation (Table 1)
(114). The effects of aging and vitamin E on mitochondrial O2

uptake and oxidative phosphorylation were determined in mice
brain and liver after 24 wk of vitamin E supplementation. The
rate of respiration of brain mitochondria in active state 3 was
24% decreased in 52 wk mice, an effect that was 50% pre-
vented by vitamin E supplementation. Respiratory control and
ADP/O ratios were neither affected by aging nor by vitamin E
supplementation (114). The functional activity of mtNOS in
the regulation of state 3 O2 uptake was decreased �50% by
aging and the loss was about 64% prevented by vitamin E, in
clear agreement with the effects observed in mtNOS biochem-
ical activity (Table 1) (114). The effects of aging and vitamin
E supplementation on liver mitochondria, considering respira-
tion, oxidative phosphorylation and mtNOS functional activity,
were qualitatively similar to the ones observed in brain mito-
chondria, but less marked (114).

Dietary supplementation with acetyl-carnitine and lipoic
acid (68, 96) and with a flavonoid-rich vegetable extract (9)
produce a prevention of the age-associated decline in mouse
physiological functions and interpreted as due to protection or
remediation of an oxidative damage in mitochondria.

Fig. 5. Survival curves of Swiss CD1-UCadiz male mice subjected to selected
life conditions. Control mice (n � 50): median lifespan, 61 � 4 wk; maximal
lifespan, 116 � 4 wk. Moderate physical exercise (n � 40): median lifespan,
80 � 4 wk; maximal lifespan, 109 � 4 wk. Vitamin E-supplemented mice
(n � 40): median lifespan, 85 � 4 wk; maximal lifespan, 136 � 4 wk.
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The addition to the diet of low molecular weight antioxi-
dants, such as 2-mercaptoethylamine (71), ethoxiquin (40) and
2-ethyl-6-methyl-3-hydroxy-pyridine (50), was able to produce
a 13–29% increase in median life span.

Other substances, as N-acetyl cysteine (119), ubiquinone
(122), and melatonin (124), were reported to improve mito-
chondrial function in aging and the effect was interpreted as an
antioxidant action. N-acetyl cisteine prevented, in rat brain, the
aged-related changes in mitochondrial gene expression of sub-
unit 39 kDa and ND-1 of complex I, complex IV, subunit � of
F1-ATP synthase (complex V) and of adenine nucleotide trans-
locator isoform 1 (119). Ubiquinone supplementation im-
proved mitochondrial function in heart mitochondria of aged
rats (122) and melatonin protected hepatic mitochondrial re-
spiratory activity in senescence-accelerated mice (124).

Mitochondrial oxidative dysfunction is accelerated by many
common micronutrient deficiencies. One major mechanism is
inhibition of the pathway of heme biosynthesis in mitochon-
dria, which causes a deficit of heme a. Minerals such as iron or
zinc, and several vitamin deficiencies, such as biotin or pan-
tothenic acid, increase mitochondrial oxidative dysfunction
and turnover through this mechanism. Ames et al. (1) sug-
gested that an optimum intake of micronutrients could tune up
metabolism and give a marked increase in health, particularly
for the poor, elderly, and obese, at little cost.

Caloric restriction

Limitation in the dietary intake, namely caloric restriction, is
a well-established way to extend the life span in mammals
(157). Early expectations that caloric restriction would lower
metabolic rate have not been confirmed, then if caloric restric-
tion attenuates oxidative damage, it is not by a simple reduc-
tion in O2 consumption (147). In liver, heart, brain, and kidney
mitochondria, there were no significant effects of caloric re-
striction in state 4 mitochondrial respiration rate (89) and in

mitochondrial ATP content (48). There is now evidence that
indicates that caloric restriction acts by decreasing oxidative
stress and damage and by increasing antioxidant defenses and
repair systems (134). However, the issue is not free of con-
flicting reports and caloric restriction was reported without
enhancing effect in the antioxidant defenses.

Mitochondrial function and caloric restriction are apparently
related and that understanding is the main concept of a series
of experimental approaches. Caloric restriction was reported to
induce a hypometabolic state characterized by decreased reac-
tive oxygen species production and decreased mitochondrial
H� leak, with decreased O2

� production in brain mitochondria
at complex I without changes in O2 consumption (138). Caloric
restricted rats showed structural and functional liver mitochon-
drial properties (fatty acid pattern, respiratory chain activities,
antioxidant levels, and hydroperoxide contents) similar to
those of younger rats (3). It was suggested that caloric restric-
tion provides neuroprotection through apoptosis repression by
suppressing cytochrome c release and caspase-2 activation, but
neither age nor caloric restriction had any effect on caspase-3
and caspase-9 activities (142). Recently, it was reported that
caloric restriction induces mitochondrial biogenesis and in-
creases bioenergetic efficiency (97).

In yeast, caloric restriction delays aging by activating Sir2
deacetylase. The expression of mammalian Sir2 (SIRT1) is
induced in caloric-restricted rats as well as in human cells that
are treated with serum from these animals. SIRT1 deacetylates
the DNA repair factor Ku70, causing it to sequester the
proapoptotic factor Bax away from mitochondria, thereby
inhibiting stress-induced apoptotic cell death. Thus, caloric
restriction could extend life-span by inducing SIRT1 expres-
sion and promoting the long-term survival of irreplaceable
cells (38). SIRT3 is one of the seven mammalian sirtuin
homologs of the yeast Sir2 gene, which mediates the effect of
caloric restriction in lifespan extension in yeast and Caeno-

Table 1. Activities of enzyme markers of aging in brain mitochondria of young, aged, and senescent male mice
subjected to selected life conditions

Age and Enzyme Activity/Group Young (28 wk) Aged (52 wk) Senescent (76 wk)

Complexes I-III
Control mice 330�10 273�10* 212�10*
High neurological activity 285�10 250�10†
Moderate exercise 291�10 275�10†
Vitamin E supplementation 290�10 283�11†

Complexes II-III
Control mice 127�9 125�9 131�9
High neurological activity 131�9 127�9
Moderate exercise 127�9 132�9
Vitamin E supplementation 129�9 128�9

Complex IV
Control mice 124�8 96�8* 79�8*
High neurological activity 105�8† 95�8†
Moderate exercise 112�9† 100�8†
Vitamin E supplementation 107�8 102�8†

mtNOS
Control mice 0.65�0.05 0.36�0.04* 0.20�0.03*
High neurological activity 0.50�0.05† 0.33�0.03†
Moderate exercise 0.53�0.04† 0.31�0.04†
Vitamin E supplementation 0.54�0.05† 0.41�0.05†

Values are means � SE. mtNOS, mitochondrial nitric oxide (NO) synthase. Swiss CD1-UCadiz mice were used in the study. Complexes I–III, II–III, and IV
activities are expressed in nmol cytochrome c (reduced or oxidized)/min mg protein; and mtNOS in nmol NO/min mg protein for 12 mice in each group. *P�0.05
for aging, compared with 28-wk-old mice. †P�0.05 for high neurological activity, moderate exercise, or vitamin E supplementation compared with control mice.
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rhabditis elegans. Murine SIRT3 is expressed in brown adi-
pose tissue and is localized in the mitochondrial inner mem-
brane. Caloric restriction activates SIRT3 expression in white
and brown adipose tissue. Additionally, cold exposure upregu-
lates SIRT3 expression in brown fat, whereas elevated temper-
ature reduces expression. Enforced expression of SIRT3 in
HIB1B brown adipocytes enhances the expression of the un-
coupling protein UCP1, and a series of mitochondria-related
genes. Functionally, sustained expression of SIRT3 would
decrease membrane potential and reactive oxygen species pro-
duction while increasing cellular respiration. In summary, it
seems that SIRT3 activates mitochondrial functions and has a
role in the adaptive thermogenesis of brown adipose tissue
(144).

Mice dietary supplemented with thioproline (l-thiazolidine-
4-carboxylic acid), a physiological metabolite of 5-hydroxy-
tryptamine, show a 29% increased median life span and a 23%
increased maximal life span, associated with improved mito-
chondrial function and neurological functions. The thioproline
effect seems secondary to caloric restriction, since thioproline
induces an anorexic effect with lower food intake and lower
body weight (116).

High Spontaneous Neurological Activity

Aging is characterized by a decline of the physiological
functions of the central nervous system (61). Associations of
the quality of the response to stressful stimuli with longevity
and decreased neurodegeneration were reported (61, 115).
Mice with high spontaneous neurological activity have 11–
14% increased median lifespan and a marked improvement in
the performance of behavioral tests (115). Concerning sex
difference, female mice with high spontaneous neurological
activity showed the longest life span. The longer life span of
females is in agreement with the lower mitochondrial produc-
tion of oxidants in females and with the downregulation of
oxidant production by estrogenic hormones (153). Figure 2
shows the relationship between mice survival and the mito-
chondrial enzyme activities of complex I, complex IV, and
mtNOS. Mice were considered with high spontaneous neuro-
logical activity by selection according to their performance in
two neurological tests. Individual mice were subjected every 2
wk to the tightrope test and the T-shaped maze test (115). In
the tightrope test, to evaluate neuromuscular coordination,
mice were placed hanging from their anterior legs in the middle
of a 60-cm tightrope and the test was considered successful
when mice reached the end of the rope in �30 s. In the test to
evaluate the spontaneous exploratory and cognitive activities,
mice were challenged in a T-shaped maze of 50 cm arms and
the test was considered successful when mice moved toward
the T-intersection in �30 s. The study showed an inverse
statistical relationship between brain oxidative damage and
mice performance in the tests and mitochondrial electron
transfer. The higher mitochondrial enzyme activity and the
better neurological activity were associated to lower oxidative
damage (115).

Moderate Physical Exercise

Exercise has been long considered associated with oxidative
stress based on the experimental data showing an increase of

oxidative stress markers after high-intensity exercise and on
the unsupported assumption that the production of oxygen free
radicals is linearly related to the rate of respiration (41, 77).
Chronic moderate exercise started at young age in mice in-
creased median lifespan (Fig. 5), decreased oxidative damage
and prevented the decline of cytochrome oxidase activity and
behavioral performance at middle age but not at old age (Table
1) (113).

Regular physical exercise seems to retard the accumula-
tion of cell damage and the physiological dysfunction that
are characteristic of the aging process (131). There is ample
evidence of the reduction of skeletal muscle mass associated
to aging and of the beneficial effects of regular exercise in
increasing muscle mass and strength in elderly individuals.
The available evidence extends from experimental animals
to humans and from biochemical markers to physiological
parameters and behavioral performances (102). A series of
reports documented that the beneficial effects of exercise are
extended to other organs, such as the heart (19, 113), kidney
(113), liver (113), and brain (39). However, aerobic exercise
of high intensity and duration is not beneficial for aged rats
(118). The positive effects of moderate exercise, observed in
heart, kidney, liver, and brain support the concept that the
effects involve genomic modulation. Radak et al. (131)
suggested that moderate exercise activates DNA repair sys-
tems and the resistance against oxidative stress in rat skel-
etal muscle. Exercise by lifelong voluntary wheel running
reduces subsarcolemmal and interfibrillar mitochondrial
H2O2 production in the heart (79). Oxidant production in
skeletal muscle is increased in old age and during prolonged
exercise, with both the mitochondrial respiratory chain and
NADPH oxidase as potential sources, and decreased GSH/
GSSG ratios (6).

Overexpression of mitochondrial antioxidant enzymes

The development of transgenic animals that overexpress
antioxidant enzymes and other regulatory enzymes in mito-
chondria and that exhibit increased life span will certainly
increase our understanding of the mechanisms of aging. Schri-
ner et al. (141) reported that transgenic mice that overex-
pressed human catalase in heart mitochondria have increased
median and maximal life span. This transgenic mice strain
have reduced age-dependent aterosclerosis and increased
genomic stability, as indicated by a decrease in oxidative stress
markers and in mitochondrial deletions in heart and muscle.
Oxidative damage was reduced, H2O2 production and H2O2-
induced aconitase inactivation were attenuated, and mitochon-
drial deletions were reduced. It was disappointing that the
Gompertz plot of this transgenic mice strain ran parallel to the
wild-type control, indicating a delay in the onset of aging
rather than a decrease in aging rate. Nevertheless, the results
support the notion of mitochondrial oxidative stress and dam-
age as determinants of both health and life span (141). The
relatively large increase in life span resulting from the upregu-
lation of a single gene suggests the possibility that the upregu-
lation of relatively few longevity genes may result in dramatic
increases in life span (43).

Previous experiments with transgenic Drosophila melano-
gaster that overexpressed Cu,Zn-SOD failed to show an in-
creased maximal life span. However, the overexpression of
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Cu,Zn-SOD and catalase in these flies extended median and
maximal life span (125). Therefore, decreased mitochondrial
O2

� and H2O2 steady-state concentrations appear as able to
induce an extended survival.

HUMAN AGING AND NEURODEGENERATIVE DISEASES

The increase in human lifespan in the industrialized
countries is accompanied by a marked prevalence of neuro-
degenerative diseases. These diseases are preferential lines
of study in gerontology and geriatrics because healthy aging
is the first aim in those fields. Human neurodegenerative
diseases are characterized by progressive cellular damage
which is encompassed by particular neurological deficits
once neuronal loss reaches, in most instances, more than
half of the neuron population in a given region. For exam-
ple, Parkinson’s disease is suspected to evolve for years
before typical motor signs appear, a moment when there is
a loss of dopaminergic neurons of �60% in substantia nigra
pars compacta.

There is evidence that mitochondrial dysfunction and
impairment of the respiratory complexes have a role in the
neuronal loss of neurodegenerative diseases. Impaired com-
plex IV activity has been reported in Alzheimer’s disease
(29) and decreased complex I activity is usually reported in
the substantia nigra of postmortem samples obtained from
patients with Parkinson’s disease (108) and in platelets from
Parkinson’s patients (100). Also, a decreased activity of
complexes I and II has been reported in Huntington’s
disease (127).

Inhibition of complex I creates an environment of mitochon-
drial oxidative damage and of nitration that may lead to
opening of the permeability transition pore and to apoptotic
cell death (72), or to aggregation of �-synuclein with the
subsequent death of dopaminergic neurons (46). These results
show that impairment in complex I activity is central to the
pathogenesis of the dopaminergic neuronal demise in Parkin-
son’s disease (143). Reduced complex I activity predisposes to
excitotoxicity by altering ATP levels and by impairing Ca2�

homeostasis (45). Reduced ATP levels decrease the activity of
plasma membrane Na�-K�-ATPase, resulting in partial neu-
ronal depolarization that decreases the voltage-dependent
Mg2� blockade of the N-methyl-D-aspartate glutamate recep-
tor. Under these conditions, even normal levels of extracellular
glutamate may cause excitotoxic activation of N-methyl-D-
aspartate receptors and elevation of intracellular Ca2�. Com-
plex I defects have been reported to disrupt normal Ca2�

signaling in neurons (60).
It is to be expected that prevention or slowing down the

processes of mitochondrial dysfunction upon aging will de-
crease the neurological deficits in aged people.

CONCLUSIONS AND PERSPECTIVES

It is now clear that mammalian life span is negatively related
to the mitochondrial production of oxidizing free radicals and
that dysfunctional mitochondria determine mitochondrial and
cellular turnover. Mitochondrial impairment and cellular dys-
function upon aging determine tissue physiological function.
Tissues, such as brain and brain areas that have a slow turnover
for their mitochondria and mitochondrial components, are

driven to a physiological deficit by mitochondrion-dependent
apoptosis.

Aged mitochondria show a selective diminished activity of
the enzymes that are integral and constitutive proteins of the
inner mitochondrial membrane. Complexes I and IV and mt-
NOS are selectively affected in aging and constitute markers of
tissue aging. These three enzymes interact by physical contact,
according to the model of the supercomplexes of the respira-
tory chain. The enzyme mtNOS has been reported associated to
complexes I and IV by evidence of complementary sequences
and immuno-coprecipitation (55).

The slower rate of mitochondrial electron transfer in aging
favors the mitochondrial generation of O2

� by complex I, and
produces a positive feedback between complex I inhibition and
the mitochondrial production of O2

� and peroxyynitrite.
Mitochondrial biogenesis seems regulated by the signaling

given by NO and H2O2 diffusion from mitochondria to the
cytosol. The study of mitochondrial NO and H2O2 production
and diffusion as a function of aging will contribute to the
understanding of mitochondrial biogenesis, cell proliferation
and apoptosis in determining the physiological failure of aging
tissues. The diffusion of mitochondrial NO and H2O2 depends
on the mitochondrial metabolic state, with rates that are dif-
ferent in state 4 and in state 3. In the case of NO diffusion there
is an exponential dependence on the membrane potential and in
the case of H2O2 diffusion the process is regulated by the redox
state of the respiratory chain. Moreover, the regulation of
mtNOS activity by membrane potential makes mtNOS a reg-
ulable enzyme that in turn regulates mitochondrial O2 uptake
and H2O2 production. The altered signaling by mitochondrial
NO and H2O2 appears as a likely explanation for the decreased
mitochondrial biogenesis in aging, a process that certainly
contributes to cellular energy deficits, apoptosis, and tissue
physiological failure in aging.
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