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Abstract

A new chemometric methodology based on the use of peak parameters as direct input data into different multivariate calibration methods is
proposed. Different regression techniques such as multilinear regression (MLR), partial least square regression (PLS), principal component
regression (PCR) and artificial neural networks (ANN), were utilized in order to resolve hard overlapped electrochemical signals belonging to the
well-known Tl+/Pb2+ system, which was used as a benchmark. This strategy was studied as an alternative to traditional procedures that apply pre-
treatment techniques (dimension reduction methods or feature selection processes) to the full voltammograms of the signals. Good predictive and
effective models were obtained, being the RMS errors very similar in all cases, independent of the calibration method. However, ANN-based
regression models performed slightly better. The average relative errors ranged from 5 to 10% for Tl+ and from 4 to 12% for Pb2+. A study of the
relevance of the voltammetric peak parameters was also carried out. This parameters-based strategy can involve a fast and efficient alternative to
resolve multicomponent systems in those analytical techniques whose signals can be represented by peak parameters.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

One of the main limitations to the application of electroan-
alytical techniques in the field of quantitative analysis is often
due to lack of selectivity. In fact, it often happens that different
species undergo oxidation or reduction at potential values that
are very close to each other giving place to serious overlapping.
Besides separation techniques, complexometric methods, or
experimental manipulations like changes of pH, of the sup-
porting electrolyte, or the use of modified electrodes, che-
mometrics offers efficient alternatives to solve the problem of
overlapping signals.

Amongst the most used chemometric techniques for simul-
taneous evaluation of overlapped signals, independent of the
type of signal, we can find deconvolution or semidifferential
techniques coupled to curve fitting [1,2], multivariate curve
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resolution [3,4], and multivariate calibration [5–7]. Specifically
in the field of electrochemistry, many successful applications of
multivariate calibration based on different regression methods
have been recently reported: multilinear regression (MLR) [8],
principal component regression (PCR) [9,10], continuum
regression [11], partial least squares regression (PLS)
[9,10,12,13] and artificial neural networks (ANNs) [14,15].

In this paper we propose a new chemometric methodology
based on the application of several regression methods such as
MLR, PLS, PCR and ANNs, with the aim of resolving hard
overlapped electrochemical signals, using different peak para-
meters as input data: position, height, half width, derivative and
area of the voltammetric peaks. The well-known Tl+ and Pb2+

system, with the ions in the concentration range from 0.1 to
1.0 mg l−1, which has already been resolved by the traditional
PLS and PCR methods (but with higher concentrations of the
ions), was employed as a benchmark [11]. The standard addition
methodwas used to obtain the voltammetric signals for individual
analytes and mixtures; no problem associated to this procedure
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was found, due to no shift of the peak potentials was observed for
our standards, as it has been described in bibliography [16,17].

Until now, the multivariate calibration techniques used to
resolve overlapped electrochemical signals have been applied on
full voltammograms, i.e., all values of intensity [18] or intervals
of them [15,16] were employed as input data. To minimise the
number of input variables, we recently proposed a strategy based
on Fourier Transform (FT) andWavelet Transform (WT) coupled
to different regression methods (PCR, PLS and ANNs) [19] to
resolve a seriously overlapped Tl+/Pb2+ electrochemical system.
Furthermore, we completed our studies applying a WT-based
feature selection procedure on the same data sets [20] as a
previous step to the multivariate calibration with PLS, MLR and
ANNs.

The use of the information contained in the voltammetric peak
parameters has not been very extended in literature, apart from
being used to optimise the determination procedures of analytes
when applying voltammetric techniques [21,22]. Some other
interesting applications of peak parameters (not only in voltam-
metric techniques) are summarised as follows: diagnostic criteria
in kinetics of surface redox processes [23]; characterization of
first-order EC reactions [24];mathematicalmodelling of curves to
estimate peak parameters in capillary electrophoresis [25] and
infrared spectroscopy [26], in order to predict optimal separation
conditions and improve the interpretation of multivariate and rule
induction classification models, respectively; and determination
of the peak shape parameters by means of WT [27,28].

However, in the field of the electrochemical quantification, a
lesser number of papers using voltammetric peak parameters can
be found in the scientific literature: one of them [29] compares
critically the use of peak area and peak current to determine the
concentration of different metallic species in solution, while in
other one [30], the authors apply ANNs based only on one
parameter: peak intensity, with the aim of determining
simultaneously Cd2+ and Pb2+ in mixtures measured by flow
injection analysis using multiple differential pulse voltammetric
detection. Actually, the ANNmodel obtained in the last case had
the same characteristics as a MLR model, since a perceptron
with a 2–2–2 topology (two neurons in the input layer: peak
intensities of the two ions, two neurons in the hidden layer and
two neurons in the output layer: concentrations of the two ions)
with linear transfer functions was employed.

In the present work, our idea goes further: we use the five
previously defined voltammetric parameters as input data,
establishing a comparison amongst different chemometric
techniques (MLR, PLS, PCR and ANN), in order to obtain
stable and simple multivariate calibration models. The perfor-
mance of each calibration model has been tested by the root-
mean square error (RMS), estimated on two different test sets
for all cases. This decision variable is defined by next equation:

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
ðyi−y⁎i Þ2

n

vuut

where yi represent the measured concentration for the ions;
yi⁎ represent the predicted concentration for the ions; and n is
the number of samples.
The innovation of this piece of research radicates in the
following aspects:

▪ It constitutes one of the first applications of peak parameters to
the direct multivariate calibration of electrochemical signals.

▪ No data pre-treatment is necessary, what offers certain ad-
vantages versus other chemometric strategies [19,20]: the
peak parameters are directly utilized as input data by the
calibration techniques, thus the chemical interpretation of the
results is faster and more reliable because these parameters
can be easily related to the analytes concentrations.

▪ The number of input data is quite low, and consequently the
number of adjustable parameters as well. That is why the
structure of the models obtained is very simple, avoiding the
handicap of overfitting in a good way. In bibliography, it is
possible to find many applications of neural networks using
very simple architectures, i.e., only a few variables as input
data: 1–3 variables [31], 3 variables [32] and 3–6 variables
[33].

▪ Other voltammetric peak parameter, the derivative, is used to
obtain good models of prediction together with peak area and
intensity, the most commonly used parameters to relate with
concentration values [29,30].

▪ This peak parameters-based strategy can involve a fast and
efficient alternative to resolve multicomponent systems in
voltammetry or even in other analytical techniques such as
chromatography or spectroscopy, whose signals can be
represented by peak parameters.

2. Experimental

2.1. Methodology

As it has been explained yet, voltammetric peak parameters
have been used here as direct inputs in different chemometric
techniques in order to resolve overlapped electrochemical
signals. These peak parameters can be defined as follows:

▪ Position (V ): potential at which the current with respect to
the baseline has a maximum (volts — V); also called peak
potential.

▪ Height (I ): maximum current (intensity) with respect to the
baseline (ampere — A); also called peak intensity

▪ Peak area (S ): area of the peak corrected for the baseline
(arbitrary units).

▪ Half width (W ): the difference between the peak potential,
Ep, and the potential at half height, Ep/2 (volts — V).

▪ Derivative (D): the sum of the absolute values of the
maximum and the minimum in the first derivative of the peak
(arbitrary units) [34].

The values of the voltammetric peak parameters: V, I, S, W,
and D, as well as the concentration of each ion used in all the
mixtures studied in this work, appear in Table 1.

The voltammetric parameters have been set up in order to
obtain the best sensitivity, i.e., the highest peak intensity. These
instrumental conditions may have caused an increase in the half-



Table 1
Values of the voltammetric peak parameters used in the present work

Sample V I S W D [Tl+] [Pb2+] Sample V I S W D [Tl+] [Pb2+]

T1 −0.494 22.937 0.276 0.111 5.742 0.10 0.00 T3L3 −0.506 189.367 2.133 0.106 59.873 0.29 0.29
T2 −0.494 51.603 0.626 0.111 12.917 0.20 0.00 T8L3 −0.499 342.900 3.992 0.111 97.627 0.77 0.29
T3 −0.497 79.307 0.966 0.114 19.887 0.30 0.00 T4L4 −0.509 247.767 2.775 0.106 79.240 0.39 0.39
T4 −0.487 107.467 1.282 0.111 26.923 0.39 0.00 T9L4 −0.504 396.667 4.593 0.111 114.767 0.86 0.38
T5 −0.494 139.000 1.680 0.116 34.340 0.49 0.00 T5L5 −0.504 329.067 3.706 0.106 103.567 0.48 0.48
T6 −0.491 171.633 2.075 0.114 42.397 0.59 0.00 T10L5 −0.504 474.833 5.473 0.111 139.633 0.94 0.47
T7 −0.492 200.600 2.424 0.113 49.963 0.68 0.00 T1L6 −0.522 235.100 2.458 0.101 85.880 0.10 0.58
T8 −0.486 231.800 2.790 0.111 56.363 0.78 0.00 T6L6 −0.504 383.900 4.329 0.106 120.133 0.57 0.57
T9 −0.489 254.933 3.065 0.111 62.943 0.87 0.00 T2L7 −0.515 299.000 3.184 0.101 105.333 0.19 0.68
T10 −0.492 291.333 3.551 0.116 73.103 0.96 0.00 T7L7 −0.504 459.500 5.153 0.106 146.300 0.66 0.66
L1 −0.525 40.973 0.410 0.096 15.640 0.00 0.10 T3L8 −0.515 362.867 3.868 0.101 128.533 0.29 0.77
L2 −0.523 74.553 0.750 0.096 28.497 0.00 0.20 T8L8 −0.506 526.067 5.691 0.101 156.000 0.75 0.75
L3 −0.522 106.233 1.064 0.096 40.463 0.00 0.30 T4L9 −0.509 426.500 4.600 0.106 148.233 0.38 0.86
L4 −0.525 139.500 1.398 0.096 53.203 0.00 0.39 T9L9 −0.504 581.067 6.526 0.106 183.733 0.84 0.84
L5 −0.520 178.433 1.790 0.098 68.223 0.00 0.49 T5L10 −0.509 489.467 5.321 0.106 167.533 0.47 0.94
L6 −0.520 209.333 2.102 0.096 80.167 0.00 0.59 T10L10 −0.501 659.567 6.974 0.101 192.367 0.93 0.93
L7 −0.520 243.100 2.441 0.096 93.090 0.00 0.68 T1L9 −0.520 328.900 3.426 0.101 119.300 0.10 0.87
L8 −0.523 280.833 2.820 0.098 107.267 0.00 0.78 T9L1 −0.499 287.900 3.414 0.111 77.050 0.87 0.10
L9 −0.520 311.833 3.125 0.096 119.500 0.00 0.87 T3L5 −0.504 255.300 2.767 0.101 85.670 0.29 0.48
L10 −0.520 341.233 3.423 0.096 131.067 0.00 0.96 T5L3 −0.504 244.200 2.786 0.111 73.120 0.48 0.29
T1L1 −0.509 65.520 0.736 0.106 20.667 0.10 0.10 T6L8 −0.509 443.000 4.871 0.106 143.800 0.57 0.76
T6L1 −0.496 215.300 2.534 0.111 54.903 0.58 0.10 T8L6 −0.499 422.000 4.655 0.101 123.700 0.76 0.57
T2L2 −0.506 127.300 1.427 0.106 40.110 0.20 0.20 T10L2 −0.499 343.600 4.058 0.111 94.070 0.95 0.19
T7L2 −0.502 274.900 3.225 0.111 75.937 0.68 0.19 T2L10 −0.520 374.000 3.906 0.101 133.700 0.19 0.95

V=peak potential (V); I=peak intensity (nA); S=area of the peaks (×10−8 a.u.); W=half width (V); D=derivative (×10−7 a.u.); T=Tl+; L=Pb2+; 1, 2, …, 10=0.1,
0.2, …, 1.0 mg l−1.

Table 2
Composition of the different multivariate calibration models tested

Number of parameters Models⁎

5 VISWD
4 VISW VISD VIWD VSWD ISWD
3 VIS VIW VID VSW VSD VWD ISW ISD IWD SWD
2 VI VS VD IW IS ID SW SD WD
1 I S D

V=peak potential (V); I=peak intensity (nA); S=area of the peaks (×10−8 a.u.);
W=half width (V); D=derivative (×10−7 a.u.). (⁎) The VW, V and W models
were not tested because the variability of these peak parameters, and
consequently the information contained in them, were not significant.
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width values (W ). Electrochemical parameters such as pulse
amplitude improve the sensitivity, but affect the width of the
voltammetric peaks [35].

The chemometric techniques applied in this paper consisted
of several multivariate calibration methods, such as MLR, PLS,
PCR and ANNs. When applying these techniques, whose
theoretical aspects can be found in [36–38], all possible
combinations of the five parameters were employed as input
data, in order to build the multivariate calibration models.
Table 2 represents all the models studied, excepting three of
them: V, W and VW, because the variability of the constitutive
peak parameters was not high enough to discriminate the signals
and, consequently to resolve the mixtures. For MLR and PLS,
the final number of models was 25. Nevertheless, with respect
to ANNs, the number of models increased notoriously as a
consequence of all possible combinations amongst the transfer
functions for every topology tested.

2.1.1. Multilinear regression (MLR)
The voltammetric peak parameters (independent variables)

were mean-centred. The performance of each MLR model was
tested by the RMSmon error, estimated on a monitoring set of 9
mixtures in order to establish comparison with ANNs. For each
combination of peak parameters, the best performingMLRmodels
were selected and their predictive abilitywas further checked by an
external validation set (RMStst) consisting of 8 mixtures.

2.1.2. Partial least squares regression (PLS) and principal
component regression (PCR)

The voltammetric parameters were also mean-centred. The
optimal number of PLS components has been chosen by
crossvalidation. The number of significant components (latent
variables, LVs) chosen in every model was as follows: models
based on 5 parameters= from 3 to 5 LVs; models based on
4 parameters=3 and 4 LVs; models based on 3 peak
parameters=2 and 3 LVs; and finally, models based on
2 parameters=2 LVs. Models based on only 1 parameter were
tested at the beginning, but they were not used later since the
errors obtained were rather high.

The performance of each PLS model was also tested by the
RMSmon error. For each combination of peak parameters, the
best performing MLR models were selected and their predictive
ability was checked by the RMStst error.

The MLR, PLS and PCR models were calculated by means
of the software Unscrambler® ver. 7.01.

2.1.3. Artificial neural networks (ANNs)
According to the models collected in Table 2, different neural

network topologies were tested: ni–2–2, where ni is the number



Fig. 1. Superposition of voltammograms: a) 0.7 mg l−1 of Tl+ (T7); b) 0.7 mg l−1

of Pb2+ (L7); c) mixture of 0.7 mg l−1 of Tl+ and 0.7 mg l−1 of Pb2+ (T7L7).
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of voltammetric peak parameters (from 2 to 5). The number of
hidden neurons was 2 with the aim of: 1) comparing the results
with those obtained after applying a WT-based feature selection
procedure as a previous step to the multivariate calibration
process [20]; and 2) minimising the number of adjustable
parameters, which can be calculated by the formula [38,39]:
N= (input nodes ⁎hidden nodes) + (hidden nodes ⁎output
nodes)+hidden nodes+output nodes. As the maximum number
of input neurons can only be 5 (the biggest model, see Table 2),
the maximum number of adjustable parameters would be 18.
One limitation of adjusting hidden neurons is that the ratio of
training set observations (31) to adjustable parameters (18
maximum) must be greater than two to reduce the risk of chance
correlations and network overtraining. In our case, the
maximum N value is 1.72 (31 /18), what borders overfitting.
However, this situation only would occur in one model, having
the rest of models between 12 and 16 adjustable parameters.
Thus, in most cases there is no risk of overfitting.

In this paper, we use a feedforward-type (connections must
connect to the next layer) and multilayered neural networks with
an improved faster back propagation (BP) algorithm (to know
more about how the BP training is accomplished, please see
Ref. [19]). The activation or transfer functions used here for
each neuron were: linear for the input layer and all possible
combinations (9) of gaussian, sigmoid and hyperbolic tangent
functions for the hidden and output layers.

The program Qnet® 2000 has been used for the ANN
calculations. The training process of the neural network model
was stopped minimising the RMSmon error, estimated on a test
set of 9 mixtures. Since the starting weights are randomly
generated for each set of coefficients, five ANN runs were made
and the resulting RMS errors were averaged [38,39]. Taking
into account all the previous considerations, the final number of
neural models studied was 1175 (25 models H 9 combinations
of transfer functions H 5 replicates).

For each combination of peak parameters, the best
performing ANN models corresponding to low RMSmon errors
were selected. However, it is worth noticing that in the case of
ANN this test set is used to stop the training of the network and
thus it does not represent a true validation set, being rather a
monitoring set. Accordingly, the predictive ability of the chosen
ANN models was checked by an external validation set (RMStst
error) of 8 mixtures.

2.2. Instrumentation, reagents and materials

The DPASV (Differential Pulse Anodic Stripping Voltam-
metry) measurements were performed with an Autolab®/
PGSTAT20 (Ecochemie, Utrecht, The Netherlands) potentio-
stat/galvanostat, interfaced with a personal computer, and
coupled to a VA 663 Stand (Metrohm, Herisau, Switzerland).
The AutoLab software GPES (General Purpose Electrochemical
System) was used for waveform generation and data acquisition
and elaboration.

An electrochemical three electrode cell, with a platinum
auxiliary electrode, a silver/silver chloride, 3 M potassium
chloride reference electrode and a HMDE (Hanging Mercury
Drop Electrode), was employed. All this equipment was also
purchased from Metrohm.

Analytical reagent grade chemicals were used throughout the
experiments. Voltammograms were recorded at room temper-
ature (25 ± 1 °C). All solutions were de-aerated with nitrogen
when necessary for at least 10 min before performing the
experiments.

A 2 M acetic acid (Panreac, Barcelona, Spain)/2 M ammo-
nium acetate (Merck, Darmstad, Germany) buffer solution was
utilized as supporting electrolyte (pH=4.8–5.0). Lead and
thallium solutions were prepared from nitrate salt (Merck);
stock solutions had a concentration of 250 mg l−1.

The instrumental parameters used in DPASV measurements
were as follows: deposition potential=−1.3 V; deposition
time=120 s; rest period=20 s; initial potential=−1.3 V; end
potential=0.0 V; scan rate=8.5 mV s−1; pulse amplitude=
0.10 V; pulse time=0.07 s; pulse repetition time=0.6 s. The drop
surface was approximately 0.52 mm2.

2.3. Software

For the statistical treatment the following software packages
were used: Unscrambler® 7.01 and EXCEL® 97 Pro. Qnet®
2000, neural network software, was utilized to obtain the neural
models.

2.4. Sampling

40 hardly overlapped mixtures (see Table 1) of thallium and
lead, at the concentration range from 0.1 to 1.0 mg l−1, were
experimentally determined. Fig. 1 represents the overlapping
voltammograms of the two ions and one of their mixtures. The
potential peaks (Ep) of each individual analyte are situated in a
few mV, which implies a very severe grade of overlapping
amongst the individual signals, as the unique peak in the
voltammogram of the mixtures shows. Nine out of these
mixtures were used as internal test set (mon, from monitoring
set for ANN), namely T2, T9, L3, L8, T1L6, T4L4, T10L5,
T6L1, and T9L9, where L indicates lead, T indicates Thallium,
1 corresponds to a concentration of 0.1 mg l−1, 2 corresponds to



Fig. 2. RMS errors for the best multivariate calibration models based on voltammetric peak parameters. V=peak potential (V); I=peak intensity (nA); S= area of the
peaks (×10−8 a.u.); W=half width (V); D=derivative (×10−7 a.u.); trn= training set; mon=monitoring set (first test set); tst=external test set (second test set);
MLR=multilinear regression; PLS=partial least square regression; PCR=principal component analysis; ANN=artificial neural network; LVs= latent variables; FT
and WT=Fourier and wavelet transform, respectively, as pre-treatment techniques19; X–Y–Z: neural network topologies with certain transfer functions (l= linear,
g=gaussian, s=sigmoid and t=hyperbolic tangent); FS=WT-based feature selection procedure as a previous step to multivariate calibration20.

Table 3
Expressions of the calibration curves for I, S and D parameters versus the
concentration of Tl+ and Pb2+ ions

Ion Peak intensity (I ) Peak area (S ) Peak derivative (D)

Tl (I) I=(310.91±3.23)
×C+(−11.59±1.95)

S=(3.76±0.05)
×C+(−0.14±0.03)

D=(76.93±1.14)
×C+(−2.78±0.69)

R2=0.9991 R2=0.9985 R2=0.9982
Pb (II) I=(353.02±2.38)×C+

(3.38±1.95)
S=(3.54±0.02)
×C+(0.03±0.01)

D=(135.52±0.92)
×C+(1.07±0.55)

R2=0.9996 R2=0.9996 R2=0.9996

I=peak intensity (nA); S=area of the peaks (×10−8 a.u.); D=derivative
(×10−7 a.u.); C=concentration (mg l−1).
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0.2 mg l−1 and so on. After some time 8 additional mixtures
were measured in order to obtain an external validation set (tst,
test set), which correspond to T1L9, T2L10, T3L5, T5L3,
T6L8, T8L6, T9L1, and T10L2, respectively. The remaining
mixtures (31) were used as the training (trn) set with the aim of
building the multivariate calibration models.

3. Results and discussion

In Fig. 2 different multivariate calibration models giving the
best results (RMS errors) are represented. In next paragraphs,
we will discuss these results for every regression technique.

3.1. Multilinear regression (MLR)

The four bestMLRmodels appear collected in Fig. 2. As it can
be seen, for models with a number of voltammetric peak
parameters between three and five, the simpler the model (less
number of parameters), the better the results obtained for the
external test set (RMStst error); RMSmon error is more or less
constant and with respect to the RMStrn error: the less the number
of parameters, the bigger this value. However, when diminishing
the structure of the models from three to two parameters, there is a
characteristic change in the RMStst error trend due to the
parameter cancelled now is peak intensity (I ) instead of peak
potential (V ) or half width (W ), as in the other models. As
expected, peak intensity (I ) is more relevant for the resolution of
the system than V and W.
On one hand and according to the former ideas, a MLR
multivariate calibration model requires the presence of S (peak
area) and D (derivative) parameters, fundamentally. This means
that S and D parameters contain relevant information to resolve
the Tl+/Pb2+ electrochemical system. S is directly related to I
(R2=0.99985 for Tl+ and R2=0.99996 for Pb2+); thus, when
including it in the regression models, the RMS errors decrease
slightly for every set of samples (trn, mon and tst). D has
something to do with the position of the maximum of the
voltammetric peaks, which is definitively the keystone to resolve
the system, since the difference between the maximum of the
peaks for both cations is approximately 25–30 mV.

To understand why D is so important to the resolution of the
overlapped signals it is necessary to remember that the derivative
of a gaussian function (voltammetric signal) is a sigmoid function,
which cuts the abscissa (potential) axis at the very same point
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where the maximum of the Y variable (intensity) is located.
However, the quoted sigmoid function has other important oddity:
the absolute value of the distance measured from the maximum to
the minimum points delimited by the function is closely related to
the intensity value (R2=0.9995 for Tl+ andR2=0.99998 for Pb2+)
of the original gaussian function. Moreover, the information
contained in D is more complete than that contained in the
parameter I: for example, a MLRmodel based on ID gives higher
errors (RMStrn=0.0663; RMSmon=0.0564; RMStst=0.0733)
than a model based on SD (RMStrn=0.0316; RMSmon=0.0283;
RMStst=0.0509). The parameter V is not possible to be related to
the concentration, unlike I, S orD, which has a direct relationship
with the concentrations of the ions [29] (see Table 3).

In order to confirm that intensity, area and derivative of the
peaks are fundamental parameters, a principal component
analysis (PCA) based on the voltammetric peak parameters of
the signals was carried out. Fig. 3 represents the loadings plot
corresponding to the first principal component for A) mean-
centred and B) autoscaled peak parameters. As it can be seen, D
and I have the highest values for the principal component in both
cases; however, S only presents relevance when using autoscaled
data, while with mean-centred data its relevance does not seem to
be very important. The parameters VandW are clearly irrelevant.

If a model had to be selected, it would be appropriate to
choose that one constituted by the parameters ISD, since it has
the lowest RMS error values for all the data sets and is one of the
simplest model at the same time.

3.2. Partial least square regression (PLS)

In the case of multivariate calibration models based on PLS,
the ideas commented in the previous section are also valid here.
As seen in Fig. 2, all the models with the same number of latent
variables and differing exclusively in the presence or absence ofV
and/or W parameters give almost identical RMS error values.

Globally, the results are very similar to those obtained with
MLR, mainly when the number of latent variables in PLS models
Fig. 3. Loadings plot corresponding to the first principal component for A) mean-ce
voltammetric peak parameters of the signals.V=peak potential (V); I=peak intensity (nA
agrees the number of initial peak parameters in MLR: for
example, ISD and ISD (3) or SD and SD (2). Taking this
statement into consideration, we would be practically talking
about a multilinear regression, although in a different latent
variable domain, where all the information contained in the initial
peak parameters, without reducing dimensions, would be in use.

The fundamental differences between MLR and PLS
regression can be found when the number of latent variables
in PLS differs from the number of parameters employed to build
the initial MLR models. So, for instance, for the VISWD (3)
PLS model, based on 3 LVs, the results are a bit better than
when using its counterpart of MLR (VISWD). The explanation
to this fact may be the next one: in the PLS model, the number
of variables varies from 5 (initial) to 3 LVs, what implies a
reduction of dimensions; during this process, the V and W
parameters presumably constitute the most important percent-
age of information discarded and, thus, irrelevant. Besides, at
the same time, the advantage of working in a new variable space
with PLS is profited.

Comparing the results obtained with the two types of regression
models, mixed effects can be observed as well: the influence of
removing the V and/orW parameters in the models, as well as the
number of principal components. In this way, the MLRmodel ISD
gives the same results as the PLS models ISWD (3), VISD (3) and
ISD (3). The same occurs amongst theMLRmodel SD and the PLS
models VSWD (2), SWD (2), VSD (2) and SD (2).

In order to select one PLS model as the optimal, it was
decided to choose the same model as in the MLR section, since
both were identical: ISD≡ ISD (3).

3.3. Artificial neural networks (ANNs)

The results corresponding to the best ANN models are also
collected in Fig. 2. As can be observed, ANN models show
slightly lower RMS error values for the three sets of samples
(training, monitoring and test sets) than MLR and PLS models,
although the differences found with respect to the others
ntred and B) autoscaled peak parameters after developing a PCA based on the
); S=area of the peaks (×10−8 a.u.);W=half width (V);D=derivative (×10−7 a.u.).



Fig. 4. Plot of the residuals versus the experimental concentrations of A) Tl+ and B) Pb2+, respectively, for the ANN-based calibration model ISD lgg: -○- training set
(trn); -▾- monitoring set (mon); -■- test set (tst).
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chemometric techniques (MLR and PLS) are not important
enough to prefer one of them instead of the others.

The removal of V and W from the most complex model
(based on 5 parameters) causes a light improvement in the RMS
error values for the external test set (RMStst). Nevertheless, the
differences found now are not as high as in the previous
chemometric techniques, since in ANN models a new factor
must be taken into account: the combination of transfer
functions. When removing V and/or W from a model more
complex, the resultant model does not give the same RMS error
values because of the different combination of transfer
functions.
The best neural model selected also agrees the previous
cases: ISD lgg≡ ISD (3)≡ ISD (best ANN, PLS and MLR
models, respectively), although the RMS errors are lower.
However, a model based on two parameters gives also rather
good results and is the simplest of all tested: SD lgg.

Comparing the procedure described in the present work with
those applied in former studies: a strategy based on FT and WT
coupled to different regression methods [19] and a WT-based
feature selection procedure as a previous step to the multivariate
calibration process [20], the RMS errors are very similar too.
More specifically, the RMS errors obtained with the use of
voltammetric peak parameters are lower than when the process



Table 4
Average relative errors (%) for the optimal multivariate calibration models based
on voltammetric peak parameters

Model Ion Error (%)trn Error (%)mon Error (%)tst

ISD≡ ISD (3) Tl+ 8.38 5.93 9.10
Pb2+ 4.21 5.26 12.29

ISD lgg Tl+ 5.29 6.28 10.77
Pb2+ 5.43 7.25 8.15

I=peak intensity (nA); S=area of the peaks (×10−8 a.u.); D=derivative
(×10−7 a.u.); trn= training set; mon=monitoring set; tst= test set.
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described in Ref. [19] is carried out and slightly worse than
when the procedure reported in Ref. [20] is applied. The last
case was possible thanking to the advantage that WT provides
when developing a feature selection process (FS). Nevertheless,
the simplicity and fastness (low computation time) of the
strategy that has been reported here is clearly evident.

The plots of the residuals for both ions are reported in Fig. 4.
These residuals were calculated from the optimal ANN-based
(ISD lgg) calibration model (remember that this model was
almost equivalent to the optimal PLS and MLR models: ISD
and ISD (3), with slightly better RMS errors). The trend
observed in the figure is, in general, satisfactory.

The average relative errors (%) corresponding to the different
sets of samples obtained with the optimal calibration models of
every chemometric technique appear in Table 4. The error
values for MLR and PLS models are identical, since PLS
models used a number of LVs equal to their dimensions, what
turns them into multilinear regressions. It has to be noticed that
average relative errors of the test sets in the case of ANNs were
very similar than those belonging to PLS and MLR.
Considering the case of the ion Tl+, the average relative errors
were slightly higher, while with the ion Pb2+ ANNs reduced
sensibly this value (almost 4%). This fact implies that Tl+

concentrations are predicted better with PLS or MLR, and Pb2+

concentrations with ANNs. In every model, one of the ions is
predicted better than the other one [19,20].

Finally and summarising the results described previously, all
the chemometric techniques applied predicted the concentrations
of Tl+ and Pb2+ in a similar way. Besides, the error values were
also comparable with those belonging to some studies previously
published [11,13,19,20]. It has not to be forgotten that the
experimental conditions used in this work are different from those
described in the quoted references (see Refs. [11] and [13]),
resulting in a harder overlapping between the signals of both ions.
We recommend the use of MLR and PLS when a strong
component of linearity between dependent and independent
variables exists; otherwise, if the non-linearity relationship is
rather significant, ANN calibration models are advisable.
Moreover, pre-treatment techniques should be usedwhen relevant
information is necessary to be extracted from the measured data.

4. Conclusions

According to the former discussion, independent of the
chemometric technique applied, the results were similar in all
cases, although slightly better for ANN-based calibration
models. In this way, any of these methods can be chosen in
order to resolve this problem.

A study of the relevance of the voltammetric parameters to
resolve the binary system was also carried out. The parameters V
and W were irrelevant, since models differing in the presence or
absence of these parameters gave identical results. The combination
of the parameters I, S and D offered lower RMS errors for all the
sets of samples; this means that they contained the most relevant
information of the voltammetric signals. Moreover, models only
composed of S and D gave slightly higher RMS errors for all the
sets of samples than other more complex models.

In general, it can be affirmed that the results do not differ
significantly from those obtained with other strategic and sta-
tistical procedures, based mainly on mathematical pre-treat-
ments as a previous step to the multivariate calibration process,
although the errors values in some of these cases are lower.
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