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In this article we prove that if S is an irreducible numerical semigroup and
S is generated by an interval or S has multiplicity 3 or 4, then it enjoys Toms
decomposition. We also prove that if a numerical semigroup can be expressed as an
expansion of a numerical semigroup generated by an interval, then it is irreducible and
has Toms decomposition.
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1. INTRODUCTION

In the last 30 years, K-theory provided invariants in order to classify
C∗-algebras. The interest has been also focussed on determining the range of these
invariants. In this line, one of the questions was to find a simple C∗-algebra A whose
ordered K0-group fails unperforation property.

This question was answered in the affirmative by Villadsen (1998). Subsequent
refinements, due to Rørdam and Villadsen (1998) and Elliott and Villadsen (2000),
allowed to restrict the K-theoretical scope, by constructing a simple C∗-algebra A
such that �K0�A��K0�A�

+� � ��� S�, where S ⊆ �+ is a submonoid such that �+\S
is a finite set. The natural representation problem is then whether it is possible to
find such an algebra for any such monoid S. In this direction, Toms (2003) gives
techniques for constructing a simple C∗-algebra with stable rank one whose ordered
K0-group is isomorphic to � with positive cone

S = 1
L

( N⋂
i=1

�qi�mi�
)
∩ �� (∗)

where q1� � � � � qN are prime numbers, m1� � � � � mN are natural numbers with
g.c.d.�qi�mi� = 1, and L ∈ � with g.c.d.�qi� L� = g.c.d.�mi� L� = 1. The obvious
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502 MORENO ET AL.

question, posed by Toms, in order to give complete answer to the representation
problem (as well as for the structural knowledge of numerical semigroups), is
whether any submonoid S ⊂ �+ with �+\S finite should be of this particular
form �∗�.

Toms (2002) showed that the answer is affirmative for 2-generated numerical
semigroups. In a recent work (Moreno et al., 2005), the authors and H. Thomas
proved that the answer to Toms’ question is negative, and in fact that there exist
infinitely many numerical semigroups which do not entail a Toms decomposition.
Instead, the same work shows that the blocks 1

L
�qi�mi� ∩ � appearing in the

decomposition �∗� satisfy interesting regularities (of geometrical nature), so that it is
an interesting question to state whether concrete families of numerical semigroups
have Toms decomposition.

In this article, we show that irreducible numerical semigroups lying in some
largely studied classes (e.g., numerical semigroups generated by intervals) has Toms
decompositions, and we give explicit expressions of such decompositions.

Let us summarize the contents of this article. In Section 2 we will establish
basic results on numerical semigroups and we will present the connection with
Toms’ question. In Section 3, we present a kind of semigroups, the numerical
semigroups generated by intervals, we characterize irreducibility for this family, and
we prove that these semigroups have Toms decomposition. In Section 4 we present
other families of semigroups having the same decomposition properties.

2. NUMERICAL SEMIGROUPS AND TOMS DECOMPOSITION

In this section we provide the necessary definitions and results related to
numerical semigroups, to make clear the connection between them and Toms’
question.

A numerical semigroup is a subset of S of �+ closed under addition, such that
0 ∈ S and S generates � as a group. By definition (see Rosales and García-Sánchez,
1999), �+\S is a finite set. We refer to the greatest integer not in S as the Frobenius
number of S (also called the Conductor of S) and we denote it by C�S�.

We say that a numerical semigroup is irreducible if it cannot be expressed
as an intersection of two numerical semigroups containing it properly. It is
known (Rosales and Branco, 2003) that S is irreducible if and only if S is
maximal in the set of all numerical semigroups with Frobenius number C�S�.
By Barucci et al. (1997) and Fröberg and Gottlieb (1987), the class of irreducible
semigroups with odd (respectively even) Frobenius number is the same as the class
of symmetric (respectively pseudo-symmetric) numerical semigroups. Also, every
numerical semigroup with two generators is irreducible. The essential point is that
every numerical semigroup S admits a decomposition S = S1 ∩ S2 ∩ · · · ∩ Sn with Si
irreducible for all i (see Rosales and Branco, 2002).

We know (see Barucci et al., 1997 and Rosales and García-Sánchez, 1999),
that a numerical semigroup S has a unique minimal system of generators �n1 <
n2 < · · · < np�. We refer to the numbers n1 and p as the multiplicity and embedding
dimension of S and denote them by m�S� and ��S�, respectively. Moreover, if S is
a irreducible numerical semigroup, m�S� and ��S� are linked (Rosales and Branco,
2003, Proposition 6). Notice that, if S is a irreducible numerical semigroup and
S = �n1� n2� � � � � nk� is written with the minimal number of generators, then there
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NUMERICAL SEMIGROUPS WITH TOMS DECOMPOSITION 503

exists an upper bound for nk. Since nk has to be smaller than the Frobenius
number of �n1� n2� then nk < n1n2 − n1 − n2. Moreover, by Rosales and Branco
(2003, Proposition 6), when the upper bound k is larger than 4, we have k ≤ n1 − 1.

To check the irreducibility of a numerical semigroup with a minimal set
of generators of large cardinality is not always easy. We recall a definition that
furnishes a helpful device in this context. Let S be a numerical semigroup and n ∈
S\�0�. For any 1 ≤ i ≤ n, denote by w�i� the smallest element of S congruent with
i− 1 modulo n. Notice that this means w�i� = min�S ∩ �i− 1+ n���. We denote by
Ap�S� n� = �0 = w�1�� � � � � w�n�� the Apéry set of n in S. By Rosales and García-
Sánchez (1999) we know that Ap�S� n� = �x ∈ S � x − n 
 S� and w�n� = C�S�+ n.

Definition 2.1. Given a numerical semigroup S, we say that S has a Toms
decomposition provided that there exist L� qi�mi ∈ �+ pairwise coprime, with qi
prime for i ∈ �1� � � � � N�, such that

S = 1
L

( N⋂
i=1

�qi�mi�
)
∩ ��

Next result states that a Toms decomposition is, in fact, an intersection of
building blocks of the form 1

L
��qi�mi�� sharing a common L.

Lemma 2.2. With the notation of Definition 2.1, we have

1
L

( N⋂
i=1

�qi�mi�
)
∩ � =

N⋂
i=1

(
1
L
�qi�mi� ∩ �

)
�

Toms (2002) proves any numerical semigroup with two generators has a Toms
decomposition. Concretely, we have the following result.

Lemma 2.3 (Toms, 2002, Lemma 3.3.1). Let m and k be coprime positive integers.
Then there exists a prime q and a positive integer L coprime to both m and q such that

1
L
�m� q� ∩ � = �m� k��

The idea of the proof is the following: Consider the sequence of integers
an = −m+ nk, and let n0 be a positive integer such that an0

is positive. Then, an0

is coprime to k, and the sequence �an � an > 0� is arithmetic; in particular, this
sequence contains infinitely many primes. Choose a positive integer L such that aL

is both prime and greater than mk−m− k, and set q = aL. Then, the result holds.
Thus, Toms’ question has to be proved for numerical semigroups with more

than two generators. Moreover, intertwining Toms’ (2002) argument with the
following result, we are allowed, given S a numerical semigroup, to look for a triple
of positive pairwise coprime integers q�m�L such that S = 1

L
�m� q� ∩ �, without

paying attention to q being prime or not.
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504 MORENO ET AL.

Lemma 2.4. If L�K�m and q are positive integers, then

1
L

(
1
K
�m� q� ∩ �

)
∩ � = 1

LK
�m� q� ∩ ��

Then, it suffices to find L1� q1�m three pairwise coprime positive integers such
that S = 1

L1
�m� q1� ∩ �, to get a Toms building block if q1 is not prime. To show,

look at �m� q1�. By using the proof of Lemma 2.3 we outlined above, chose n0 so
that an0

is prime, and greater than both L1 and mq1 −m− q1. Then, define q2 = an0
,

L2 = n0. Hence, q2 is prime, q2�m� L2 are pairwise coprime, q2 is coprime to L1, and
�m� q1� = 1

L2
�m� q2� ∩ �. Thus, we apply Lemma 2.4 to end the argument.

In the particular case of an irreducible numerical semigroup S, if there exists
a Toms decomposition S = ⋂N

i=1�
1
L
�qi�mi� ∩ ��, then clearly

S = 1
L
�q�m� ∩ ��

for L� q�m ∈ �+, pairwise coprime and q prime.
Notice that having Toms decomposition for irreducible numerical semigroups

does not guarantee decomposition for arbitrary numerical semigroups, since it is
not clear whether for any such a decomposition there exists L, coprime to each
q1� � � � � qN �m1� � � � � mN , such that

⋂N
i=1�

1
Li
�qi�mi� ∩ �� = 1

L
�
⋂N

i=1�qi�mi�� ∩ �.

3. NUMERICAL SEMIGROUPS GENERATED BY INTERVALS

In this section, we present the semigroups generated by intervals of non-
negative integers, that is to say, semigroups of the form

S = �a� a+ 1� � � � � a+ x� =
{ x∑

i=0

ni�a+ i� � ni ∈ �+
}
⊆ �+�

Note that if x ≥ a, then S = �a� a+ 1� � � � � = a+ �+ = �a� a+ 1� � � � � 2a− 1�; thus
we may assume that x ≤ a− 1. For such semigroups, García-Sánchez and Rosales
(1999) computed the Frobenius number and gave a characterization of the
numerical semigroups generated by intervals that are symmetric.

Notation 3.1. �a will denote the least integer greater than or equal to a.

The next result characterizes which numerical semigroups generated by
intervals are irreducible.

Proposition 3.2. Let S = �a� a+ 1� � � � � a+ t� be a numerical semigroup generated
by an interval with a� t both integers, a ≥ 3, t ≥ 2. For t = a− 1, �3� 4� 5� is the only
irreducible semigroup generated by an interval. If 2 ≤ t ≤ a− 2, then S is irreducible
if and only if t divides a− 2.

Proof. Let us consider S = �a� a+ 1� � � � � a+ t�, a ≥ 3, t ≥ 2. If t ≥ a, S is not
written with minimal number of generators. If t = a− 1, then S=�+\�1� � � � � a− 1�
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NUMERICAL SEMIGROUPS WITH TOMS DECOMPOSITION 505

with C�S� = a− 1, and the only irreducible case with t = a− 1 is �3� 4� 5� =
�+\�1� 2� with Frobenius number C�S� = 2; indeed �3� 4� 5� is obviously maximal
in the set of all numerical semigroups with Frobenius number 2, and according
to Rosales and Branco (2003, Theorem 1), �3� 4� 5� is irreducible. For any other
numerical semigroup S such that t = a− 1, we consider S′ = S ∪ �C�S�− 1� = S ∪
�a− 2�. First, S′ contains strictly S as a− 2 does not belong to S; secondly S′ has
the same Frobenius number as S, namely, C�S′� = C�S� = a− 1, as 1 is not in S′.
Thus S is not maximal in the set of all numerical semigroups with Frobenius number
C�S�, and consequently S is not irreducible.

In particular we have proved that if a ≥ 4 and S = �a� a+ 1� � � � � a+ t� is
irreducible, then 2 ≤ t ≤ a− 2. Now we will show the second part of the statement.
We start by proving that if S is irreducible, then t divides a− 2. To see this, observe
that S has the following structure:

�a� a+ 1� � � � � a+ t�
= �0� 	a� a+ 1� � � � � a+ t
� � � � � 	2a� 2a+ 1� � � � � 2�a+ t�
� � � � �

	�x − 1�a� � � � � �x − 1��a+ t�
� � � � � 	C�S�+ 1� xa� xa+ 1� � � � � x�a+ t�
� � � � ��

where x is an integer greater than or equal to 2, and the sequences between brackets
consists of consecutive numbers. According to the above argument, C�S�− 1 must
be contained in S if S is irreducible. This only occurs when the last gap in S consists
only of the integer C�S�, i.e., C�S�− 1 = �x − 1��a+ t� = xa− 2.

The latter yields x�a+ t�− xa = a+ t − 2, and further x = 1+ a−2
t
. Thus, as

x is an integer, t must to divide a− 2.
Conversely, suppose that t divides a− 2. By García-Sánchez and Rosales

(1999, Corollary 5), C�S� = � a−1
t
a− 1. Then, as a−1

t
= a−2

t
+ 1

t
, we get � a−1

t
a =

� a−2
t

+ 1�a, which is an even number if a ≥ 3. Thus, C�S� is odd. By García-
Sánchez and Rosales (1999, Theorem 6), S symmetric, whence S is irreducible,
as desired. �

The proof of Proposition 3.2 also establishes the following result.

Corollary 3.3. If S = �a� a+ 1� � � � � a+ t� is irreducible, then C�S�= �a− 1�+ aa−2
t
.

Note that this number is odd whatever a and t are such that t divides a− 2.
Now, we get the main result of this section, showing that irreducible numerical

semigroups generated by an interval enjoy Toms decompositions.

Theorem 3.4. Let S = �a� a+ 1� a+ 2� � � � � a+ t�, with a� t positive integers such
that a ≥ 4, 2 ≤ t ≤ a− 2 and t divides a− 2. Then S has Toms decomposition. More
concretely, the following identities hold:

(1) If a is odd, then S = 1
t
�a� a+ t� ∩ �;

(2) If a is even and t is odd, then S = 1
t
�a� a+ t� ∩ �;

(3) If both a and t are even, then S = 1
a�t−1�+1�a�C�S��t − 1�+ �a+ t�� ∩ �.
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506 MORENO ET AL.

Proof. (1) If a is odd, we have g.c.d.�a� t�= g.c.d.�a� a+ t�= g.c.d.�a+ t� t�= 1. As

a+ i = �t − i�a+ i�a+ t�

t
with i ∈ �0� � � � � t��

we have S ⊆ 1
t
�a� a+ t� ∩ �.

For the reverse inclusion, by Rosales and Branco (2003, Theorem 1), we will
see that C�S� 
 1

t
�a� a+ t� ∩ �. Suppose that C�S� ∈ 1

t
�a� a+ t� ∩ �. If we denote

� = C�S�− a. Then there exists �′, ′ ∈ �+ such that

a+ � = �′a+ ′�a+ t�

t
�

Now, we write ′ = ka+ , with k ∈ �+ and 0 ≤  ≤ a− 1. If we replace �′ by
� = �′ + k�a+ t� and ′ by , then

a+ � = �a+ �a+ t�

t
� (3.1)

where ��  ∈ �+ with 0 ≤  ≤ a− 1 and � ≥ 0. Therefore

t�a+ �� = �a+ �a+ t�� (3.2)

whence �t ≡ t �mod a�. As g.c.d.�t� a� = 1, we have � ≡  �mod a�, and so
�= + an for some n ≥ 0. Thus, Corollary 3.3 and the restriction 0 ≤  ≤ a− 1
imply that n = a−2

t
− 1, and so  = a− 1. Substituting in (3.2) we get

a�a− 2�+ t�a− 1� = �a+ �a− 1��a+ t��

so that � = −1, contradicting the assumption.

(2) If a is even and t is odd, we have g.c.d.�a� t� = g.c.d.�a� a+ t� =
g.c.d.�t� a+ t� = 1. Suppose that g.c.d.�a� t� = d. Then d would divide t, but then d
would also divide a− 2, since S is irreducible, which would result in d = 1 or d = 2.
However d = 2 is a contradiction, since t is odd. Thus, g.c.d.�a� t� = 1. Now the
proof of case �1� give us the desired result.

(3) If both a and t are even, we will prove that

S = 1
a�t − 1�+ 1

�a�C�S��t − 1�+ a+ t� ∩ ��

We denote L = a�t − 1�+ 1 and q = C�S��t − 1�+ a+ t. We have that
g.c.d.�L� a� = 1. Notice that by Corollary 3.3

q =
(
a− 1+ a

a− 2
t

)
�t − 1�+ a+ t = a

(
�a− 2�

t − 1
t

+ t

)
+ 1�

Thus, g.c.d.�a� q� = 1.
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NUMERICAL SEMIGROUPS WITH TOMS DECOMPOSITION 507

As t�q − L�a−2
t

+ 1�� = a�t − 1�+ 2, we have that tq = L�a− 1+ t�+ 1, and
therefore g.c.d�L� q� = 1.

Now, we will prove that

S = �a� a+ 1� � � � � a+ t� = 1
a�t − 1�+ 1

�a�C�S��t − 1�+ �a+ t�� ∩ �

holds. First, we will show that the identity

a+ � = ��a+ ��C�S��t − 1�+ a+ t�

a�t − 1�+ 1
(3.3)

holds for � = 0� 1� � � � � t and a related couple of non-negative integers ��, �. Notice
that, if we define � = �, then (3.3) is equivalent to

�� =
�a�t − 1�+ 1��a+ ��− ���a− 1+ aa−2

t
��t − 1�+ a+ t�

a

= �

(
a− 2
t

+ 1
)
+ a�t − �− 1�+ 1�

For � = 0� 1� � � � � t − 1, �� is obviously a non-negative integer; and � = t yields
�t = a− 2+ t − a+ 1 = t − 1 > 0. Thus,

�a� a+ 1� � � � � a+ t� ⊆ 1
a�t − 1�+ 1

�a�C�S��t − 1�+ �a+ t�� ∩ ��

Now, by Rosales and Branco (2003, Theorem 1), we only need to check that

C�S� �∈ 1
a�t − 1�+ 1

�a�C�S��t − 1�+ �a+ t�� ∩ ��

So, we will see that (3.3) fails for � = aa−2
t

− 1, whenever ��, � are both
non-negative integers. Writing (3.3) as

�a�t − 1�+ 1��a+ �� = ��a+ �

((
a− 1+ a

a− 2
t

)
�t − 1�+ a+ t

)
� (3.4)

and reducing this identity modulo a, one has that � ≡ ��mod a�. An analog
argument to that of case (1), using Corollary 3.3 and the condition 0 ≤ � ≤ a− 1,
ensure that � = a− 1. Substituting the value of � in �3�4� and multiplying by t,
we get first

�a�t − 1�+ 1��ta+ a�a− 2�− t�

= t��a+ �a− 1���ta− t + a�a− 2���t − 1�+ at + t2��

that give us

ta+ a�a− 2�− t = t��a− �ta− t + a�a− 2���t − 1�+ �a− 1��at + t2��
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508 MORENO ET AL.

and thus

ta+ a2 − 2a− t = t��a+ 2at − t + a2 − 2a�

whence

ta = t��a+ 2at�

Hence,

�� =
ta− 2ta

at
= −at

at
= −1�

contradicting the assumption. Thus, the result holds. �

Remark 3.5. It can be check easily that S = �3� 4� 5� = 1
2�3� 5� ∩ �.

Example 3.6. We have:

(1) S = �6� 7� 8� = 1
7�6� 25� ∩ �;

(2) T = �14� 15� 16� 17� = 1
29�14� 239� ∩ �;

(3) V = �11� 12� 13� 14� = 1
3�11� 14� ∩ �;

(4) W = �4� 5� 6� = 1
7�4� 19�∩ �.

Remark 3.7. The semigroups (2) and (3) in Examples 3.6 have q prime, whereas
�6� 25� needs to be transformed using Toms (2002, Lemma 3.3.1). A prime
number qS is required, such that qS = −6+ 25LS , where qS ≥ C��6� 25�� = 119, LS

is coprime to 6, and both q and LS are coprime to 7. The least value of qS fulfilling
these conditions is qS = 269, with a related LS = 11. Thus, by Lemmas 2.3 and 2.4,

S = �6� 7� 8� = 1
7

(
1
11

�6� 269�
)
∩ � = 1

77
�6� 269� ∩ ��

4. OTHER EXAMPLES HAVING TOMS DECOMPOSITION

In this section we will show that the Toms decomposition holds for some kinds
of irreducible numerical semigroup with multiplicity 3 and 4, and these appearing
as expansions of numerical semigroups generated by an interval.

We begin characterizing when an expansion of a numerical semigroup
generated by an interval is irreducible.

Proposition 4.1. Let a odd, a ≥ 5 and x > 0. Then S = �a� x + a� 2x + a� � � � �
�a− 2�x + a� is an irreducible numerical semigroup if and only if g.c.d.�a� x� = 1.

Proof. Let S = �a� x + a� 2x + a� � � � � �a− 2�x + a�. Then, g.c.d.�a� x� = 1 is a
necessary condition for S to be written with a minimal number of generators. To see
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NUMERICAL SEMIGROUPS WITH TOMS DECOMPOSITION 509

this, assume per absurdum that a = pq and x = kq for some positive integers k, p
and q, where k ≥ 2 and p, q ≥ 3. Then

S = �pq� �k+ p�q� �2k+ p�q� � � � � ��pq − 2�k+ p�q��

As 1 < p < pq − 2, then the sequence p� k+ p� 2k+ p� � � � � �pq − 2�k+ p contains
pk+ p and hence a = pq divides the generator p�k+ 1�q, which contradicts
��S�= a− 1.

To prove the converse, we assume that g.c.d.�a� x� = 1 and first show that
the Frobenius number of S is C�S� = �a− 1�x + a. To see this, let us show that
�a− 1�x + a does not belong to S, but every n ∈ S such that n > �a− 1�x + a is in
S. Assume at first that �a− 1�x + a is in S. Then there exist �0� � � � � �a−2, all non-
negative integers, such that

�a− 1�x + a = a�0 + �x + a��1 + · · · + ��a− 2�x + a��a−2� (4.1)

That is

�a− 1�x + a = x��1 + 2�2 + · · · + �a− 2��a−2�+ a
a−2∑
i=0

�i�

Assume that
∑a−2

i=0 �i = k > 1. Then x�a− 1− ��1 + 2�2 + · · · + �a− 2��a−2�� =
�k− 1�a, but g.c.d.�a� x� = 1 ensures that a divides a− 1− ��1 + 2�2 + · · · +
�a− 2��a−2� and consequently �1 + 2�2 + · · · + �a− 2��a−2 ≤ −1, which is absurd.
Hence, as

∑a−2
i=0 �i ≤ 0 is absurd as well,

∑a−2
i=0 �i = 1, which means that exactly one

of the �i is 1 and every other 0. But then (4.1) does not hold. Thus �a− 1�x + a 
 S.
Let us now consider n = �a− 1�x + t, t ≥ a+ 1� If t > 2a, then n can be

expressed as �a− 1�x + r + ak, with r ∈ �a+ 1� a+ 2� � � � � 2a� and k a positive
integer. And t = 2a yields �a− 1�x + 2a = 2� a−1

2 x + a� ∈ S, as a is odd and 2 ≤
a−1
2 < a− 2. Hence it suffices to show that �a− 1�x + t belongs to S for t ∈ �a+

1� � � � � 2a− 1�.
Look at the generators of S. As x is coprime with a, each of the a− 1

generators belongs to different congruence classes modulo a, and the missing
class is −x (the one corresponding to �a− 1�x + a, the Frobenius number of S).
Now let us consider �a− 1�x + t ≡ t − x �mod a�. For t ∈ �a+ 1� � � � � 2a− 1�, t− x
runs through each congruence class modulo a, except precisely class −x. Hence
�a− 1�x + t belongs to the same congruence class modulo a as one of the
generators, and is greater than this generator. Denote by � the suitable generator.
Then �a− 1�x + t = �+ a�, for some � ∈ �+. Thus C�S� = �a− 1�x + a.

Let us now show that S is irreducible. Observe that C�S� is odd. We will prove
w�i�+ w�a− i+ 1� = w�a� for i ∈ �1� � � � � a�, and by Rosales and Branco (2003,
Proposition 3), S is an irreducible numerical semigroup.

We begin proving that

Ap�S� a� = �0� x + a� 2x + a� � � � � �a− 2�x + a� �a− 1�x + 2a��

To see this, observe that w�1� = 0 as a is the least element in S, and w�a� =
C�S�+ a, according to a result given by Rosales and García-Sánchez (1999,
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510 MORENO ET AL.

Proposition 10.4). By definition of Ap�S� a� (see Section 2), we have to check that
w�i�− a 
 S for i = 2� � � � � a− 1. As w�i� = �i− 1�x + a, then w�i�− a= �i− 1�x.
Let j = i− 1 and assume that jx ∈ S for j = 1� 2� � � � � a− 2. Then there exists
0 , � � � , j−1, all non-negative integers, such that jx = a0 + �x + a�1 + · · · + ��j −
1�x + a�j−1 (we exclude jx + a� � � � � �a− 2�x + a, as they are greater than jx)
and further �j −∑j−1

k=1 kk�x = a
∑j−1

k=0 k. As g.c.d.�a� x� = 1, a divides j −∑j−1
k=1 kk,

which is impossible, since

j −
j−1∑
k=1

kk < j ≤ a− 2� (4.2)

Thus

Ap�S� a� = �0 = w�1�� x + a = w�2�� � � � � �a− 2�x + a

= w�a− 1�� �a− 1�x + 2a = w�a��

and, as w�i�− a = �i− 1�x and w�a� = �a− 1�x + 2a, the identity w�i�+ w�a− i+
1� = w�a� holds, so that S is irreducible.

Finally, we observe that S is written with a minimal number of generators.
Assume that some of them –say lx + a for some l ∈ �1� � � � � a− 2�—is a positive
integer combination of the remaining generators. Provided that a is the smallest
element in S, it is a necessary generator, and only those smaller than lx+ a take part
in this combination. Then, there exists �0� � � � � �l−1, non-negative integers, such that
lx + a = a�0 + �x + a��1 + · · · + ��l− 1�x + a��l−1, and further �l−∑l−1

k=1 �kk�x =
a�
∑l−1

k=0 �k − 1�. As g.c.d.�a� x� = 1, we get the same contradiction as (4.2). �

The next result shows that the irreducible numerical semigroups with
multiplicity 3, as well as those appearing as expansions of a numerical semigroup
generated by an interval, have Toms decomposition.

Theorem 4.2.

(1) If x is a strictly positive integer and x not a multiple of 3, then S = �3� x +
3� 2x+ 3� has Toms decomposition

S = 1
x + 2

�x + 3� 2x + 3� ∩ ��

(2) Let S = �a� x + a� 2x + a� � � � � �a− 2�x + a�, a numerical semigroup where
g.c.d.�a� x� = 1, a is odd, a ≥ 5 and x > 0. Then S has Toms decomposition

S = 1
a− 2

�a� �a− 2�x + a� ∩ ��

Proof. (1) By Rosales and Branco (2003, Theorem 7), the only irreducible
numerical semigroup with ��S� = m�S� = 3 is S = �3� x + 3� 2x + 3�, where x is a
strictly positive integer such that x is not multiple of 3. Let k = 3� m = x + 3,
and q = 2x + 3, and let us implement L = q+m

k
= �2x+3�+�x+3�

3 = x + 2. Then, m and
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NUMERICAL SEMIGROUPS WITH TOMS DECOMPOSITION 511

L are obviously coprime. Also, L and q are coprime, as any nontrivial common
factor would divide 1 = 2L− q. Assume that p divides both m and q for some p
prime; then p divides 3 = 2m− q, which entails p = 3 and contradicts 3 � x. Thus
g.c.d.�m� q� = 1. We will prove now that

1
x + 2

�x + 3� 2x + 3� ∩ � = �3� x + 3� 2x + 3��

As,

3 = �2x + 3�+ �x + 3�
x + 2

�

x + 3 = 1
x + 2

��x + 2��x + 3�+ 0 · �2x + 3���

and

2x + 3 = 1
x + 2

�0 · �x + 3�+ �x + 2��2x + 3���

we have 1
x+2�x + 3� 2x + 3� ∩ � ⊇ �3� x + 3� 2x + 3�.

To see the converse, assume that a�x+3�+b�2x+3�
x+2 is an integer for a, b both

non-negative integers; assume furthermore that a ≥ b. Then

a�x + 3�+ b�2x + 3�
x + 2

= b
�x + 3�+ �2x + 3�

x + 2
+ �a− b��x + 3�

x + 2
= 3b+ �a− b��x + 3�

x + 2
�

As g.c.d.�x + 2� x + 3� = 1, there exists d ∈ �+such that d = a−b
x+2 and consequently

a�x+3�+b�2x+3�
x+2 = 3b + d�x + 3�.
A similar argument with b ≥ a shows that, for some g ∈ �+,

a�x + 3�+ b�2x + 3�
x + 2

= 3a+ g�2x + 3��

Thus, 1
x+2�x + 3� 2x + 3� ∩ � ⊆ �3� x + 3� 2x + 3� and reciprocal inclusion yields

1
x + 2

�x + 3� 2x + 3� ∩ � = �3� x + 3� 2x + 3��

completing the proof.

(2) Let us denote by T the numerical semigroup 1
a−2�a� �a− 2�x + a� ∩ �. As

a is odd, a− 2, a and �a− 2�x + a are pairwise coprime and both a and �a− 2�x+ a
belong to T . To check that the remaining generators of S are in T , it is enough
to find two suitable non-negative integers �� � such that the equation kx + a =
1

a−2 ��a+ ���a− 2�x + a�� holds for each k ∈ �1� � � � � a− 3�. Choose �= k, whence
the identity reduces to a− 2 = �+ k. As k runs increasingly from 1 to a− 3, there
exists a related � running decreasingly from a− 3 to 1. Thus T ⊇ S.
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512 MORENO ET AL.

The converse is easy to prove, checking that C�S� 
 T . Assume per absurdum
that C�S� ∈ T . Then there exist κ , � both non-negative integers such that

�a− 1�x + a = κa+ ���a− 2�x + a�

a− 2
� (4.3)

We deduce that � < a− 1. As (4.3) is �a− 2���a− 1�− ��x + ��a− 2�− ��a=
κ� a. a must divide �a− 2���a− 1�− ��x, which is impossible as g.c.d.�a� x� = 1 and
a> a− 1− � for � < a− 1. Thus C�S� 
 T and S = T . �

As a consequence, we obtain an expression of Toms decomposition for other
families of numerical semigroups, as follows.

Corollary 4.3. If x is a strictly positive integer then S = �3� 3x + 2� 6x + 1� has Toms
decomposition S = 1

3x+1�3x + 2� 6x + 1� ∩ �.

Proof. By assumption, 3x − 1 is a strictly positive integer, and it is not multiple
of 3. Then, the result holds by part (1) of Theorem 4.2. �

Example 4.4. We have:

(1) S = �3� 5� 7� = 1
4�5� 7� ∩ �;

(2) If S = �5� x + 5� 2x + 5� 3x + 5� with g.c.d.�5� x� = 1 and x > 0, then S =
1
3�5� 3x + 5� ∩ �.

Notice that no such identity has been found for S = �a� x + a� 2x +
a� � � � � �a− 2�x + a�, where g.c.d.�a� x� = 1 and a is even.

Next result shows that the irreducible numerical semigroups with multiplicity
4 have Toms decomposition.

Proposition 4.5. Let S = �4� x + 2� x + 4�, where x is an odd integer greater than
or equal to 3. Then S = 2

�x+3��x + 2� x + 4� ∩ �.

Proof. By Rosales and Branco (2003, Theorem 9), S is an irreducible numerical
semigroup, and m�S� = 4. Now, the proof is analog to that of Theorem 4.2(1),
by fixing k = 4� m = x + 2, q = x + 4 and

L = q +m

k
= �x + 4�+ �x + 2�

4
= x + 3

2
∈ �+�

�

Example 4.6. We have �4� 7� 9� = 1
4�7� 9� ∩ ��
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