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Abstract We compute the monoid V(LK(E)) of isomorphism classes of finitely
generated projective modules over certain graph algebras LK(E), and we show
that this monoid satisfies the refinement property and separative cancellation. We
also show that there is a natural isomorphism between the lattice of graded ideals
of LK(E) and the lattice of order-ideals of V(LK(E)). When K is the field C of
complex numbers, the algebra LC(E) is a dense subalgebra of the graph C∗-algebra
C∗(E), and we show that the inclusion map induces an isomorphism between the
corresponding monoids. As a consequence, the graph C*-algebra of any row-finite
graph turns out to satisfy the stable weak cancellation property.
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1 Introduction

The Cuntz–Krieger algebras OA, introduced by Cuntz and Krieger [13] in 1980, con-
stitute a prominent class of C∗-algebras. The algebras OA were originally associated
to a finite matrix A with entries in {0, 1}, but it was quickly realized that they could
also be viewed as the C∗-algebras of a finite directed graph [26]. These C∗-algebras,
as well as those arising from various infinite graphs, have been the subject of much
investigation (see e.g., [5, 14, 17, 18, 22]). Although Raeburn and Szymański [22]
have computed the K0 and K1-groups of a graph C∗-algebra C∗(E) associated with
any row-finite graph E, the actual structure of the monoid V(C∗(E)) of Murray–von
Neumann equivalence classes of projections in matrix algebras over C∗(E) seems to
remain unnoticed. One of the goals of this paper is to fill this gap. Another major
goal is to show some nice decomposition and cancellation properties of projections
over graph C∗-algebras, which also hold for purely algebraic versions of them.

Any graph C∗-algebra C∗(E) is the completion, in an appropriate norm, of a cer-
tain ∗-subalgebra LC(E), which is just the ∗-subalgebra generated by the canonical
projections and partial isometries that generate C∗(E) as a C∗-algebra. We show
that the natural inclusion ψ : LC(E) → C∗(E) induces a monoid isomorphism V(ψ) :
V(LC(E)) → V(C∗(E)) (Theorem 7.1). In this algebraic vein, similar algebras
LK(E) can be constructed over an arbitrary field K, and we show that the monoid
V(LK(E)) does not depend on the field K. The algebras LK(E) have been already
considered recently by Abrams and Aranda Pino in [1], under the name of Leavitt
path algebras. They provide a generalization of Leavitt algebras of type (1, n),
introduced by Leavitt [19] in 1962 , just in the same way as graph C∗-algebras C∗(E)

provide a generalization of Cuntz algebras.
The decomposition properties of projections in (matrix algebras over) a C∗-

algebra A are faithfully reflected in the structure of the monoid V(A). This is an
essential ingredient in the so-called nonstable K-theory for C∗-algebras; cf. [7]. A
similar statement holds true in Ring Theory, where the monoid V(R) is usually
described in terms of the finitely generated projective R-modules; see for example
[2] and [4]. For a C∗-algebra A, the two versions of V(A), obtained by viewing A as
a C∗-algebra or viewing A as a plain ring, agree, see Section 2. Moreover, important
information about the lattice of ideals of a ring R is faithfully codified in the monoid
V(R); see for example [15, Theorem 2.1]. The subsets of V(R) corresponding to
ideals in R are the so-called order-ideals of V(R), which are the submonoids S
of V(R) such that, for x, y ∈ V(R), we have x + y ∈ S if and only if x ∈ S and
y ∈ S. Then, [15, Theorem 2.1] asserts that the lattice of all order-ideals of V(R)

is isomorphic with the lattice of all trace ideals of R.
We consider an Abelian monoid ME associated with a directed row-finite graph

E, and we prove that this monoid is naturally isomorphic with the monoid of iso-
morphism classes of finitely generated projective modules over LK(E) (see Theo-
rem 3.5). This uses the nice machinery developed by Bergman in [6] to compute
the monoids V(R) of algebras R obtained by means of some universal constructions.
We also show that the monoid ME is naturally isomorphic to V(C∗(E)) (Theo-
rem 7.1), and indeed that the natural map LC(E) → C∗(E) induces an isomorphism
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V(LC(E)) → V(C∗(E)), but our proof of this fact is quite involved, basically because
we do not have at our disposal a C∗-version of Bergman’s machinery. Rather, our
proof uses the computation in [22] of K0(C∗(E)), which implies that K0(C∗(E))

agrees with the universal group of ME. We then use techniques from nonstable
K-theory to deduce the equality of the monoids V(C∗(E)) and ME. As a conse-
quence of this fact and of our monoid theoretic study of the monoid ME, we get
that C∗(E) always has stable weak cancellation (Corollary 7.2) (equivalently, C∗(E)

is separative, see Proposition 2.1). An analogous result holds for all graph algebras
LK(E) (Corollary 6.5). We remark that various stability results for wide classes of
rings and C∗-algebras can be proved under the additional hypothesis of separativity;
see for example [2, 3, 12, 21].

The most important tools from nonstable K-theory we use are the concepts of
refinement and separative cancellation. These properties are faithfully reflected in
monoid theoretic properties of the associated monoid V(A). A substantial part of
this paper is devoted to establish these properties for the monoid ME, using just
monoid theoretic techniques. Both concepts were defined and studied in [2]. The
definitions will be recalled in Section 2.

We now summarize the contents of the rest of sections of the paper. Section 3
contains the definition of the (Leavitt) graph algebras LK(E) and of the monoid
ME associated with a row-finite graph E. The monoid ME is isomorphic to FE/∼,
where FE is the free Abelian monoid on E0 and ∼ is a certain congruence on FE.
Our basic tool for the monoid theoretic study of ME is a precise description of
this congruence, which is given in Section 4, which also contains the proof of the
refinement property of ME. In Section 5, we shall establish an isomorphism between
the lattice H of saturated hereditary subsets of E0, the lattice of order-ideals of ME,
and the lattice of graded ideals of LK(E). This result parallels [5, Theorem 4.1],
where an isomorphism between the lattice of saturated hereditary subsets of E0 and
the lattice of closed gauge-invariant ideals of the C∗-algebra C∗(E) is obtained. The
separativity property of the monoid ME is obtained in Section 6. Finally we show in
Section 7 that V(C∗(E)) is naturally isomorphic with ME. This result, together with
all properties we have obtained for ME, enables us to conclude that C∗(E) has stable
weak cancellation.

2 Basic Concepts

Our references for K-theory for C∗-algebras are [8] and [24]. For algebraic K-theory,
we refer the reader to [25]. For a unital ring R, let M∞(R) be the directed union
of Mn(R) (n ∈ N), where the transition maps Mn(R) → Mn+1(R) are given by x �→(

x 0
0 0

)
. We define V(R) to be the set of isomorphism classes (denoted [P]) of finitely

generated projective left R-modules, and we endow V(R) with the structure of a
commutative monoid by imposing the operation

[P] + [Q] := [P ⊕ Q]
for any isomorphism classes [P] and [Q]. Equivalently [8, Chapter 3], V(R) can be
viewed as the set of equivalence classes V(e) of idempotents e in M∞(R) with the
operation

V(e) + V( f ) := V
(( e 0

0 f

))
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for idempotents e, f ∈ M∞(R). The group K0(R) of a unital ring R is the universal
group of V(R). Recall that, as any universal group of an Abelian monoid, the
group K0(R) has a standard structure of partially pre-ordered Abelian group. The
set of positive elements in K0(R) is the image of V(R) under the natural monoid
homomorphism V(R) → K0(R). Whenever A is a C∗-algebra, the monoid V(A)

agrees with the monoid of Murray–von Neumann equivalence classes of projections
in M∞(A); see [8, 4.6.2 and 4.6.4] or [24, Exercise 3.11]. It follows that the algebraic
version of K0(A) coincides with the operator-theoretic one.

We now review some important decomposition and cancellation properties con-
cerning finitely generated projective modules. In the context of C∗-algebras, these
are equivalent to corresponding statements for projections, as in [2, Section 7].

Let F P(R) be the class of finitely generated projective modules over a ring R. We
say that F P(R) satisfies the refinement property if whenever A1, A2, B1, B2 ∈ F P(R)

satisfy A1 ⊕ A2
∼= B1 ⊕ B2, there exist decompositions Ai = Ai1 ⊕ Ai2 for i = 1, 2

such that A1 j ⊕ A2 j
∼= Bj for j = 1, 2.

It was proved in [2, Proposition 1.2] that every exchange ring satisfies the refine-
ment property. Among C∗-algebras, it is worth to mention that every C∗-algebra with
real rank zero [11] satisfies the refinement property. This is a theorem of Zhang [28,
Theorem 3.2]. It can also be seen as a consequence of the above-mentioned result
on exchange rings, since every C∗-algebra of real rank zero is an exchange ring [2,
Theorem 7.2].

An Abelian monoid M is a refinement monoid if whenever a + b = c + d in M,
there exist x, y, z, t ∈ M such that a = x + y and b = z + t while c = x + z and d =
y + t. It is clear that V(R) is a refinement monoid if and only if the class F P(R)

satisfies the refinement property. We will show that this is the case when R = LK(E)

or R = C∗(E).
Now we discuss the concept of separative cancellation. We say that a ring R is

separative in case it satisfies the following property: If A, B, C ∈ F P(R) satisfy A ⊕
C ∼= B ⊕ C and C is isomorphic to direct summands of both nA and nB for some
n ∈ N, then A ∼= B.

Many rings are separative. Indeed it is an outstanding open question to determine
whether all exchange rings are separative. In the context of C∗-algebras, it is not
known whether all C∗-algebras of real rank zero are separative. We will show that all
graph C∗-algebras C∗(E) and all Leavitt graph algebras LK(E) are separative.

This concept is closely related to the concept of weak cancellation, introduced by
Brown in [10]. See also [12], where many extremally rich C∗-algebras are shown to
have weak cancellation. Following [10] and [12], we say that a C∗-algebra A has weak
cancellation if any pair of projections p, q in A that generate the same closed ideal
I in A and have the same image in K0(I) must be Murray–von Neumann equivalent
in A (hence in I). If Mn(A) has weak cancellation for every n, then we say that A
has stable weak cancellation. It is an open problem whether every extremally rich
C∗-algebra satisfies weak cancellation. By [12, Theorem 2.11], every extremally rich
C∗-algebra of real rank zero has stable weak cancellation.

If P and Q are projections in M∞(A), we will use the symbol P ∼ Q to indicate
that they are (Murray–von Neumann) equivalent, that is, there is a partial isometry
W in M∞(A) such that W∗W = P and WW∗ = Q. Similarly, we will write P � Q in
case P is equivalent to a projection Q′ such that Q′ = Q′ Q. We will write P ⊕ Q for
the block-diagonal matrix diag(P, Q), and we will denote by n · P the direct sum of
n copies of P.
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Proposition 2.1 Let A be a C∗-algebra. Then A has stable weak cancellation if and
only if A is separative.

Proof The proof is straightforward, taking into account the following fact: Two
projections P, Q ∈ M∞(A) whose respective entries generate the same closed ideal
I of A have the same image in K0(I) if and only if there is a projection E ∈ M∞(I)
such that P ⊕ E ∼ Q ⊕ E. (Note that a projection E belongs to M∞(I) if and only if
E � n · P and E � n · Q for some n ≥ 1.) ��

There is a canonical pre-order on any Abelian monoid M, which is sometimes
called the algebraic pre-order of M. This pre-order is defined by setting x ≤ y if and
only if there is z ∈ M such that y = x + z. This is the only pre-order that we will
consider in this paper for a monoid.

An Abelian monoid M is said to be separative [2] in case M satisfies the following
condition: If a, b , c ∈ M satisfy a + c = b + c and c ≤ na and c ≤ nb for some n ∈ N,
then a = b . It is clear that a ring R is separative if and only if the monoid V(R) is
separative.

3 Graph Algebras and Graph Monoids

A directed graph E consists of a vertex set E0, an edge set E1, and maps r, s : E1−→E0

describing the range and source of edges. We say that E is a row-finite graph if each
row in its adjacency matrix AE = (A(v,w))v,w∈E0 has only a finite number of nonzero
entries, where A(v,w) is the number of edges going from v to w. This amounts to
saying that each vertex in E emits only a finite number of edges.

Let E = (E0, E1) be a row-finite graph, and let K be a field. We define the graph
K-algebra LK(E) associated with E as the K-algebra generated by a set {pv | v ∈ E0}
together with a set {xe, ye | e ∈ E1}, which satisfy the following relations:

(1) pv pv′ = δv,v′ pv for all v, v′ ∈ E0.
(2) ps(e)xe = xe pr(e) = xe for all e ∈ E1.
(3) pr(e)ye = ye ps(e) = ye for all e ∈ E1.
(4) yexe′ = δe,e′ pr(e) for all e, e′ ∈ E1.
(5) pv = ∑

{e∈E1|s(e)=v} xe ye for every v ∈ E0 that emits edges.

Observe that relation (1) says that {pv | v ∈ E0} is a set of pairwise orthogonal
idempotents. Note also that the above relations imply that {xe ye | e ∈ E1} is a set
of pairwise orthogonal idempotents in LK(E). If E is a finite graph then we have∑

v∈E0 pv = 1. In general the algebra LK(E) is not unital, but it can be written as
a direct limit of unital graph algebras (with non-unital transition maps), so that
it is an algebra with local units. To show this, we first observe the functoriality
property of the construction, as follows. Recall that a graph homomorphism f : E =
(E0, E1) → F = (F0, F1) is given by two maps f 0 : E0 → F0 and f 1 : E1 → F1 such
that rF( f 1(e)) = f 0(rE(e)) and sF( f 1(e)) = f 0(sE(e)) for every e ∈ E1. We say that
a graph homomorphism f is complete in case f 0 is injective and f 1 restricts to a
bijection from s−1

E (v) onto s−1
F ( f 0(v)) for every v ∈ E0 such that v emits edges. Note

that under the above assumptions, the map f 1 must also be injective. Let us consider
the category G whose objects are all the row-finite graphs and whose morphisms are
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the complete graph homomorphisms. It is easy to check that the category G admits
direct limits. If {Xi}i∈I is a directed system in the category G and X = lim−→i∈I

Xi,
let us denote by ψi : Xi → X the canonical direct limit homomorphisms. Then the
graphs ψi(Xi) are complete subgraphs of X, ψi(Xi) is a complete subgraph of ψ j(X j)

whenever i ≤ j, and X is the union of the family of subgraphs (ψi(Xi))i∈I (that is,
X0 = ∪i∈Iψ

0
i (X0

i ) and X1 = ∪i∈Iψ
1
i (X1

i )).
In order to simplify notation, the K-algebra LK(E) will be sometimes denoted

by L(E).

Lemma 3.1 Every row-finite graph E is a direct limit in the category G of a directed
system of finite graphs.

Proof Clearly, E is the union of its finite subgraphs. Let X be a finite subgraph of E.
Define a finite subgraph Y of E as follows:

Y0 = X0 ∪ {rE(e) | e ∈ E1 and sE(e) ∈ X0}
and

Y1 = {e ∈ E1 | sE(e) ∈ X0}.
Then the vertices of Y that emit edges are exactly the vertices of X that emit edges
in E, and if v is one of these vertices, then s−1

E (v) = s−1
Y (v). This shows that the map

Y → E is a complete graph homomorphism, and clearly X ⊆ Y. If Y1 and Y2 are two
complete subgraphs of E and Y1 is a subgraph of Y2, then the inclusion map Y1 → Y2

is clearly a complete graph homomorphism.
Since the union of a finite number of finite complete subgraphs of E is again a

finite complete subgraph of E, it follows that E is the direct limit in the category G of
the directed family of its finite complete subgraphs. ��

Lemma 3.2 The assignment E �→ LK(E) can be extended to a functor LK from the
category G of row-finite graphs and complete graph homomorphisms to the category
of K-algebras and (not necessarily unital) algebra homomorphisms. The functor LK

is continuous, that is, it commutes with direct limits. It follows that every graph
algebra LK(E) is the direct limit of graph algebras corresponding to finite graphs.

Proof If f : E → F is a complete graph homomorphism, then f induces an alge-
bra homomorphism L( f ) : LK(E) → LK(F), as follows. Set L( f )(pv) = p f 0(v) and
L( f )(xe) = x f 1(e) and L( f )(ye) = yf 1(e) for v ∈ E0 and e ∈ E1. Since f 0 is injective,
relation (1) is preserved under L( f ). Relations (2), (3) are clearly preserved, relation
(4) is preserved because f 1 is injective, and relation (5) is preserved because f 1

restricts to a bijection from s−1
E (v) onto s−1

F ( f 0(v)) for every v ∈ E0 such that v emits
edges.

The algebra LK(E) is the algebra generated by a universal family of elements
{pv, xe, ye | v ∈ E0, e ∈ E1} satisfying relations (1)–(5). If X = lim−→i∈I

Xi in the cate-
gory G, then, as observed above, we can think that {Xi}i∈I is a directed family of
complete subgraphs of X, and the union of the graphs Xi is X. For a K-algebra
A, a compatible set of K-algebra homomorphisms LK(Xi) → A, i ∈ I, determines,
and is determined by, a set of elements {p′

v, x′
e, y′

e | v ∈ E0, e ∈ E1} in A satisfying
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conditions (1)–(5). It follows that LK(E) = lim−→i∈I
LK(Xi), as desired. The last state-

ment now follows from Lemma 3.1. ��

The graph C∗-algebra C∗(E) is the C∗-algebra generated by a universal Cuntz–
Krieger E-family {Pv, Se | v ∈ E0, e ∈ E1}, see [18, Theorem 1.2]. By definition, a
Cuntz–Krieger E-family in a C∗-algebra A consists of a set {Pv | v ∈ E0} of pairwise
orthogonal projections in A and a set {Se |e∈ E1} of partial isometries in A such that

S∗
e Se = Pr(e) for e ∈ E1, and Pv =

∑

{e∈E1|s(e)=v}
SeS∗

e for v ∈ E0.

Therefore the same proof as in Lemma 3.2 can be applied to the case of C∗-algebras:

Lemma 3.3 The assignment E �→ C∗(E) can be extended to a continuous functor
from the category G of row-finite graphs and complete graph homomorphisms to the
category of C∗-algebras and ∗-homomorphisms. Every graph C∗-algebra C∗(E) is the
direct limit of graph C∗-algebras associated with finite graphs.

Now we want to compute the monoid V(LK(E)) associated with the finitely gen-
erated projective modules over the graph algebra LK(E). Though LK(E) is not in
general a unital algebra, there is a well-defined monoid V(LK(E)) associated with
the finitely generated projective left modules over LK(E). We recall the general
definition here.

Let I be a non-unital K-algebra, and consider any unital K-algebra R containing
I as a two-sided ideal. We consider the class F P(I, R) of finitely generated pro-
jective left R-modules P such that P = I P. Then V(I) is defined as the monoid of
isomorphism classes of objects in F P(I, R), and does not depend on the particular
unital ring R in which I sits as a two-sided ideal, as can be seen from the following
alternative description: V(I) is the set of equivalence classes of idempotents in
M∞(I), where e ∼ f in M∞(I) if and only if there are x, y ∈ M∞(I) such that e = xy
and f = yx. See [20, page 296].

The assignment I �→ V(I) gives a functor from the category of non-unital rings
to the category of Abelian monoids, that commutes with direct limits. Moreover,
LK(E) being a ring with local units, it is well known that K0(LK(E)), the K0-group
of the non-unital ring LK(E), is just the enveloping group of V(LK(E)); see [20,
Proposition 0.1].

Let ME be the Abelian monoid given by the generators {av | v ∈ E0}, with the
relations:

av =
∑

{e∈E1|s(e)=v}
ar(e) for every v ∈ E0 that emits edges. (M)

Lemma 3.4 The assignment E �→ ME can be extended to a continuous functor from
the category G of row-finite graphs and complete graph homomorphisms to the
category of Abelian monoids. It follows that every graph monoid ME is the direct
limit of graph monoids corresponding to finite graphs.
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Proof Every complete graph homomorphism f : E → F induces a natural monoid
homomorphism

M( f ) : ME → MF ,

and so we get a functor M from the category G to the category of Abelian monoids.
The fact that M commutes with direct limits is proven in the same way as in
Lemma 3.2. ��

Theorem 3.5 Let E be a row-finite graph. Then there is a natural monoid isomor-
phism V(LK(E)) ∼= ME. Moreover, if E is finite, then the global dimension of LK(E)

is ≤ 1.

Proof For each row-finite graph E, there is a unique monoid homomorphism
γE : ME → V(L(E)) such that γE(av) = [pv]. Clearly this defines a natural transfor-
mation from the functor M to the functor V ◦ L; that is, if f : E → F is a complete
graph homomorphism, then the following diagram commutes

ME
γE−−−−→ V(L(E))

M( f )

⏐⏐
�

⏐⏐
�V(L( f ))

MF
γF−−−−→ V(L(F))

We need to show that γE is a monoid isomorphism for every row-finite graph E. By
using Lemmas 3.4 and 3.2, we see that it is enough to show that γE is an isomorphism
for a finite graph E.

Let E be a finite graph and assume that {v1, . . . , vm} ⊆ E0 is the set of vertices
which emit edges. We start with an algebra

A0 =
∏

v∈E0

K.

In A0 we have a family {pv :v∈ E0} of orthogonal idempotents such that
∑

v∈E0 pv =1.
Let us consider the two finitely generated projective left A0-modules P = A0 pv1

and Q = ⊕{e∈E1|s(e)=v1} A0 pr(e). There exists an algebra A1 := A0〈i, i−1 : P ∼= Q〉 with
a universal isomorphism i : P := A1 ⊗A0 P → Q := A1 ⊗A0 Q, see [6, page 38]. Note
that this algebra is precisely the algebra L(X1), where X1 is the graph having
X0

1 = E0, and where v1 emits the same edges as it does in E, but all other vertices
do not emit any edge. Namely the row (xe : s(e) = v1) implements an isomorphism
P = A1 pv1 → Q = ⊕{e∈E1|s(e)=v1} A1 pr(e) with inverse given by the column (ye : s(e) =
v1)

T , which is clearly universal. By [6, Theorem 5.2], the monoid V(A1) is obtained
from V(A0) by adjoining the relation [P] = [Q]. In our case we have that V(A0) is
the free Abelian group on generators {av | v ∈ E0}, where av = [pv], and so V(A1) is
given by generators {av | v ∈ E0} and a single relation

av1 =
∑

{e∈E1|s(e)=v1}
ar(e).

Now we proceed inductively. For k ≥ 1, let Ak be the graph algebra Ak = L(Xk),
where Xk is the graph with the same vertices as E, but where only the first k vertices
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v1, . . . , vk emit edges, and these vertices emit the same edges as they do in E. Then we
assume by induction that V(Ak) is the Abelian group given by generators {av |v∈ E0}
and relations

avi =
∑

{e∈E1|s(e)=vi}
ar(e),

for i = 1, . . . , k. Let Ak+1 be the similar graph, corresponding to vertices
v1, . . . , vk, vk+1. Then we have Ak+1 = Ak〈i, i−1 : P ∼= Q〉 for P = Ak pvk+1 and Q =
⊕{e∈E1|s(e)=vk+1} Ak pr(e), and so we can apply again Bergman’s Theorem [6, Theorem
5.2] to deduce that V(Ak+1) is the monoid with the same generators as before and
the relations corresponding to v1, . . . , vk, vk+1. It also follows from [6, Theorem 5.2]
that the global dimension of L(E) is ≤ 1. This concludes the proof. ��

Example 3.6 Consider the following graph E:

a
��

�� b�� �� c
��

��
�� d.

Then ME is the monoid generated by a, b , c, d with defining relations a=2a, b =a+c,
c = 2c + d. The Grothendieck group of ME is infinite cyclic generated by the class of
c. It follows that K0(LK(E)) is infinite cyclic generated by [pc], and K0(LK(E)) =
K0(LK(E))+.

4 Refinement

In this section we begin our formal study of the monoid ME associated with a row-
finite graph E, and we show that ME is a refinement monoid. The main tool is
a careful description of the congruence on the free Abelian monoid given by the
defining relations of ME.

Let F be the free Abelian monoid on the set E0. The nonzero elements of F can
be written in a unique form up to permutation as

∑n
i=1 xi, where xi ∈ E0. Now we

will give a description of the congruence on F generated by the relations (M) on F.
It will be convenient to introduce the following notation. For x ∈ E0, write

r(x) :=
∑

{e∈E1|s(e)=x}
r(e) ∈ F.

With this new notation relations (M) become x = r(x) for every x ∈ E0 that emits
edges.

Definition 4.1 Define a binary relation →1 on F \ {0} as follows. Let
∑n

i=1 xi be an
element in F as above and let j ∈ {1, . . . , n} be an index such that xj emits edges.
Then

∑n
i=1 xi →1

∑
i �= j xi + r(xj). Let → be the transitive and reflexive closure of →1

on F \ {0}, that is, α → β if and only if there is a finite string α = α0 →1 α1 →1 · · · →1

αt = β. Let ∼ be the congruence on F generated by the relation →1 (or, equivalently,
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by the relation →). Namely α ∼ α for all α ∈ F and, for α, β �= 0, we have α ∼ β

if and only if there is a finite string α = α0, α1, . . . , αn = β, such that, for each i =
0, . . . , n − 1, either αi →1 αi+1 or αi+1 →1 αi. The number n above will be called the
length of the string.

It is clear that ∼ is the congruence on F generated by relations (M), and so
ME = F/∼.

The support of an element γ in F, denoted supp(γ ) ⊆ E0, is the set of basis
elements appearing in the canonical expression of γ .

Lemma 4.2 Let→be the binary relation on F defined above. Assume that α=α1+α2

and α → β. Then β can be written as β = β1 + β2 with α1 → β1 and α2 → β2.

Proof By induction, it is enough to show the result in the case where α →1 β. If
α →1 β, then there is an element x in the support of α such that β = (α − x) + r(x).
The element x belongs either to the support of α1 or to the support of α2. Assume,
for instance, that the element x belongs to the support of α1. Then we set β1 = (α1 −
x) + r(x) and β2 = α2. ��

Note that the elements β1 and β2 in Lemma 4.2 are not uniquely determined by α1

and α2 in general, because the element x ∈ E0 considered in the proof could belong
to both the support of α1 and the support of α2.

The following lemma gives the important “confluence” property of the congru-
ence ∼ on the free Abelian monoid F.

Lemma 4.3 Let α and β be nonzero elements in F. Then α ∼ β if and only if there is
γ ∈ F such that α → γ and β → γ .

Proof Assume that α ∼ β. Then there exists a finite string α = α0, α1, . . . , αn = β,
such that, for each i = 0, . . . , n − 1, either αi →1 αi+1 or αi+1 →1 αi. We proceed by
induction on n. If n = 0, then α = β and there is nothing to prove. Assume the result
is true for strings of length n − 1, and let α = α0, α1, . . . , αn = β be a string of length
n. By induction hypothesis, there is λ ∈ F such that α → λ and αn−1 → λ. Now there
are two cases to consider. If β →1 αn−1, then β → λ and we are done. Assume that
αn−1 →1 β. By definition of →1, there is a basis element x ∈ E0 in the support of
αn−1 such that αn−1 = x + α′

n−1 and β = r(x) + α′
n−1. By Lemma 4.2, we have λ =

λ(x) + λ′, where x → λ(x) and α′
n−1 → λ′. If the length of the string from x to λ(x) is

positive, then we have r(x) → λ(x) and so β = r(x) + α′
n−1 → λ(x) + λ′ = λ. In case

that x = λ(x), then set γ = r(x) + λ′. Then we have λ →1 γ and so α → γ , and also
β = r(x) + α′

n−1 → r(x) + λ′ = γ . This concludes the proof. ��

We are now ready to show the refinement property of ME.

Proposition 4.4 The monoid ME associated with any row-finite graph E is a refine-
ment monoid.

Proof Let α = α1 + α2 ∼ β = β1 + β2, with α1, α2, β1, β2 ∈ F. By Lemma 4.3, there
is γ ∈ F such that α → γ and β → γ . By Lemma 4.2, we can write γ = α′

1 + α′
2 =
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β ′
1 + β ′

2, with αi → α′
i and βi → β ′

i for i = 1, 2. Since F is a free Abelian monoid, F has
the refinement property and so there are decompositions α′

i = γi1 + γi2 for i = 1, 2
such that β ′

j = γ1 j + γ2 j for j = 1, 2. The result follows. ��

5 Ideal Lattice

Let E = (E0, E1) be a row-finite directed graph. In this section, we will establish the
connection between saturated hereditary subsets of E0, order-ideals of the associated
monoid ME, and graded ideals of the graph algebra LK(E).

We start by recalling some basic concepts in graph theory, that will be needed
later.

Let E = (E0, E1) be a directed graph. For n ≥ 2, we define

En := {
α = (α1, . . . , αn) | αi ∈ E1and r(αi) = s(αi+1) for 1 ≤ i ≤ n − 1

}
,

and E∗ = ⋃
n≥0 En.

We define a relation ≥ on E0 by setting v≥w if there is a path μ∈ E∗ with s(μ)=v

and r(μ)=w. A subset H of E0 is called hereditary if v ≥ w and v ∈ H imply w ∈ H.
A hereditary set H is saturated if every vertex which feeds into H and only into H is
again in H; that is, if s−1(v) �= ∅ and r(s−1(v)) ⊆ H, then v ∈ H.

Definition 5.1 Let v ∈ E0. We define the tree of v, to be the subset of E0

T(v) = {
w ∈ E0 | ∃ α ∈ E∗ with s(α) = v and r(α) = w

} = {w ∈ E0 | v ≥ w}.

Clearly, the tree of v is the smallest hereditary subset of E0 containing v.
We denote by H the set of saturated hereditary subsets of the graph E.
Since the intersection of saturated sets is saturated, there is a smallest saturated

subset S containing any given subset S of E0. We will call S the saturation of S. The
saturation H of a hereditary set H is again hereditary. Indeed, H = ⋃∞

n=0 �n(H)

is an increasing union of hereditary subsets �n(H), for n ≥ 0, which are defined
inductively as follows:

(1) �0(H) = H.
(2) �n(H) = {y ∈ E0 | s−1(y) �= ∅ and r(s−1(y)) ⊆ �n−1(H)} ∪ �n−1(H), for n ≥ 1.

In particular this applies to the hereditary subsets of the form T(v), where v ∈ E0:
The saturated hereditary subset of E generated by v is T(v) = ⋃∞

n=0 �n(T(v)).
An order-ideal of a monoid M is a submonoid I of M such that x + y = z in M

and z ∈ I imply that both x, y belong to I. An order-ideal can also be described as
a submonoid I of M, which is hereditary with respect to the canonical pre-order ≤
on M: x ≤ y and y ∈ I imply x ∈ I. Recall that the pre-order ≤ on M is defined by
setting x ≤ y if and only if there exists z ∈ M such that y = x + z.

The set L(M) of order-ideals of M forms a (complete) lattice
(
L(M), ⊆,

∑
, ∩

)
.

Here, for a family of order-ideals {Ii}, we denote by
∑

Ii the set of elements x ∈ M
such that x ≤ y, for some y belonging to the algebraic sum

∑
Ii of the order-ideals

Ii. Note that
∑

Ii = ∑
Ii whenever M is a refinement monoid.
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Let FE be the free Abelian monoid on E0, and recall that ME = FE/∼. For γ ∈ FE

we will denote by [γ ] its class in ME. Note that any order-ideal I of ME is generated
as a monoid by the set {[v] | v ∈ E0} ∩ I.

The set H of saturated hereditary subsets of E0 is also a complete lattice(
H,⊆, ∪,∩)

.

Proposition 5.2 Let E be a row-finite graph. Then, there are order-preserving mutu-
ally inverse maps

ϕ : H −→ L(ME); ψ : L(ME) −→ H,

where ϕ(H) is the order-ideal of ME generated by {[v] | v ∈ H}, for H ∈ H, and ψ(I)
is the set of elements v in E0 such that [v] ∈ I, for I ∈ L(ME).

Proof The maps ϕ and ψ are obviously order-preserving. It will be enough to show
the following facts:

(1) For I ∈ L(ME), the set ψ(I) is a hereditary and saturated subset of E0.
(2) If H ∈ H then [v] ∈ ϕ(H) if and only if v ∈ H.

For, if (1) and (2) hold true, then ψ is well-defined by (1), and ψ(ϕ(H)) = H for
H ∈ H, by (2). On the other hand, if I is an order-ideal of ME, then obviously
ϕ(ψ(I)) ⊆ I, and since I is generated as a monoid by {[v] | v ∈ E0} ∩ I = [ψ(I)], it
follows that I ⊆ ϕ(ψ(I)).

Proof of (1): Let I be an order-ideal of ME, and set H := ψ(I) = {v ∈ E0 |
[v] ∈ I}. To see that H is hereditary, we have to prove that, whenever we have a
path (e1, e2, . . . , en) in E with s(e1) = v and r(en) = w and v ∈ H, then w ∈ H. If we
consider the corresponding path v →1 γ1 →1 γ2 →1 · · · →1 γn in FE, we see that w

belongs to the support of γn, so that w ≤ γn in FE. This implies that [w] ≤ [γn] = [v],
and so [w] ∈ I because I is hereditary.

To show saturation, take v in E0 such that r(e) ∈ H for every e ∈ E1 such that
s(e) = v. We then have supp(r(v)) ⊆ H, so that [r(v)] ∈ I because I is a submonoid
of ME. But [v] = [r(v)], so that [v] ∈ I and v ∈ H.

Proof of (2): Let H be a saturated hereditary subset of E0, and let I := ϕ(H) be the
order-ideal of ME generated by {[v] | v ∈ H}. Clearly [v] ∈ I if v ∈ H. Conversely,
suppose that [v] ∈ I. Then [v] ≤ [γ ], where γ ∈ FE satisfies supp(γ ) ⊆ H. Thus we
can write [γ ] = [v] + [δ] for some δ ∈ FE. By Lemma 4.3, there is β ∈ FE such
that γ → β and v + δ → β. Since H is hereditary and supp(γ ) ⊆ H, we get
supp(β) ⊆ H. By Lemma 4.2, we have β = β1 + β2, where v → β1 and δ → β2.
Observe that supp(β1) ⊆ supp(β) ⊆ H. Using that H is saturated, it is a simple
matter to check that, if α →1 α′ and supp(α′) ⊆ H, then supp(α) ⊆ H. Using this
and induction, we obtain that v ∈ H, as desired. ��

We next consider ideals in the algebra LK(E) associated with the graph E. For a
general unital ring R, the lattice of order-ideals of V(R) is isomorphic with the lat-
tice of trace ideals of R; see [4] and [15]. It is straightforward to see that this lattice
isomorphism also holds when R is a ring with local units. In particular, the lattice of
order-ideals of V(LK(E)) is isomorphic with the lattice of trace ideals of LK(E).
Since V(LK(E)) ∼= ME is a refinement monoid (Proposition 4.4), we see that the
trace ideals of LK(E) are exactly the ideals generated by idempotents of LK(E). In
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general not all the ideals in LK(E) will be generated by idempotents. For instance,
if E is a single loop, then LK(E) = K[x, x−1] and the ideal generated by 1 − x only
contains the idempotent 0. However, it is possible to describe the ideals generated
by idempotents by using the canonical grading of LK(E). Let us recall that LK(E)

is generated by sets {pv | v ∈ E0} and {xe, ye | e ∈ E1}, which satisfy the following
relations:

(1) pv pv′ = δv,v′ pv for all v, v′ ∈ E0.
(2) ps(e)xe = xe pr(e) = xe for all e ∈ E1.
(3) pr(e)ye = ye ps(e) = ye for all e ∈ E1.
(4) yexe′ = δe,e′ pr(e) for all e, e′ ∈ E1.
(5) pv = ∑

{e∈E1|s(e)=v} xe ye for every v ∈ E0 that emits edges.

If we declare that the degree of xe is 1 and the degree of ye is −1 for all e ∈ E1,
and that the degree of each pv is 0 for v ∈ E0, then we obtain a well-defined degree
on the algebra L(E) = LK(E), because all relations (1)–(5) are homogeneous. Thus
L(E) is a Z-graded algebra:

L(E) =
⊕

n∈Z

L(E)n; L(E)n L(E)m ⊆ L(E)n+m, , for all n, m ∈ Z.

For a subset X of a Z-graded ring R = ⊕n∈Z Rn, set Xn = X ∩ Rn. An ideal I of R
is said to be a graded ideal in case I = ⊕

n∈Z
In. Let us denote the lattice of graded

ideals of a Z-graded ring R by Lgr(R).
Recall that v ∈ E0 is called a sink in case v does not emit any edge.

Theorem 5.3 Let E be a row-finite graph. Then there are order-isomorphisms

H ∼= L(ME) ∼= Lgr(LK(E)),

where H is the lattice of hereditary and saturated subsets of E0, L(ME) is the lattice of
order-ideals of the monoid ME, and Lgr(LK(E)) is the lattice of graded ideals of the
graph algebra LK(E).

Proof We have obtained an order-isomorphism H ∼= L(ME) in Proposition 5.2.
As we observed earlier there is an order-isomorphism L(ME) = L(V(L(E))) ∼=
Lidem(L(E)), where Lidem(L(E)) is the lattice of ideals in L(E) generated by idem-
potents. The isomorphism is given by the rule I �→ Ĩ, for every order-ideal I of ME,
where Ĩ is the ideal generated by all the idempotents e ∈ L(E) such that V(e) ∈ I.
(Here V(e) denotes the class of e in V(L(E)) = ME.) Given any order-ideal I of ME,
it is generated as a monoid by the elements V(pv)(= [v] = av) such that V(pv) ∈ I,
so that Ĩ is generated as an ideal by the idempotents pv such that pv ∈ Ĩ. In particular
we see that every ideal of L(E) generated by idempotents is a graded ideal.

It only remains to check that every graded ideal of L(E) is generated by idempo-
tents. For this, it will be convenient to recall the definition of the path algebra P(E)

associated with E. The algebra P(E) is the algebra generated by a set {pv | v ∈ E0} of
pairwise orthogonal idempotents, together with a set of variables {xe | e ∈ E1}, which
satisfy relation (2). A K-basis for P(E) is given by the set of “paths” γ = xe1 xe2 · · · xer ,
such that r(ei) = s(ei+1) for i = 1, . . . , r − 1. We put s(γ ) = s(e1) and r(γ ) = r(er),
and the length |γ | of γ is defined to be r. It is easy to see that P(E) is indeed a
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subalgebra of L(E). The algebra P(E)∗ is, by definition, the subalgebra of L(E)

generated by {pv | v ∈ E0} and {ye | e ∈ E1}. Of course we can define an involution
on L(E) sending xe to ye, so that all pv are projections: pv = p2

v = p∗
v , and acting

on K by any prescribed involution on K. Note that for γ = xe1 xe2 · · · xer , we have
γ ∗ = yer · · · ye2 ye1 . Now elements in L(E) can be described as linear combinations
of elements of the form γ ν∗, where γ and ν are paths on E with r(γ ) = r(ν). It
is clear that, for n > 0, we have L(E)n = ⊕|γ |=nγ L(E)0, and similarly, L(E)−n =
⊕|γ |=n L(E)0γ

∗.
Given a graded ideal J of L(E), take any element a ∈ Jn, where n > 0. Then a =∑
|γ |=n γ aγ , for some aγ ∈ L(E)0. For a fixed path ν of length n, we have ν∗a = aν , so

that aν ∈ J0. We conclude that Jn = L(E)n J0, and similarly J−n = J0 L(E)−n. Since
J is a graded ideal, we infer that J is generated as ideal by J0, which is an ideal
of L(E)0.

To conclude the proof, we only have to check that every ideal of L(E)0 is gener-
ated by idempotents. Indeed we will prove that L(E)0 is a von Neumann regular ring,
more precisely L(E)0 is an ultramatricial K-algebra, i.e., a direct limit of matricial
algebras over K [16], though not all the connecting homomorphisms are unital. (A
matricial K-algebra is a finite direct product of full matrix algebras over K.)

By Lemma 3.2 we have L(E) = lim−→i∈I
L(Xi) for a directed family {Xi | i ∈ I} of fi-

nite graphs. Then L(E)0 = lim−→i∈I
L(Xi)0, and so we can assume that E is a finite

graph.
Now for a finite graph E, all the transition maps are unital. They can be built in the

following fashion. For each v in E0, and each n ∈ Z+, let us denote by P(n, v) the set
of paths γ = xe1 · · · xen ∈ P(E) such that |γ | = n and r(γ ) = v. The set of sinks will be
denoted by S(E). Now the algebra L(E)0 admits a natural filtration by algebras L0,n,
for n ∈ Z+. Namely L0,n is the set of linear combinations of elements of the form
γ ν∗, where γ and ν are paths with r(γ ) = r(ν) and |γ | = |ν| ≤ n. The algebra L0,0 is
isomorphic to

∏
v∈E0 K. In general the algebra L0,n is isomorphic to

⎡

⎣
n−1∏

i=0

⎛

⎝
∏

v∈S(E)

M|P(i,v)|(K)

⎞

⎠

⎤

⎦ ×
[

∏

v∈E0

M|P(n,v)|(K)

]

.

The transition homomorphism L0,n → L0,n+1 is the identity on the factors
∏

v∈S(E)

M|P(i,v)|(K), for 0 ≤ i ≤ n − 1, and also on the factor
∏

v∈S(E) M|P(n,v)|(K) of the last
term of the displayed formula. The transition homomorphism

∏

v∈E0\S(E)

M|P(n,v)|(K) →
∏

v∈E0

M|P(n+1,v)|(K)

is a block diagonal map induced by the following identification in L(E)0: A matrix
unit in a factor M|P(n,v)|(K), where v ∈ E0 \ S(E), is a monomial of the form γ ν∗,
where γ and ν are paths of length n with r(γ ) = r(ν) = v. Since v is not a sink, we
can enlarge the paths γ and ν using the edges that v emits, obtaining paths of length
n + 1, and relation (5) in the definition of L(E) gives γ ν∗ = ∑

{e∈E1|s(e)=v}(γ xe)(yeν
∗).

It follows that L(E)0 is an ultramatricial K-algebra, and the proof is complete. ��
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6 Separativity

In this section we prove that the monoid ME associated with a row-finite graph
E = (E0, E1) is always a separative monoid. Recall that this means that for elements
x, y, z ∈ ME, if x + z = y + z and z ≤ nx and z ≤ ny for some positive integer n,
then x = y.

The separativity of ME follows from results of Brookfield [9] on primely generated
monoids; see also [27, Chapter 6]. Indeed the class of primely generated refinement
monoids satisfies many other nice cancellation properties. We will highlight unperfo-
ration later, and refer the reader to [9] for further information.

Definition 6.1 Let M be a monoid. An element p ∈ M is prime if for all a1, a2 ∈ M,
p ≤ a1 + a2 implies p ≤ a1 or p ≤ a2. A monoid is primely generated if each of its
elements is a sum of primes.

Proposition 6.2 [9, Corollary 6.8] Any finitely generated refinement monoid is
primely generated.

It follows from Proposition 6.2 that, for a finite graph E, the monoid ME is primely
generated. Note that this is not always the case for a general row-finite graph E. An
example is provided by the graph:

p0 ��

��

p1 ��

����
��

��
��

p2 ��

������������������
p3 ��

		������������������������� · · ·

a

The corresponding monoid M has generators a, p0, p1, . . . and relations given by
pi = pi+1 + a for all i ≥ 0. One can easily see that the only prime element in M is a,
so that M is not primely generated.

Theorem 6.3 Let E be a row-finite graph. Then the monoid ME is separative.

Proof By Lemma 3.4, we get that ME is the direct limit of monoids MXi correspond-
ing to finite graphs Xi. Therefore, in order to check separativity, we can assume that
the graph E is finite.

Assume that E is a finite graph. Then ME is generated by the finite set E0

of vertices of E, and thus ME is finitely generated. By Proposition 4.4, ME is a
refinement monoid, so it follows from Proposition 6.2 that ME is a primely generated
refinement monoid. By [9, Theorem 4.5], the monoid ME is separative. ��

As we remarked before, primely generated refinement monoids satisfy many nice
cancellation properties, as shown in [9]. Some of these properties are preserved in
direct limits, so they are automatically true for the graph monoids corresponding to
any row-finite graph. Especially important in several applications is the property of
unperforation. Let us say that a monoid M is unperforated in case, for all elements
a, b ∈ M and all positive integers n, we have na ≤ nb =⇒ a ≤ b . This implies that
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the Grothendieck group G(M) of M is unperforated: for all g ∈ G(M) and all positive
integers n, we have ng ≥ 0 =⇒ g ≥ 0.

Proposition 6.4 Let E be a row-finite graph. Then the monoid ME is unperforated.

Proof As in the proof of Theorem 6.3, we can reduce to the case of a finite graph E.
In this case, the result follows from [9, Corollary 5.11(5)]. ��

Corollary 6.5 Let E be a row-finite graph. Then F P(LK(E)) satisfies the refinement
property and LK(E) is a separative ring. Moreover, the monoid V(LK(E)) is an
unperforated monoid and K0(LK(E)) is an unperforated group.

Proof By Theorem 3.5, we have V(LK(E)) ∼= ME. So the result follows from Propo-
sition 4.4, Theorem 6.3 and Proposition 6.4. ��

Another useful technique to deal with graph monoids of finite graphs consists in
considering composition series of order-ideals in the monoid. These composition
series correspond via Theorem 5.3 to composition series of graded ideals in LK(E),
and, using [5, Theorem 4.1(b)], they also correspond to composition series of closed
gauge-invariant ideals of the graph C∗-algebra C∗(E). This approach will be used in
the proof of Theorem 7.1 in our next section. It also leads to a different proof of the
separativity of ME (Theorem 6.3), that will be sketched in Remark 6.7.

Given an order-ideal S of a monoid M we define a congruence ∼S on M by setting
a ∼S b if and only if there exist e, f ∈ S such that a + e = b + f . Let M/S be the
factor monoid obtained from the congruence ∼S; see [2]. For large classes of rings R,
one has V(R/I) ∼= V(R)/V(I) for any ideal I of R; see [2, Proposition 1.4].

We need a monoid version of [5, Theorem 4.1(b)].

Lemma 6.6 Let E be a row-finite graph. For a saturated hereditary subset H of
E0, consider the order-ideal S = ϕ(H) associated with H, as in Proposition 5.2. Let
G = (G0, G1) be the graph defined as follows. Put G0 = E0 \ H and G1 = {e ∈ E1 |
r(e) ∈ G0}. Then there is a natural monoid isomorphism ME/S ∼= MG.

Proof Note that S is generated as a monoid by the elements av , with v ∈ H. There
is a unique monoid homomorphism π : FE → FG sending v to 0 for v ∈ H and
v to v for v ∈ E \ H, where FE (respectively FG) is the free Abelian monoid
on E, (respectively, G). The map π induces a surjective monoid homomorphism
π : ME → MG, and it is clear that π factors through ME/S, i.e., we have ME →
ME/S → MG. If π(α) ∼ π(β) in FG for α, β ∈ FE, then by Lemma 4.3 there is
γ ∈ FG such that π(α) → γ and π(β) → γ . This means that there is a string π(α) =
γ0 →1 γ1 →1 · · · →1 γr = γ in FG, and similarly for π(β) → γ . Let us consider the
same strings, but now in FE. We then get that α → γ + δ1, where δ1 is supported on
H, and similarly β → γ + δ2, where δ2 is supported on H. It follows that the following
identity holds in ME:

[α] + [δ2] = [γ ] + [δ1] + [δ2] = [β] + [δ1],
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with [δ1], [δ2] ∈ S. We conclude that the map ME/S → MG is injective, and so it is a
monoid isomorphism, as desired. ��

Let us call ME simple if ME has only the trivial order-ideals. This corresponds by
Proposition 5.2 to the situation where the hereditary and saturated subset generated
by any vertex of E is E0. It is well-known that this happens if and only if E is cofinal.
Let E≤∞ be the set of infinite paths in E together with the finite paths in E whose
end point is a sink. Then E is said to be cofinal in case given a vertex v in E and a
path γ in E≤∞, there is a vertex w in the path γ such that v ≥ w.

A finite path α of positive length is called a loop if s(α) = r(α) = v. A loop α =
(e1, e2, . . . , en) is simple if all the vertices s(ei), 1 ≤ i ≤ n, are distinct. For a subgraph
G of E, an exit of G is an edge e in E with s(e) ∈ G0 and e /∈ G1.

Remark 6.7 We are now ready to sketch a different proof of the separativity of ME

(Theorem 6.3), using the theory of order-ideals.
As in the proof of Theorem 6.3, we can assume that E is a finite graph. In this

case it is obvious that E0 has a finite number of saturated hereditary subsets, so ME

has a finite number of order-ideals. Take a finite chain 0 = S0 ≤ S1 ≤ · · · ≤ Sn = ME

such that each Si is an order-ideal of ME, and all the quotients Si/Si−1 are simple.
By Proposition 5.2, we have Si

∼= MHi , for some finite graph Hi, and by Lemma 6.6,
we have Si/Si−1

∼= MGi for some cofinal finite graph Gi. By Proposition 4.4, Si is
a refinement monoid for all i, so the Extension Theorem for refinement monoids
[2, Theorem 4.5] tells us that Si is separative if and only if so are Si−1 and Si/Si−1.
It follows by induction that it is enough to show the case where E is a cofinal
finite graph.

Let E be a cofinal finite graph. We distinguish three cases. First, suppose that E
does not have loops. Then there is a sink v, and by cofinality for every vertex w of E
there is a path from w to v. It follows that ME is a free Abelian monoid of rank one
(i.e., isomorphic to Z+), generated by av . In particular ME is a separative monoid.
Secondly, assume that E has a simple loop without exit, and let v be any vertex in
this simple loop. By using the cofinality condition, it is easy to see that there are no
other simple loops in E, and that every vertex in E connects to v. It follows again
that ME is a free Abelian monoid of rank one, generated by av .

Finally we consider the case where every simple loop has an exit. By cofinality,
every vertex connects to every loop. Using this and the property that every loop has
an exit, it is quite easy to show that for every nonzero element x in ME there is a
nonzero element y in ME such that x = x + y. It follows that ME \ {0} is a group; see
for example [2, Proposition 2.4]. In particular ME is a separative monoid.

Example 6.8 We consider again the graph E described in Example 3.6. A composi-
tion series of order-ideals for ME is obtained from the graph monoids corresponding
to the following chain of saturated hereditary subsets of E:

∅ , d , c
��

��
�� d , a

��

�� b�� �� c
��

��
�� d .
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By Lemma 6.6, the corresponding simple quotient monoids are the graph monoids
corresponding to the following graphs:

d , c
��

��
, a

��

�� b�� .

7 The Monoid Associated with a Graph C∗-algebra

In this section, we will assume that L(E) = LC(E) is the graph algebra of the graph E
over the field C of complex numbers, endowed with its natural structure of complex
∗-algebra, so that x∗

e = ye for all e ∈ E1, p∗
v = pv for all v ∈ E0, and (ξa)∗ = ξa∗ for

ξ ∈ C and a ∈ L(E). There is a natural inclusion of complex ∗-algebras ψ : L(E) →
C∗(E), where C∗(E) denotes the graph C∗-algebra associated with E.

Theorem 7.1 Let E be a row-finite graph, and let L(E) = LC(E) be the graph algebra
over the complex numbers. Then the natural inclusion ψ : L(E) → C∗(E) induces
a monoid isomorphism V(ψ) : V(L(E)) → V(C∗(E)). In particular the monoid
V(C∗(E)) is naturally isomorphic with the monoid ME.

Proof The algebra homomorphism ψ : L(E) → C∗(E) induces the following com-
mutative square:

V(L(E))
V(ψ)−−−−→ V(C∗(E))

ϕ1

⏐⏐
�

⏐⏐
�ϕ2

K0(L(E))
K0(ψ)−−−−→ K0(C∗(E)).

The map K0(ψ) is an isomorphism by Theorem 3.5 and [22, Theorem 3.2]. Using
Lemmas 3.2 and 3.3, we see that it is enough to show that V(ψ) is an isomorphism
for a finite graph E.

Assume that E is a finite graph. We first show that the map V(ψ) : V(L(E)) →
V(C∗(E)) is injective. Suppose that P and Q are idempotents in M∞(L(E)) such that
P ∼ Q in C∗(E). By Theorem 3.5, we can assume that each of P and Q is equivalent
in M∞(L(E)) to direct sums of “basic” projections, that is, projections of the form pv ,
with v ∈ E0. Let J be the closed ideal of C∗(E) generated by the entries of P. Since
P ∼ Q, the closed ideal generated by the entries of P agrees with the closed ideal
generated by the entries of Q and indeed it agrees with the closed ideal generated by
the projections of the form pw, where w ranges over the saturated hereditary subset
H of E0 generated by {v ∈ E0 | P = ⊕pv} (see [5, Theorem 4.1]). It follows from
Theorem 5.3 that P and Q generate the same ideal I0 in L(E). There is a projection
e ∈ L(E), which is the sum of the basic projections pw, where w ranges in H, such
that I0 = L(E)eL(E) and eL(E)e = L(H) is also a graph algebra. Note that P and
Q are full projections in L(H), and so [1H] ≤ m[P] and [1H] ≤ m[Q] for some
m ≥ 1. Now consider the map ψH : L(H) → C∗(H). Since V(ψH)([P]) =
V(ψH)([Q]) in V(C∗(H)) we get K0(ψH)(ϕ1([P])) = K0(ψH)(ϕ1([Q])), and
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since K0(ψH) is an isomorphism we get ϕ1([P]) = ϕ1([Q]). This means that there
is k ≥ 0 such that [P] + k[1H] = [Q] + k[1H]. But since V(L(E)) is separative and
[1H] ≤ m[P] and [1H] ≤ m[Q], we get [P] = [Q] in V(L(E)).

Now we want to see that the map V(ψ) : V(L(E)) → V(C∗(E)) is surjective. By
[5, Theorem 4.1], there is a natural isomorphism between the lattice of saturated
hereditary subsets of E0 and the lattice of closed gauge-invariant ideals of C∗(E).
Thus, since E is finite, the number of closed gauge-invariant ideals of C∗(E) is
finite, and there is a finite chain I0 = {0} ≤ I1 ≤ · · · ≤ In = C∗(E) of closed gauge-
invariant ideals such that each quotient Ii+1/Ii is gauge-simple. We proceed by
induction on n. If n = 1 we have the case in which C∗(E) is gauge-simple, and thus
it is either purely infinite simple, or AF or Morita-equivalent to C(T); see [5]. In
either case the result follows. Note that in the purely infinite case, we use that
V(C∗(E)) = K0(C∗(E)) \ {0} = K0(L) \ {0} = V(L). Now assume that the result is
true for graph C∗-algebras of (gauge) length n − 1 and let A = C∗(E) be a graph
C∗-algebra of length n. Let H be the saturated hereditary subset of E0 corresponding
to the ideal I1. Note that H is a minimal saturated hereditary subset of E0, and
thus H is cofinal. Set B = A/I1. By [5, Theorem 4.1(b)], we have B ∼= C∗(F), where
F0 = E0 \ H and F1 = {e ∈ E1 | r(e) /∈ H}. Observe that by the induction hypothesis
we know that every projection in B is equivalent to a finite orthogonal sum of basic
projections of the form pv , where v ranges in F0 = E0 \ H. Let π : A → B denote the
canonical projection. Since I1 is the closed ideal generated by its projections, there is
an embedding V(A)/V(I1) → V(B). This follows from [4, Proposition 5.3(c)], taking
into account that every closed ideal generated by projections is an almost trace ideal.
By induction hypothesis, V(B) = V(C∗(F)) is generated as a monoid by [pv], for
v ∈ E0 \ H, and so the map V(A)/V(I1) → V(B) is also surjective, so that V(B) ∼=
V(A)/V(I1). In particular, π(P) ∼ π(Q) for two projections P, Q ∈ M∞(A), if and
only if there are projections P′, Q′ ∈ M∞(I1) such that P ⊕ P′ ∼ Q ⊕ Q′ in M∞(A).

We first deal with the case where I1 has stable rank one, which corresponds to the
cases where I1 is either AF or Morita-equivalent to C(T). Note that in this case either
H contains a sink v, or we have a simple loop without exit, in which case we select
v as a vertex in this loop. Note that, by the cofinality of H, any projection in I1 is
equivalent to a projection of the form k · pv for some k ≥ 0. Now take any projection
P in M∞(A). Since π(P) ∼ π(pv1 ⊕ · · · ⊕ pvr ) for some vertices v1, . . . , vr in E \ H,
there are a, b ≥ 0 such that

P ⊕ a · pv ∼ pv1 ⊕ · · · ⊕ pvr ⊕ b · pv.

Since the stable rank of pv Apv is one, the projection pv cancels in direct sums [23],
and so, if b ≥ a, we get

P ∼ pv1 ⊕ · · · ⊕ pvr ⊕ (b − a)pv,

so that P is equivalent to a finite orthogonal sum of basic projections. If b < a, then
we have P ⊕ (a − b)pv ∼ pv1 ⊕ · · · ⊕ pvr . We claim that there is some 1 ≤ i ≤ r such
that v is in the tree of vi. For, assume to the contrary that v /∈ ⋃r

i=1 T(vi). We will
see that v is not in the saturated hereditary subset of E generated by v1, . . . , vr. Note
that the set D = ⋃r

i=1 T(vi) is hereditary, and that the saturated hereditary subset
of E generated by v1, . . . , vr is D = ⋃∞

j=0 �i(D), see Section 5. Observe also that,
since v is either a sink or belongs to a simple loop and H is cofinal, v belongs to
the tree of any vertex in H, whence H ∩ D = ∅. Let v′ be a vertex in H. If v′ ∈
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�1(D) then s−1(v′) �= ∅ and r(s−1(v′)) ⊆ D ∩ H. Since H ∩ D = ∅, this is impossible.
So �1(D) ∩ H = ∅. Indeed, an easy induction shows that �i(D) ∩ H = ∅ for all i,
and so D ∩ H = ∅. But pij being equivalent to a subprojection of pv1 ⊕ · · · ⊕ pvr ,
the projection pv belongs to the closed ideal of A generated by pv1 , . . . , pvr , and
so v belongs to D. This contradiction shows that v belongs to the tree of some vi,
as claimed.

Now, the fact that v belongs to the tree of vi implies that there is a projection
Q which is a finite orthogonal sum of basic projections such that pvi ∼ pv ⊕ Q.
Therefore we get

P ⊕ (a − b)pv ∼ (pv1 ⊕ · · · pvi−1 ⊕ pvi+1 ⊕ · · · ⊕ pvr ⊕ Q) ⊕ pv.

Since pv can be cancelled in direct sums, we get

P ⊕ (a − b − 1)pv ∼ (pv1 ⊕ · · · pvi−1 ⊕ pvi+1 ⊕ · · · ⊕ pvr ⊕ Q),

and so, using induction, we obtain that P is equivalent to a finite orthogonal sum of
basic projections.

Finally we consider the case where I1 is a purely infinite simple C∗-algebra.
Recall that in this case I1 has real rank zero [11], and that V(I1) \ {0} is a group.
So there is a nonzero projection e in I1 such that for every nonzero projection p
in M∞(I1) there exists a nonzero projection q ∈ I1 such that p ⊕ q ∼ e. Let P be a
nonzero projection in Mk(A), for some k ≥ 1, and denote by I the closed ideal of
A generated by (the entries of) P. If I · I1 = 0, then I ∼= (I + I1)/I1, so that I is a
closed ideal in the quotient C∗-algebra B = A/I1. It follows then by our assumption
on B that P is equivalent to a finite orthogonal sum of basic projections. Assume
now that I · I1 �= 0. Then there is a nonzero column C = (a1, a2, . . . , ak)

t ∈ Ak such
that C = PCe. Consider the positive element c = C∗C , which belongs to eAe. Since
e ∈ I1 and I1 has real rank zero, the C∗-algebra eAe has also real rank zero, so
that we can find a nonzero projection p ∈ cAc. Take x ∈ A such that p = cxc. By
using standard tricks (see e.g., [24]), we can now produce a projection P′ ≤ P such
that p ∼ P′. Namely, consider the idempotent F = CpC∗CxC∗ in PMk(A)P. Then
p and F are equivalent as idempotents, and F is equivalent to some projection P′ in
PMk(A)P; see [24, Exercise 3.11(i)]. Since p and P′ are equivalent as idempotents,
they are also Murray–von Neumann equivalent, see [24, Exercise 3.11(ii)], as desired.
We have proved that there is a nonzero projection p in I1 such that p is equivalent
to a subprojection of P. Since I1 is purely infinite simple, every projection in I1 is
equivalent to a subprojection of p, and so every projection in I1 is equivalent to a
subprojection of P.

Now we are ready to conclude the proof. There is a projection q in I1 such that
P ⊕ q is equivalent to a finite orthogonal sum of basic projections. Let q′ be a nonzero
projection in I1 such that q ⊕ q′ ∼ e, and observe that

P ⊕ e ∼ (P ⊕ q) ⊕ q′,

so that P ⊕ e is also a finite orthogonal sum of basic projections. By the above
argument, there is a projection e′ such that e′ ≤ P and e ∼ e′. Write P = e′ + P′. Then
we have

P ⊕ e ∼ P′ ⊕ e′ ⊕ e ∼ P′ ⊕ e ⊕ e ∼ P′ ⊕ e ∼ P.



Algebr Represent Theor (2007) 10:157–178 177

It follows that P ∼ P ⊕ e and so P is equivalent to a finite orthogonal sum of basic
projections. ��

Corollary 7.2 Let E be a row-finite graph. Then the monoid V(C∗(E)) is a refine-
ment monoid and C∗(E) has stable weak cancellation. Moreover, V(C∗(E)) is an
unperforated monoid and K0(C∗(E)) is an unperforated group.

Proof By Theorem 7.1, V(C∗(E)) ∼= ME, and so V(C∗(E)) is a refinement monoid
by Proposition 4.4.

It follows from Theorem 6.3 that V(C∗(E)) is a separative monoid. By Proposi-
tion 2.1, this is equivalent to saying that C∗(E) has stable weak cancellation. The
statements about unperforation follow from Proposition 6.4. ��
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