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Abstract. Two independent component analysis (ICA) algorithms have
been applied for blind source separation (BSS) in a synthetic, multi-
sensor scenario, within a non-destructive pipeline test. The first one,
CumICA, is based in the computation of the cross-cumulants of the
mixed observed signals, and needs the aid of a digital high-pass filter
to achieve the same SNR (up to -40 dB) as the second algorithm, Fast-
ICA. Vibratory signals were acquired by a wide frequency range trans-
ducer (100-800 kHz) and digitalized by a 2.5 MHz, 8-bit ADC. Different
types of commonly observed source signals are linearly mixed, involving
acoustic emission (AE) sequences, impulses and other parasitic signals
modelling human activity. Both ICA algorithms achieve to separate the
impulse-like and the AE events, which often are associated to cracks or
sudden non-stationary vibrations.

1 Introduction

Vibratory and acoustic emission (AE) signal processing usually deals with sepa-
ration of multiple events which sequentially or simultaneously occur in different
measurement points during a non-destructive test. In most situations, the tests
involve the study of the behavior of secondary events, or reflections, resulting
from an excitation (the main event). These echoes carry information related with
the medium through which they propagate, as well as surfaces where they reflect
[1].

But, in almost every measurement scenario, an acquired sequence contains
information regarding not only the AE under study, but also additive noise
processes (mainly from the measurement equipment) and other parasitic signals,
e.g. originated by human activity or machinery vibrations. As a consequence, in
non-favorable SNR cases, BSS should be accomplished before characterization
[2], in order to obtain the most reliable spectral fingerprint of the AE event.

The purpose of this paper is twofold. First we show how two ICA algorithms
separate the true AE event from the parasitics, taking a multi-sensor array of
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inputs (SNR=-40 dB). Secondly, we compare performances of Cum-ICA and
Fast-ICA, resulting that Cum-ICA needs the aid of a post high-pass filter to
achieve the same SNR as Fast-ICA. This comparison could be interesting for a
future implementation of the code in an automatic test system.

The paper is structured as follows: in Section 2 we make a brief progress report
on the characterization of vibratory emissions. Section 3 summarizes the ICA
models and outlines their properties. Results are displayed in section 4. Finally,
conclusions and achievements are drawn in section 5.

2 Acoustic Emission Signal Processing

Elastic energy travels through the material as a stress wave and is typically de-
tected using a piezoelectric transducer, which converts the surface displacement
(vibrations) to an electrical signal. AE signal processing is used for the detec-
tion and characterization of failures in non-destructive testing and identification
of low-level biological signals [2]. Most AE signals are non-stationary and they
consist of overlapping bursts with unknown amplitude and arrival time. These
characteristics can be described by modelling the signal by means of neural net-
works, and using wavelet transforms [1],[3]. These second-order techniques have
been applied in an automatic analysis context of the estimation of the time
and amplitude of the bursts. Multiresolution has proven good performance in
de-noising (up to SNR=-30 dB, with modelled signals) and estimation of time
instances, due to the selectivity of the wavelets filters banks [4].

Higher order statistics (HOS) have enhanced characterization in analyzing
biological signals due to the capability for rejecting noise [5]. This is the reason
whereby HOS could be used as part of an ICA algorithm.

3 The ICA Model and Algorithms

3.1 Outline of ICA

BSS by ICA is receiving attention because of its applications in many fields such
as speech recognition, medicine and telecommunications [6]. Statistical meth-
ods in BSS are based in the probability distributions and the cumulants of the
mixtures. The recovered signals (the source estimators) have to satisfy a condi-
tion which is modelled by a contrast function. The underlying assumptions are
the mutual independence among sources and the non-singularity of the mixing
matrix [2],[7].

Let s(t) = [s1(t), s2(t), . . . , sm(t)]T be the transposed vector of sources (sta-
tistically independent). The mixture of the sources is modelled via

x(t) = A · s(t) (1)

where x(t) = [x1(t), x2(t), . . . , xm(t)]T is the available vector of observations and
A = [aij ] ∈ �m×n is the unknown mixing matrix, modelling the environment in
which signals are mixed, transmitted and measured [8]. We assume that A is a
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non-singular n×n square matrix. The goal of ICA is to find a non-singular n×m
separating matrix B such that extracts sources via

ŝ(t) = y(t) = B · x(t) = B · A · s(t) (2)

where y(t) = [y1(t), y2(t), . . . , ym(t)]T is an estimator of the sources. The separat-
ing matrix has a scaling freedom on each row because the relative amplitudes of
sources in s(t) and columns of A are unknown [7]. The transfer matrix G ≡ BA
relates the vector of independent (original) signals to its estimators.

3.2 CumICA

High order statistics, known as cumulants, are used to infer new properties about
the data of non-Gaussian processes. Before, such processes had to be treated as if
they were Gaussian, but second order statistics are phase-blind. The relationship
among the cumulant of r stochastic signals and their moments of order p, p ≤ r,
can be calculated by using the Leonov-Shiryayev formula [9]:

Cum(x1, ..., xr) =
∑

(−1)k · (k − 1)! · E{
∏

i∈v1

xi}

· E{
∏

j∈v2

xj} · · ·E{
∏

k∈vp

xk}
(3)

where the addition operator is extended over all the set of vi (1 ≤ i ≤ p ≤ r)
and vi compose a partition of 1,. . . ,r.

A set of random variables are statistically independent if their cross-cumulants
are zero. This is used to define a contrast function, by minimizing the distance
between the cumulants of the sources s(t) and the outputs y(t). As sources are
unknown, it is necessary to involve the observed signals. Separation is developed
using the following contrast function based on the entropy of the outputs [2]:

H(z) = H(s) + log[det(G)] −
∑ C1+β,yi

1 + β
(4)

where C1+β,yi is the 1 + βth-order cumulant of the ith output, z is a non-linear
function of the outputs yi, s is the source vector, G is the global transfer matrix
of the ICA model and β > 1 is an integer verifying that β + 1-order cumulants
are non-zero.

Using equation 4, the separating matrix can be obtained by means of the
following recurrent equation [8]

B(h+1) = [I + μ(h)(C1,β
y,yS

β
y − I)]B(h) (5)

where Sβ
y is the matrix of the signs of the output cumulants. Equation 5 is inter-

preted as a quasi-Newton algorithm of the cumulant matrix C1,β
y,y . The learning

rate parameters μ(h) and η are related by:

μ(h) = min(
2η

1 + ηβ
,

η

1 + η‖C1,β
y,y‖p

) (6)
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with η < 1 to avoid B(h+1) being singular; ‖.‖p denotes de p-norm of a matrix.
The adaptative equation 5 converges, if the matrix C1,β

y,yS
β
y tends to the identity.

3.3 FastICA

One of the independent components is estimated by y = bT x. The goal of
FastICA is to take the vector b that maximizes the non-Gaussianity (indepen-
dence)of y, by finding the maxima of its negentropy [7]. The algorithm scheme is
an approximative Newton iteration, resulting from the application of the Kuhn-
Tucker conditions. This leads to the equation 7

E{xg(bT x) − βb = 0} (7)

where g is a non-quadratic function and β is an iteration parameter.
Provided with the mathematical foundations the experimental results are out-

lined.

4 Experimental Results

The inputs of the ICA algorithms comprise synthetics (laboratory mixtures),
which have been obtained by mixing real AE events (the ones we are interested
in getting the spectral track), impulse-like events, noise processes and damping
sinusoids. The sensor used to capture the AE events was attached to the outer
surface of the pipeline, which is under mechanical excitation.

A number of 20 AE events were captured. One of these vibratory signals is
depicted in Fig. 1, where we can observe the main AE event and the secondary
reflections or echoes.

Each digitalized sequence comprises 2502 points (sampling frequency of 2.5
MHz and 8 bits of resolution), and assembles the main AE event and the subse-
quent reflections (echoes).

Four types of sources have been considered and linearly mixed in the synthet-
ics. These subsequent mixtures constitute the inputs of the algorithm: A real
AE event, an uniform white noise (SNR=-40 dB), a damped sine wave and an
impulse-like event. The damping sine wave models a mechanical vibration which
may occur, e.g. as a consequence of a maintenance action. It has a damping
factor of 2000 and a frequency of 8000 Hz. Finally, the impulse is included as a
very common signal registered in vibration monitoring. Fig. 2 shows one possible
input quartet.

One of the 20 results (output quartet) of CumICA is depicted in Fig. 3.
The damping sinusoid is considered as a frequency component of the impulse-
like event because IC3 and IC4 are almost the same. The final independent
components are obtained filtering the independent components by a 5th-order
Butterworth high-pass digital filter (20 kHz).

The resulting separated sources resulting from one of the Fast-ICA processing
are depicted in Fig. 4.

Finally, to test the independence of the independent components, some rel-
evant joint distributions have been included in Fig. 5 and in Fig. 6. The left



Two ICA Algorithms Applied to BSS in Non-destructive Vibratory Tests 225

1 2 3 4 5 6 7 8 9 10

x 10-4

-1

-0.5

0

0.5

1

1.5

Time (s)

Am
pl

itu
de

 (V
)

AE signal: primary event and its reflections

0 200 400 600 800 1000 1200

0.2

0.4

0.6

0.8

1

Frequency (kHz)

N
or

m
al

iz
ed

 p
ow

er

Power spectrum of the AE signal

1 
2 

3 

Fig. 1. One of the 20 AE events and its associated spectrum. Usually, these are the
signals under study which constitute a main perturbation and its associated reflections.
The main event (1) and two reflections (2,3) can be seen.
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Fig. 2. Left column: One of the 20 quartets of original sources to be mixed, which in
turn constitutes one of the 20 inputs to the ICA algorithms. Right column: The linear
mixtures.
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Fig. 3. Estimated and filtered sources via CumICA (ICs; Independent Components).
Left column: AE event, noise, damping sine wave plus impulse, idem. Right column:
Filtered signals.
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Fig. 4. Estimated and filtered sources (independent components, ICs) via FastICA.
Right column (very similar to the left) top to bottom: Impulse, noise, AE event, noise.
Post-filtering is not necessary to recover the AE event and the impulse.

column of both figures shows how for any IC, the values are quite random. This
means that for a value (a point in the signal-to-signal graphic) of an IC, al-
most all the values of the another IC are allowed. On the other hand, the joint
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Fig. 5. Signal-to-signal diagram for the CumICA outputs. Left column: Independent
components. Right column: Mixtures.

−0.5 0 0.5 1

−1

−0.5

0

0.5

1

y fn
2

−0.5 0 0.5 1

−0.5

0

0.5

1

y fn
3

−0.5 0 0.5 1

−0.5

0

0.5

1

y
fn1

y fn
4

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x n2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x n3

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x
n1

x n4

Fig. 6. Signal-to-signal diagram for the FastICA outputs. Left column: Independent
components. Right column: Mixtures.

distributions of the mixtures are linearly shaped, which leads us to infer a de-
pendency before separating sources by ICA.

These results lead us to conclude about the use of the algorithms.
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5 Conclusions and Future Work

ICA is far different from traditional methods used to separate sources or to
de-noise signals, as power spectrum or wavelet transforms, which obtain an en-
ergy diagram of the different frequency components, with the risk that low-level
sounds or events could be masked. This experiment shows that both algorithms
are able to separate the sources with small energy levels in comparison to the
background noise. This is explained away by statistical independence basis of
ICA, regardless of the energy associated to each frequency component. The post
filtering action applied to Cum-ICA lets us work with very low SNR signals.
FastICA kernel maximizes the non-Gaussianity, so it is not necessary a filter
stage.

The next step regarding this research is oriented in a double direction. First,
a stage involving four real mixtures will be developed. Secondly, and simulta-
neously, the computational complexity of the algorithms have to be reduced to
perform a real implementation in a digital signal processor.
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packets applied to termite detection. Lecture Notes in Computer Science (LNCS)
3514 (2005) 900–907 Computational Science - ICCS 2005: 5th International Con-
ference, GA Atlanta, USA, May 22-25, 2005, Proceedings, Part I.

5. Puntonet, C.G., de la Rosa, J.J.G., Lloret, I., Górriz, J.M.: Recognition of insect
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8. de la Rosa, J.J.G., Puntonet, C.G., Górriz, J.M., Lloret, I.: An application of ICA

to identify vibratory low-level signals generated by termites. Lecture Notes in Com-
puter Science (LNCS) 3195 (2004) 1126–1133 Proceedings of the Fifth International
Conference, ICA 2004, Granada, Spain.

9. Swami, A., Mendel, J.M., Nikias, C.L.: Higher-Order Spectral Analysis Toolbox
User’s Guide. (2001)


	Introduction
	Acoustic Emission Signal Processing
	The ICA Model and Algorithms
	Outline of ICA
	CumICA
	FastICA

	Experimental Results
	Conclusions and Future Work

