
ARTICLE IN PRESS
Mechanical Systems
and

Signal Processing
0888-3270/$ - se

doi:10.1016/j.ym

$This work
�Correspond
E-mail addr
Mechanical Systems and Signal Processing 21 (2007) 1917–1926

www.elsevier.com/locate/jnlabr/ymssp
Third-order spectral characterization of acoustic emission
signals in ring-type samples from steel pipes for the oil industry$
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Abstract

Third-order cumulant spectra are used to characterize acoustic emission events in ring-type samples from steel pipes for

the oil industry. A cut segment of chord allows the coupling between a sample and the mechanical excitation device.

Diagonal bi-spectrum allows the separation of the primary (original) deformation from the reflections produced mainly in

the suppressed chord. These longitudinal reflections can hardly be extracted via second-order methods, e.g. wavelet packets

and power spectra, because they are partially masked by both Gaussian and non-Gaussian noise. Sample registers were

acquired by wide frequency-range transducers (100–800 kHz) and digitalized by a 2.5MHz, 8-bit ADC.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In AE signal processing we usually deal with the characterization and separation of multiple events which
sequentially occur in localized measurement areas during a non-destructive test (NDT). In most situations, the
primary burst resulting from an excitation, and the successive reflections at the internal or free surfaces
(echoes) have to be monitored, because echoes often carry information associated with the medium through
which they propagate, as well as with the reflecting surface’s properties, as it was mentioned in [1]. The
characterization consists of determining the time instants at which the echoes occur, along with their power
spectra (fingerprint).

Although AE signals have distinctive time instances, it is difficult to detect them in a noisy environment.
Furthermore, there is a limitation in the number of echoes which can be extracted, due to their low-level
e front matter r 2006 Elsevier Ltd. All rights reserved.
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amplitudes. A variety of signal processing methods have been used in similar situations and in other fields of
Science and Technology [2–9]. They include statistical analysis, spectral analysis, time-frequency analysis
(spectrogram) and wavelet transforms, and are based on the energy conservation hypothesis; so they are useful
for finding predominant information, such as peaks. But low SNR sources cannot be identified successfully,
because the algorithms retain energy information from one domain to another. As a consequence, transient
signals of interest, like pulse-like events, may be buried in the background. Furthermore, non-Gaussian signals
are not completely characterized up to second order. As a consequence, additional information should be
found in the amplitude and phase charts of their higher-order statistics.

Different failure mechanisms produce AE events, whose analysis provide us with information regarding
both the cause of the breaks and the media through which the vibratory waves propagate. An average
complex AE event comprises different sub-events, stated as two chief classes. First, arrivals of successive
events due to only one type of mechanism. A breakage which is getting bigger belongs to this set of complex
events; when the burst bumps into an anchoring point, it gives rise to new different bursts or to a quite
complex one, depending on the relationship between the arrival times of the simple bursts and the individual
duration of the bursts. Secondly, there are also bursts which come from different sources, provoked by
different types of mechanisms, e.g. formation or advancement of cracks, deformation, coating failure,
corrosion, etc.

In the present paper we analyze results of a deformation test performed on ring-type samples coming from a
steel pipe used in the oil industry. A chord of each ring was eliminated in order to introduce the sample in the
deformation device. Both test and samples are designed so as the AE burst originates in the deformation of a
specific region of the ring.

We study the main burst and the longitudinal reflections at the chord borders. But we also have the
reflections which take place at the transversal borders of the pipe sample. These lateral or transversal strains
comprise the main source of noise, which is desirable to be extracted. So we have the usual noise sources which
come from the environment and the measurement equipment (usually Gaussian or uniform); but also have
self-induced noise coming from the transversal reflections (in general non-Gaussian), masking the bursts
originated in longitudinal reflections.

In this paper a bi-spectral analysis (the FFT of the third-order cumulants) is performed with a twofold
purpose. First, to enhance the characterization of the AE longitudinal events over the measurement
background noise (electronic noise usually symmetrically distributed). Secondly, to find out more reflections,
which are masked by the transversal reflections (self-induced noise) with the same order of magnitude, and
cannot be detected using power spectrum and wavelet packet analysis.

Thus, the new frequency components, discovered using HOS, are associated mainly to the reflections of the
original deformation in the borders of the suppressed chord, which have been previously described in [10], and
also to the transversal bursts. Whilst using second-order methods only two longitudinal reflections can be
discovered, the averaged bi-spectrum of the signal records reveals two more.

We conclude that third-order spectra reveal two or three more echoes, which are supposed to be additional
higher-order frequency components, which cannot be discovered using second-order methods. In this work,
some (2–3) longitudinal reflections are depicted in the time-domain graphs, and can be identified by visual
inspection because they are far enough from each other. However, transversal reflections may be hidden into
the former ones, modifying the apparent duration. Then, we use higher-order spectra to find additional
frequency components. Besides, in the case it is not possible to perform a visual separation of the longitudinal
echoes, HOS would be specially welcome. The results can be applied in future work to characterize failure
mechanisms of pipes for the oil industry.

The paper is structured as follows: in Section 2 we make a brief progress report on AE characterization;
higher-order statistics are also defined, focusing on the indirect estimate of the bi-spectrum. Results are
displayed in Section 3. Finally, conclusions and achievements are drawn in Section 4.

2. Higher-order statistics for AE signals characterization

High-order statistics, known as cumulants, are used to infer new properties about the data of non-Gaussian
processes [7,11–13]. The relationship among the cumulants of r stochastic signals, fxigi2½1;r�, and their moments
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of order p; ppr, can be calculated by using the Leonov– Shiryayev formula [11,12,14,15]:

Cumðx1; . . . ;xrÞ ¼
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where the addition operator is extended over all the set of vi ð1pippprÞ and vi compose a partition of
1; . . . ; r.

Let fxðtÞg be an rth-order stationary random process. The rth-order cumulant is defined as the joint rth-
order cumulant of the random variables xðtÞ, xðtþ t1Þ; . . . ; xðtþ tr�1Þ,

Cr;xðt1; t2; . . . ; tr�1Þ ¼ Cum½xðtÞ;xðtþ t1Þ; . . . ;xðtþ tr�1Þ�. (2)

We assume in the following that the cumulant sequences satisfy the bounding condition:

Xt1¼þ1
t1¼�1

� � �
Xtr�1¼þ1

tr�1¼�1

jCr;xðt1; t2; . . . ; tr�1Þjo1. (3)

Under this assumption, the higher-order spectra are usually defined in terms of the rth-order cumulants as
their (r� 1)-dimensional Fourier transforms, according to

Sr;xðf 1; f 2; . . . ; f r�1Þ

¼
Xt1¼þ1

t1¼�1

. . .
Xtr�1¼þ1

tr�1¼�1

Cr;xðt1; t2; . . . ; tr�1Þ exp½�j2pðf 1t1 þ f 2t2 þ � � � þ f r�1tr�1Þ�. ð4Þ

The special poly-spectra derived from (4) are power spectrum (r ¼ 2), bi-spectrum (r ¼ 3) and tri-spectrum
(r ¼ 4). Only power spectrum is real, the others are complex magnitudes. These multidimensional functions
comprise a lot of information, and their computation may be impractical in some cases. To extract useful
information one-dimensional slices [16–18] of cumulant sequences and spectra are usually used in non-
Gaussian stationary processes.

The definition in Eq. (4) is based on the assumptions that an infinite sequence of higher-order statistics are
available and known exactly [15]. In practice however, only a finite set of measurements is available. The
conventional methods (FFT based) for estimation of higher-order spectra can be divided into three classes: the
indirect class, which uses approximations of Eq. (4); the direct class, which may be based on the higher-order
periodgram; and the complex demodulates class, which can be found summarized in [15].

Results have been obtained using indirect functions from MATLAB-HOSA toolbox [19]. Each function
estimates first the higher-order statistics from a finite length sequence of data, and then calculates the higher-
order spectral estimates using multidimensional windows functions [15].

Provided with the mathematical foundations the experimental results are presented hereinafter.
3. Experiments and results

3.1. Experimental arrangement, experiment design and second-order spectra analysis

The experimental arrangement is depicted in Fig. 1, where some relevant dimensions are indicated. It
consists of a test ring (the sample) which is going to be under test. One sensor is attached to the outer surface
of the ring-type sample, which is under mechanical excitation. The ring has an outer diameter of 138–140mm,
and is attached to the excitation device by a segment of chord of about 70mm. A bending (near the sensor) in
the inside upper face is thought to concentrate the elastic waves.

A number of 20 sequences were acquired using a wide-band sensor PAC �WD (100–800 kHz). Each signal
comprises 2502 points (sampling frequency of 2.5MHz and 8 bits of resolution). Each time-series assembles
the main AE event and the subsequent reflections (echoes).

At a first glance it is possible to distinguish 2 or 3 AE events in each signal. Fig. 2 shows an example of a
time instance and its power spectrum.
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Fig. 1. Experimental arrangement.
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Fig. 2. An AE signal (up) and its spectrum (down).
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The main frequency components in Fig. 2 are concentrated in the interval 0–300 kHz. It is difficult to
distinguish the main AE event from the secondary events (reflections or echoes), both in the frequency and
time domains. This is caused by two facts. On one side, the measurement system introduces a noise floor to the
spectrum; this noise is in general symmetrically distributed. Another factor is the lack of information
regarding the phase of the components. Power spectrum only gathers information from amplitudes of the
different components.

Another relevant fact deals with the difficulty of selecting the main frequency components in the power
spectrum. Fig. 3 reflects this fact. Apparently, all the frequency components are equally important.
Frequencies that will be enhanced in higher-order spectra are marked with an arrow. In the second-order
spectrum they are even less important than the other terms.
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Fig. 3. A zoom of the spectrum shown in Fig. 2 which allows to observe the higher-order frequency components.
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The de-noising procedure using wavelet packets was developed using a sym8, belonging to the family
Symlets (order 8), which are compactly supported wavelets with least asymmetry and highest number of
vanishing moments for a given support width. We also choose a soft heuristic thresholding. The same 20
sample (SNR ¼ 2 dB) registers have been processed; in Fig. 4 we show the best result of the analysis. As the
decomposition level increases no more reflections are found.
3.2. Third-order spectral characterization

In order to provide some further insight in the frequency domain, the third-order spectrum is calculated (an
unbiased estimate is used). Fig. 5 shows the three-dimensional graph of the average diagonal bi-spectrum. The
diagonal slice is selected as the main direction.

The data are non-stationary, so we follow the usual procedure for non-stationary mean value measurement,
consisting of storing each record xiðtÞ, as a function of t, 0ptpT (T, is the measurement window). After this
has been done for all the records, we perform an ensemble average [20].

Despite the fact that for non-stationary signals time-frequency distributions (that describe the temporal
evolution of the spectrum or the poly-spectrum) are useful tools, in this case they do not outperform the
ensemble averaging procedure. We compare results to the best result obtained with wavelet packets.

Fig. 6 shows the average diagonal bi-spectrum of the sequences. We can distinguish the main peak
associated with the AE cause and the successive echoes’ peaks, which have a decreasing amplitude and a
frequency shift around the peak frequency (from left to right and vice versa). A maximum lag (time shift
between samples) of 200 is assumed as the starting point of the resolution analysis.

To confirm the origin of the peaks and to gain resolution we are provided with Fig. 7. The upper graph
is the bi-spectrum of the complete AE sequence, this time for a max lag of 1024. The graph in the middle
shows the average bi-spectrum of the main AE event, without the echoes. The lowest sub-figure shows the



ARTICLE IN PRESS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-8
-6
-4
-2
0
2
4

AE signal

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-6
-4
-2
0
2
4

AE de-noised signal: level 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-6
-4
-2
0
2
4

AE de-noised signal: level 6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-4

-2

0

2 AE de-noised signal: level 7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-2

0

2

Time (ms)

AE de-noised signal: level 8

Fig. 4. The best result of the wavelet packets analysis. The primary burst and two reflections can be recovered.
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bi-spectrum estimation of the reflections. We conclude the existence of a main AE event (connected with a
perturbation), which takes the highest value at 145 kHz (roughly) and the secondary lower-amplitude echoes
also characterized by a frequency shift.

Comparing graphs in Figs. 6 and 7 we can see the effects of improving the resolution in the frequency
domain. The better the resolution, the higher the magnitude levels associated with relevant frequency
components. This is due to the fact that non-Gaussian processes have been enhanced over symmetrically
distributed ones, like the noise form the measurement equipment.

Another characterization of the main AE event is obtained from the contour plot of the average bi-spectrum
of the complete AE event. Fig. 8 shows the contour of the bi-spectrum estimated via the indirect method.

The bi-spectrum displayed in Fig. 8 reveals the main region, distributed in the surroundings of the peak
(0.1,0.1), which is connected with the main AE event; and the five other symmetric locations as indicated in
[19]. The non-redundant region of support for the bi-spectrum is the triangle with vertices (0,0), (1/3,1/3) and
(1/2,0); where we have assumed a normalized sampling frequency of 1Hz [19].

We can guess that the non-Gaussian noise originates in transversal reflections. This can be sustained in some
simple calculations based on orders of magnitude and on the Fig. 2. It is measured a Dt ¼ 100ms and a
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Df ¼ 100 kHz, between the original event and the first reflection, in the time domain and in the frequency
domain, respectively. Estimating, in the power spectrum diagram, a Df ¼ 400 kHz between the original event’s
peak and the location of the noise peak, we obtain a Dt ¼ 25 ms. Then, using a speed propagation value of the
longitudinal waves in the steel of the order of 1 km/s [10] we find a distance of around 2 cm, which matches the
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transversal dimension of the ring sample. Thus, the mechanical non-Gaussian noise could be associated to the
transversal reflections.

The above results lead us to some conclusions on the use of HOS as a characterizing and separating tool to
be considered in a non-destructive measurement system.
4. Conclusions and accomplishments

The significance of this contribution lies in the fact of enhancing the characterization of the longitudinal AE
events in the frequency domain. By one side, bi-spectral estimation of the signals reveals information
regarding the reflecting surface of the pipeline sample the sensor is coupled to. Secondly, the experience takes
benefits from the inherent advantages of HOS, regarding the extra information added to non-Gaussian
processes and the enhancing of the SNR.

On the other hand, frequency components associated to the reflections could be used to get comprehensive
information from the main AE (strain or stress or any other perturbation) and the non-linear echoes.

Finally, the mechanical noise is associated to the transversal reflections, which mask the duration of the
longitudinal reflections, which are desirable to be extracted and characterized. What is more, third-order
spectrum diagrams do not contain information regarding the symmetric noise, but they have information
about these non-Gaussian additive transversal reflections.

Actually, we are working to propose tri-spectrum as a complementary tool, in order to confirm the presence
of the higher-order components found in the diagonal bi-spectrum.
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