
A Local Genetic Algorithm for
Binary-Coded Problems�

Carlos Garćıa-Mart́ınez1, Manuel Lozano2, and Daniel Molina3

1 Dept. of Computing and Numerical Analysis, Univ. of Córdoba, 14071, Spain
in1gamac@uco.es

2 Dept. of Computer Science and Artificial Intelligence, Univ. of Granada,
18071, Spain

lozano@decsai.ugr.es
3 Dept. of Software Engineering, Univ. of Cádiz, 11002, Spain

daniel.molina@uca.es

Abstract. Local Genetic Algorithms are search procedures designed in
order to provide an effective local search. Several Genetic Algorithm mod-
els have recently been presented with this aim. In this paper we present a
new Binary-coded Local Genetic Algorithm based on a Steady-State Ge-
netic Algorithm with a crowding replacement method. We have compared
a Multi-Start Local Search based on the Binary-Coded Local Genetic Al-
gorithm with other instances of this metaheuristic based on Local Search
Procedures presented in the literature. The results show that, for a wide
range of problems, our proposal consistently outperforms the other local
search approaches.

1 Introduction

Local Search Procedures (LSPs) are optimisation methods that maintain a solu-
tion, known as current solution, and explore the search space by steps within its
neighbourhood. The interest on LSPs comes from the fact that they may effec-
tively and quickly explore the basin of attraction of optimal solutions, finding an
optimum with a high degree of accuracy and within a small number of iterations.
In fact, these methods are a key component of metaheuristics that are state-of-
the-art of many optimisation problems, such as Multi-start Local Search ([3]),
Greedy Randomised Adaptive Search Procedures, Iterated Local Search, Variable
Neighbourhood Search, and Memetic Algorithms ([2]).

Genetic Algorithms (GAs) ([9,14]) have been seen as search procedures that
can locate high performance regions of vast and complex search spaces, but they
are not well suited for fine-tuning solutions ([17]). However, the components
of the GAs may be specifically designed and their parameters tuned, in order to
provide an effective local search as well. In fact, several GA models have recently
been presented with this aim ([17,18]). These algorithms are called Local Genetic
Algorithms (LGAs).

� This research was supported by the Spanish MEC project TIN2005-08386-C05-01.

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 192–201, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Local Genetic Algorithm for Binary-Coded Problems 193

LGAs present some advantages over classic LSPs. Most LSPs lack the abil-
ity to follow the proper path to the optimum on complex search landscapes.
This difficulty becomes much more evident when the search space contains very
narrow paths of arbitrary direction, also known as ridges. That is due to LSPs
attempt successive steps along orthogonal directions that do not necessarily co-
incide with the direction of the ridge. However, it was observed that LGAs are
capable of following ridges of arbitrary direction in the search space regardless
of their direction, width, or even, discontinuities ([17]). Thus, the study of LGAs
becomes a promising way to allow the design of more effective metaheuristics
based on LSPs ([6,13,17,18,22]).

In this paper, we propose a Binary-coded LGA (BLGA) based on a Steady-
State Genetic Algorithm (SSGA) with a crowding replacement method. It itera-
tively crosses a leader solution with individuals of the population belonging to the
nearest niches. Then, the best solution between the leader one and the offspring
becomes the new leader solution, and the other one is inserted in the population
by means of the Restricted Tournament Selection ([11]). We have compared a
Multi-start Local Search based on the new LGA with other instances of this
metaheuristic based on LSPs proposed in the literature. The results show that,
for a wide range of problems, this LGA consistently outperforms the other local
search approaches.

The paper is organised as follows. In Section 2, we present the LGAs. In
Section 3, we propose the BLGA. In Section 4, we compare the performance
of the BLGA with LSPs presented in the literature. Finally, in Section 5, we
provide some conclusions.

2 Local Genetic Algorithms

There are two primary factors in the search carried out by a GA ([23]):

– Selection pressure. In order to have an effective search there must be a search
criterion (the fitness function) and a selection pressure that gives individuals
with higher fitness a higher chance of being selected for reproduction, mu-
tation, and survival. Without selection pressure, the search process becomes
random and promising regions of the search space would not be favoured
over non-promising regions.

– Population diversity. It is crucial to a GA’s ability in order to continue the
fruitful exploration of the search space.

Selection pressure and population diversity are inversely related: increasing se-
lection pressure results in a faster loss of population diversity, while maintaining
population diversity offsets the effect of increasing selection pressure.

Traditionally, GA practitioners have carefully designed GAs in order to obtain
a balanced performance between selection pressure and population diversity. The
main objective is to obtain their beneficial advantages simultaneously: to allow
the most promising search space regions to be reached (reliability) and refined
(accuracy).

194 C. Garćıa-Mart́ınez, M. Lozano, and D. Molina

Due to the flexibility of the GA architecture, it is possible to design GA mod-
els specifically aimed to provide effective local search. In this way, their unique
objective is to obtain accurate solutions. These algorithms are named Local Ge-
netic Algorithms. LGAs arise as an alternative choice to classical LSPs, in order
to design metaheuristics based on LSPs. In fact, some LGAs were considered for
this task ([6,13,17,18,22]).

3 Binary-Coded Local GA

In this section, we present a Binary-coded LGA (BLGA) that may be used
to design metaheuristics based on LSPs. It is a Steady-state GA ([20,23]) that
inserts one single new member into the population (P) in each iteration. It uses
a crowding replacement method (restricted tournament selection (RTS) ([11])) in
order to force a member of the current population to perish and to make room
for the new offspring. It is important to know that RTS favours the formation
of niches in P (groups of chromosomes with high quality located in different
and scattered regions of the search space). In addition, the BLGA maintains an
external chromosome, the leader chromosome (CL), which is always selected as
one of the parents for the crossover operation. The following sections indicate
the main components of the BLGA.

3.1 General Scheme of the Binary-Coded LGA

Let’s suppose that a particular metaheuristic applies the BLGA as LSP. When
the metaheuristic calls the BLGA to refine a particular solution, the BLGA will
consider this solution as CL. Then, the following steps (Figure 1) are carried out
during each iteration:

1. Mate selection. m chromosomes, Y 1, Y 2, ..., Y m, are selected from the pop-
ulation applying the positive assortative mating m times (Section 3.2).

2. Crossover. CL is crossed over with Y 1, Y 2, ..., Y m by applying the multipar-
ent uniform crossover operator, generating an offspring Z (Section 3.3).

3. Update of the leader solution and replacement. If Z is better than CL, then
CL is inserted into the population using the restricted tournament selection
(Section 3.4) and Z becomes the new CL. Otherwise, Z is inserted in the
population using the same replacement scheme.

These steps are carried out until the stop condition described in Section 3.5
is achieved.

3.2 Positive Assortative Mating

Assortative mating is the natural occurrence of mating between individuals of
similar phenotype more or less often than expected by chance. Mating between
individuals with similar phenotype more often is called positive assortative mat-
ing and less often is called negative assortative mating. Fernandes et al. ([5])

A Local Genetic Algorithm for Binary-Coded Problems 195

Fig. 1. Model of the BLGA

implement these ideas to design two mating selection mechanisms. A first par-
ent is selected by the roulette wheel method and nass chromosomes are selected
with the same method (in BLGA all the candidates are selected at random).
Then, the similarity between each of these chromosomes and the first parent is
computed (similarity between two binary-coded chromosomes is defined as the
Hamming distance between them). If assortative mating is negative, then the
one with less similarity is chosen. If it is positive, the genome more similar to
the first parent is chosen to be the second parent. In the case of BLGA, the first
parent is the leader chromosome and the method is repeated m times.

3.3 Multiparent Uniform Crossover Operator

The BLGA uses a multiparent version of the Uniform crossover (UX) ([20]) with
a short term memory mechanism that avoids the generation of any offspring
previously created. The pseudocode is shown in Figure 2, where U(0, 1) is a
random number in [0, 1], RI(1, m) is a random integer in {1, 2, ..., m}, and pf is
the probability of choosing genes from CL (pf is set to a high value in order to
create offspring similar to CL).

The short term memory remembers the genes of CL that have been flipped at
generating an offspring Zk. Then, it avoids flipping those genes of CL, in order
to prevent the creation of Zk once again. In order to do that, this mechanism
maintains a mask, M = (M1, . . . , Mn), where Mi = 1 indicates that the gene
cL
i can not be flipped in order to create an offspring. Initially, and when CL is

updated with a better solution, any gene can be flipped, so Mi is set to 0 for all
i ∈ {1, . . . , n}.

The multiparent UX with short term memory creates the offspring Z =
(z1, . . . , zn) with:

– zi is set to cL
i for all i = 1, . . . , n with Mi = 1.

– If Mi = 0, then zi is set to cL
i with probability pf . Otherwise, zi is set to

the ith gene of a randomly chosen parent Y j . The mask is updated if zi is
different from cL

i .

196 C. Garćıa-Mart́ınez, M. Lozano, and D. Molina

multiparent UX(CL, Y 1, ..., Y m, m, pf)
For i = 1, ..., n

If Mi = 1 OR U(0, 1) < pf //short term memory mechanism
zi ←− cL

i ;
Else

k ←− RI(1, m);
zi ←− Y k

i ;
If zi �= cL

i

Mi ←− 1; //update the mask
If Z = CL

j ←− RI(1, n) such as Mj = 0;
Mj ←− 1; //update the mask
zj ←− 1 − zj;

Return Z;

Fig. 2. Pseudocode of the multiparent UX with short term memory

– If Z is equal to CL, then a gene chosen at random, i with Mi = 0, is flipped
and the mask is updated.

The short term memory mechanism shares ideas with the one of the Tabu
Search (TS) ([7]). Both of them help the sampling operator to efficiently explore
the neighbourhood of the current solution CL. Both of them avoid sampling
previous solution more than once. The main difference is that the mechanism of
the BLGA is entirely reset every time an offspring Z becomes better than CL,
whereas the elements in the one of the TS are eliminated, one by one, when their
tabu tenure expires (usually, a fix number of algorithm iterations).

3.4 Restricted Tournament Selection

BLGA considers the Restricted Tournament Selection (RTS) ([11]) as crowding
method. Its main idea is to replace the closest chromosome R to the one being
inserted in the population, I, from a set of nT randomly selected ones, if I is
better than R.

The application of RTS together with the use of high population size may
favour the creation of groups of chromosomes with high quality in P , which
become located in different and scattered regions of the search space (niches).

3.5 Stop Condition

It is important to notice that, when every bit of the mask of the short term
memory is set to 1 (Section 3.3), then, CL will not be further improved, because
the crossover operator will create new solutions exactly equal to CL. Thus, this
condition will be used as stop condition for the BLGA.

A Local Genetic Algorithm for Binary-Coded Problems 197

4 Experiments: Comparison with Other LSPs

The aim of this section is to compare the BLGA with other LSPs for binary-
coded problems presented in the literature:

– the First LSP ([2]) that changes a random component of the current solution,
which improves its fitness value,

– the Best LSP ([2]), which changes the bit that makes the best improvement,
and,

– the RandK LSP ([16,19]) that examines a k-variable neighbourhood (it looks
for solutions changing k components).

We have implemented four instances of the simplest LSP based metaheuristic,
the Multi-start Local Search ([3]), each one with a different LSP. Multi-start
Local Search iteratively creates a random solution and apply a LSP on it, until
a stop condition is reached. At last, Multi-start Local Search returns the best
solution obtained so far.

The four Multi-start Local Search instances will be called as follows:

– MS-First-LS: Multi-start with the First LSP.
– MS-Best-LS: Multi-start with the Best LSP.
– MS-RandK-LS: Multi-start with the RandK LSP.
– MS-BLGA: Multi-start with the BLGA.

We have chosen the Multistart Local Search metaheuristic in order to avoid
possible synergies between the metaheuristic and the LSP. In this way, compar-
isons among the LSPs are fairer. All the algorithms were executed 50 times, each
one performing 100,000 evaluations.

The BLGA uses 500 individuals as the population size, pf = 0.95 and m = 10
mates for the crossover operator, nass = 5 for the Positive Assortative Mating,
and nT = 15 for the Restricted Tournament Selection. The population of the
BLGA does not undergoes initialisation after the iterations of the Multistart
Local Search, i.e. the initial population of the BLGA at the jth iteration of the
MS-BLGA is the last population of the (j − 1)th iteration. On the other hand,
the leader chromosome is randomly generated at the beginning of the iterations
of this metaheuristic.

4.1 Test Suite

Table 1 shows the test function used, their dimension, optimisation criterion (to
maximise/minimise), optimum value and reference. Some comments are needed:

– Trap(4) consists on applying Trap(1) to a chromosome with 4 groups of 36
genes. Each group is evaluated with Trap(1), and the overall fitness of the
chromosomes is the sum of the fitness of each group.

198 C. Garćıa-Mart́ınez, M. Lozano, and D. Molina

Table 1. Used test problems

Name Dim Criterion f∗ Ref
Onemax(400) 400 min 0
Deceptive(13) 39 min 0 [8]
Deceptive(134) 402 min 0 [8]

Trap(1) 36 max 220 [21]
Trap(4) 144 max 880 [21]

Maxcut(G11) 800 max Not known [15]
Maxcut(G12) 800 max Not known [15]
Maxcut(G17) 800 max Not known [15]
Maxcut(G18) 800 max Not known [15]
Maxcut(G43) 1000 max Not known [15]

M-Sat(100,1200,3) 100 max 11 [4]
M-Sat(100,2400,3) 100 max 11 [4]

NkLand(48,4) 48 max 11 [4]
NkLand(48,12) 48 max 11 [4]

BQP(’gka’) 50 max 34142 [1,10]
BQP(50) 50 max 20982 [1,10]
BQP(100) 100 max 79702 [1,10]
BQP(250) 250 max 456072 [1,10]
BQP(500) 500 max 1165862 [1,10]

– We have used 5 instances of the Max-cut problem (G11, G12, G17, G18,
G43) from [12].

– We have used two set of instances of the Max-Sat problem with 100 variables
(n), 3 variables by clause (l), and 1200 and 2400 clauses (m) respectively
([4]). They are denoted as M-Sat(n, m, l).

– We have used two set of instances of the NK-Landscape problem: one with
N = 48 and K = 4, and another with N = 48 and K = 12 ([4]). They are
denoted as NKLand(N , K).

– We have used 5 instances of the Binary Quadratic Problem (BQP) with dif-
ferent dimensions (n). They have been taken from the OR-Library. They
are the first instances of the files ‘bqpgka’, ‘bqp50’, ‘bqp100’, ‘bqp250’,
‘bqp500’. They are called BQP(‘gka’), BQP(50), BQP(100), BQP(250), and
BQP(500), respectively.

4.2 Results

The results for all the algorithms are included in Table 2. It shows the average
and the standard deviation of the best fitness function found over 50 executions.
We have added, in parenthesis, the times the MS-BLGA is slower than the
average of the other algorithms (the time consumed by the MS-BLGA divided
by the average of the time consumed by the remainder, which were extremely
similar). In addition, a two-sided t-test at 0.05 level of significance was applied
in order to ascertain if the differences in the performance of MS-BLGA are
significant when compared against the ones for the other algorithms. We denote
the direction of any significant differences as follows:
1 1 is the maximum possible fitness value, however it may not exist any optimal

solution with that fitness value, depending on the current problem instance.
2 Best known values presented in [1].

A Local Genetic Algorithm for Binary-Coded Problems 199

Table 2. Comparison of the MS-BLGA with other Multistart LSP instances

MS-First-LS MS-Best-LS MS-RandK-LS MS-BLGA + ∼ -
average 0 0 0 0

Onemax(400) sd 0 ∼ 0 ∼ 0 ∼ 0 (753.12) 0 3 0
average 8.68 3.36 14.32 8.68

Deceptive(13) sd 1.11 ∼ 1.24 − 0.94 + 1.43 (1162.51) 1 1 1
average 177.6 128.4 201.6 185.84

Deceptive(134) sd 5.03 − 10.5 − 7.51 + 9.56 (742.11) 1 0 2
average 213.12 219.1 201.86 218.38

Trap(1) sd 2.54 + 1.94 ∼ 2.41 + 2.39 (873.49) 2 1 0
average 790.08 828.92 781.78 869.3

Trap(4) sd 7.17 + 8.09 + 7.88 + 6.97 (562.19) 3 0 0
average 437.36 349.6 441 506.64

Maxcut(G11) sd 7.37 + 17.11 + 10.78 + 6.92 (52.47) 3 0 0
average 425.6 335.16 431.32 497.36

Maxcut(G12) sd 7.23 + 15.65 + 12.17 + 6.97 (52.44) 3 0 0
average 2920.82 2824.66 2946.58 2975.7

Maxcut(G17) sd 5.97 + 15.59 + 11.06 + 8.15 (51.16) 3 0 0
average 849.86 628.32 873.82 898.08

Maxcut(G18) sd 11.30 + 22.15 + 18.68 + 15.98 (51.37) 3 0 0
average 6427.44 5735.84 6463.1 6463.18

Maxcut(G43) sd 16.27 + 40.74 + 26.20 ∼ 24.86 (49.3) 2 1 0
average 0.9551 0.9526 0.9563 0.9566

M-Sat(100,1200,3) sd 3.7e-3 + 3.9e-3 + 3.3e-3 ∼ 3.2e-3 (21.59) 2 1 0
average 0.9332 0.9314 0.9335 0.9338

M-Sat(100,2400,3) sd 2.0e-3 ∼ 2.5e-3 + 2.2e-3 ∼ 1.9e-3 (11.25) 1 2 0
average 0.7660 0.7647 0.7694 0.7750

NkLand(48,4) sd 1.4e-2 + 1.3e-2 + 1.4e-2 + 1.4e-2 (13.48) 3 0 0
average 0.7456 0.7442 0.7493 0.7468

NkLand(48,12) sd 8.3e-3 ∼ 7.7e-3 ∼ 1.0e-2 ∼ 9.5e-3 (9.39) 0 3 0
average 3414 3414 3414 3414

BQP(‘gka’) sd 0 ∼ 0 ∼ 0 ∼ 0 (143.8) 0 3 0
average 2098 2094.08 2096.72 2098

BQP(50) sd 0 ∼ 15.68 ∼ 9.05 ∼ 0 (146.11) 0 3 0
average 7890.56 7831.7 7881.52 7927.56

BQP(100) sd 33.79 + 57.75 + 38.01 + 43.15 (96,4) 3 0 0
average 45557.16 45171.38 45504.22 45510.96

BQP(250) sd 33.68 ∼ 295.46 + 99.28 + 128.92 (62.92) 2 1 0
average 115176.88 108588.26 115335.34 115256.3

BQP(500) sd 494.89 ∼ 2210.02 + 527.97 ∼ 814.44 (50.14) 1 2 0
+/ ∼ /− 10 / 8 / 1 12 / 5 / 2 11 / 8 / 0

– A plus sign (+): the average of MS-BLGA is better than the one of the
corresponding algorithm.

– A minus sign (−): the algorithm improves the average of MS-BLGA.
– An approximate sign (∼): non significant differences.

We have added the last three columns and the last three rows that count the
number of improvements, non-differences and reductions according to the t-test
by functions and by algorithms, respectively.

The last three rows indicate that the BLGA arises as a promising algorithm
to deal with binary-coded optimisation problems because it achieves many im-
provements and very few reductions versus the other approaches.

On the other hand, two remarks are worth being mentioned from the last
three columns:

– MS-BLGA is one of the best algorithms for almost the 90% of the test
functions. Concretely, MS-BLGA achieves better or equivalent results than

200 C. Garćıa-Mart́ınez, M. Lozano, and D. Molina

the ones of the other algorithms for all the functions, except on the two
Deceptive ones.

– MS-BLGA returns the best results for 4 from up to 5 Max-cut problems.

It can be seen that these good results do not come for free. MS-BLGA invest
runtime in order to obtain better results than the ones obtained by the other
LSPs, performing the same number of fitness evaluations. However, it is inter-
esting to notice that the differences become smaller when the dimension of the
problem increases. The design of less time consuming LGAs, including parallel
GAs, arises as an important idea from this study.

To sum up, we may conclude that the BLGA, working within the Multistart
Local Search metaheuristic, is very competitive with classic LSPs, because it
obtains better or equivalent results for almost all the test problems considered
in this study.

5 Conclusions

In this paper, we have presented the BLGA, a LGA instance that incorporates
specific mate selection mechanism, crossover operator, and replacement strategy
to direct the local search towards promising search regions represented in the
proper BLGA population.

An experimental study, including 19 binary coded test problems, has shown
that when we incorporate the BLGA into a Multistart Local Search metaheuris-
tic, this metaheuristic may improve their results with regards to the use of other
LSP instances that are frequently used to implement it.

Several ideas for future developments arise from this study:

– Analyse the behaviour of the BLGA when it is used by different metaheuris-
tics based on LSPs ([3,2]).

– Extend our investigation to different test-suites (other coding schemes) and
real-world problems.

– Study adaptive mechanisms that control the parameters of the algorithm
according to the current state of the search process.

References

1. J.E. Beasley. Heuristic algorithms for the unconstrained binary quadratic program-
ming problem. Technical Report, Management School, Imperial College, UK, 1998.

2. C. Blum, A. Roli. Metaheuristics in combinatorial optimization: overview and con-
ceptual comparison. ACM Computing Surveys (CSUR) 35:2, 2003, pp. 268-308.

3. K.D. Boese and S. Muddu. A new adaptive multi-start technique for combinatorial
global optimizations. Operations Research Letters 16, 1994, pp. 101-113.

4. K. De Jong, M.A. Potter, W.M. Spears. Using problem generators to explore the
effects of epistasis. Proc. of the Seventh International Conference on Genetic Al-
gorithms, 1997, pp. 338-345.

A Local Genetic Algorithm for Binary-Coded Problems 201

5. C. Fernandes, A. Rosa. A study on non-random mating and varying population size
in genetic algorithms using a royal road function. Proc. of the 2001 Congress on
Evolutionary Computation, IEEE Press, Piscataway, New Jersey, 2001, pp. 60-66.

6. C. Garćıa-Mart́ınez, M. Lozano, F. Herrera, D. Molina, A.M. Sánchez. Global and
local real-coded genetic algorithms based on parent-centric crossover operators.
European Journal of Operational Research, 2006. In press.

7. F. Glover, M. Laguna. Tabu search. Operational Research Society Journal 50:1,
1999, pp. 106-107.

8. D.E. Goldberg, B. Korb, K. Deb. Messy genetic algorithms: motivation, analysis,
and first results. Complex Systems 3, 1989, pp. 493-530.

9. D.E. Goldberg. Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley, Reading, MA, 1989.

10. V.P. Gulati, S.K. Gupta, A.K. Mittal. Unconstrained quadratic bivalent program-
ming problem. European Journal of Operational Research 15, 1984, pp. 121-125.

11. G. Harik. Finding multimodal solutions using restricted tournament selection.
Proc. of the 6th International Conference on Genetic Algorithms, L.J. Eshelman,
editor, Morgan Kaufmann, San Mateo, California, 1995, pp. 24-31.

12. C. Helmberg, F. Rendl. A spectral bundle method for semidefinite programming.
Siam Journal of Optimization 10:3, 2000, pp. 673-696.

13. F. Herrera, M. Lozano. Gradual distributed real-coded genetic algorithms. IEEE
Transactions on Evolutionary Computation 4:1, 2000, pp. 43-63.

14. J.H. Holland. Adaptation in natural and artificial systems. The University of Michi-
gan Press (The MIT Press, London, 1992).

15. R.M. Karp. Reducibility among combinatorial problems. In R. Miller and J.
Thatcher, editors, Complexity of Computer Computations, Plenum Press, New
York, 1972, pp. 85-103.

16. K. Katayama, H. Narihisa. A variant k-opt local search heuristic for binary
quadratic programming. Trans. IEICE (A) J84-A:3, 2001, pp. 430-435.

17. S.A. Kazarlis, S.E. Papadakis, J.B. Theocharis, V. Petridis. Microgenetic algo-
rithms as generalized hill-climbing operators for GA optimization. IEEE Transac-
tions on Evolutionary Computation 5:3, 2001, pp. 204-217.

18. M. Lozano, F. Herrera, N. Krasnogor, D. Molina. Real-coded memetic algorithms
with crossover hill-climbing. Evolutionary Computation Journal 12:3, 2004, pp.
273-302.

19. P. Merz, K. Katayama. Memetic algorithms for the unconstrained binary quadratic
programming problem. Bio Systems 79:1-3, 2004, pp. 99-118.

20. G. Sywerda. Uniform crossover in genetic algorithms. Proc. of the third interna-
tional conference on Genetic algorithms, 1989, pp. 2-9.

21. D. Thierens. Population-based iterated local search: restricting neighborhood
search by crossover. Proc. of the Genetic and Evolutionary Computation Con-
ference, LNCS 3103, 2004, pp. 234-245.

22. S. Tsutsui, A. Ghosh, D. Corne, Y. Fujimoto. A real coded genetic algorithm
with an explorer and an exploiter population. Proc. of the Seventh International
Conference on Genetic Algorithms, T. Bäck, editor, Morgan Kaufmann Publishers,
San Francisco, 1997, pp. 238-245.

23. D. Whitley. The GENITOR algorithm and selection pressure: why rank-based al-
location of reproductive trials is best. Proc. of the Third International Conference
on Genetic Algorithms, J. David Schaffer, editor, Morgan Kaufmann, San Mateo,
1989, pp. 116-121.

	Introduction
	Local Genetic Algorithms
	Binary-Coded Local GA
	General Scheme of the Binary-Coded LGA
	Positive Assortative Mating
	Multiparent Uniform Crossover Operator
	Restricted Tournament Selection
	Stop Condition

	Experiments: Comparison with Other LSPs
	Test Suite
	Results

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

