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Nonlocal symmetries generated by type | hidden symmetries are identified as specific ¢ °°-symmetries
of an nth-order ordinary differential equation. The general method of reduction associated to these € °°-
symmetries allows us to give explicit transformations to reduce the order if n > 1. As a consequence,
we give a complete classification of the equations of arbitrary order that admit this kind of nonlocal
symmetries. We illustrate these results with several equations that have no Lie point symmetries. For
n = 1, the method provides the linearization of first-order equations. This is applied to some examples
of Riccati equations and Abel equations of the second kind.
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1. Introduction

It is well-known that the Lie groups of symmetry are a powerful tool to integrate ordinary differential
equations. Canonical variables for a Lie point symmetry of a first-order differential equation provide the
integration of the equation by quadrature. For higher-order equations, the technique of order reduction
leads to the integration by quadrature in the case of solvable symmetry algebras. This can be done by
using ‘suitable’ sequences of generators of the algebra (Olver, 1993; Ibragimov, 1995; Hydon, 2000).
When different sequences are used to reduce the order, or the algebra of symmetry is nonsolvable, type
I hidden symmetries could appear.

A type I hidden symmetry has been defined as a Lie symmetry V; that is lost (not inherited) when a
Lie symmetry Vi is used to reduce the order by one (Abraham-Shrauner & Guo, 1992). It occurs when
the commutator [V1, V2] does not belong to the subalgebra generated by Vi. In this case, V2 will not be
inherited by the reduced equation, but becomes a nonlocal symmetry of the exponential type. Although
these nonlocal symmetries are not well-defined vector fields in the variables of the equation, they can
be used to reduce the order (Olver, 1993).

There are many recent papers dealing with the application of nonlocal symmetries to integrate or re-
duce ordinary differential equations (Abraham-Shrauner et al., 1995; Abraham-Shrauner & Guo, 1996;
Abraham-Shrauner, 2002; Adam & Mahomed, 1988, 2002; Edelstein et al., 2001; Geronimi et al., 2001;
Nucci & Leach, 2000). Usually, the determination of these nonlocal symmetries for

Ax,u™)y =0 (1.1)
is done by increasing the order
Ay, ™) =0 (1.2)

and checking if there are lost symmetries in the reduction process. The main difficulty, as it is mentioned
in Govinder & Leach (1995), is that there is no general method to construct such an equation (1.2).
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In Muriel & Romero (2001, Theorem 5.1), it was proved that exponential nonlocal symmetries
are specific types of ¥’°>°-symmetries. In this work, the following inverse problem is considered: we
identify the subclass 7 of the ¥°°-symmetries of an equation that corresponds to nonlocal symmetries
generated by type | hidden symmetries. Since the " °°-symmetries of an equation can be determined by a
well-defined algorithm, we have a method to find these nonlocal symmetries. Let us remark a difference
with the usual approaches: we first determine the ©°°-symmetries in .7, then the associated nonlocal
symmetries and finally we could derive the corresponding equations of higher order (1.2) and the lost
Lie symmetries (type | hidden symmetries). This last step is not necessary if one is only interested in
determining nonlocal symmetries and using them to integrate the equation or reduce its order.

As a consequence, any process of integration or order reduction by means of nonlocal symmetries
can be derived by the general method of reduction associated to a °°-symmetry in s (Muriel &
Romero, 2001). In Section 3, we apply this method and give the explicit transformations that reduce the
order of any equation that has a ¥’°°-symmetry in 7 (i.e. a nonlocal symmetry).

Several important results can be derived of these explicit transformations. In Section 4, we give a
classification of the equations of arbitrary order that admit ¥°°-symmetries of .2#” and therefore type |
hidden symmetries. The obtained families of equations include equations without Lie symmetries that
can be integrated ((3.12) and (4.10)).

Another important consequence is derived when the method is applied to first-order equations. Any
first-order equation that admits a ¥’°°-symmetry in 77 is linearizable. We also give the explicit changes
of variables to transform the equation into the linear form. This is applied to general types of equations
not given in an integrable form. In particular, several examples of Abel equations of the second kind
can be integrated by our general method of linearization. Some of them are included in Polyanin &
Zaitsev (2003); however, we also present new families of Abel equations of the second kind that can be
integrated.

2. ¢*°-symmetriesand type | hidden symmetries

When an ordinary differential equation admits a Lie algebra of symmetry with two infinitesimal gener-
ators Vq and V; such that [V1, Vo] = cV», ¢ € R, one ‘must’ reduce the order by using V»; then, Vi is
inheritable as a Lie symmetry to the reduced equation. However, if ¢ # 0 and if we use Vi, instead of
V>, to reduce the equation, then V5 is lost as a Lie symmetry of the reduced equation, i.e. it is a hidden
symmetry of type I. The first prolongation Vz(l) is not a well-defined vector field in the coordinates (x, u)
of the reduced equation and it becomes an exponential vector field (see Olver, 1993, p. 181)

e P(x.uydx (f(x, u)a% + n(X, u)%) . (2.1)

These nonlocal symmetries are related with specific €°°-symmetries of the reduced equation: the
vector field V. = &(x, u)% + 5(X, u)% is a €°°-symmetry of the reduced equation for the function
A = P(x, u) (Muriel & Romero, 2001, Theorem 5.1).

In this Section, we consider the following inverse problem: to identify the ¥*°-symmetries of an
nth-order equation that can be derived from type | hidden symmetries of some (n + 1)th-order equation
when the Lie method of reduction is applied.

Let

Ax,u™) =0 (2.2)
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be an nth-order ordinary differential equation. Suppose that 4 is a differentiable! function on MM,
where M is some open subset of the space X x U of the variables of the equation. Let us suppose that
V = &(X, u)aix +7(X, u)% is a ¢’°°-symmetry for some function 2 that only depends on (x, u). It can be
assumed that 4 does depend on u, because otherwise fV would be a Lie symmetry for f (x) = e/ A00dx
(Muriel & Romero, 2001, Lemma 5.1).

Let us consider the following transformation:

Yx = 4(X, U). (2.3)
Since Ay # 0, we can locally write u = ¢ (X, yx). By derivation, we get ux = Dyp (X, Yx), where Dy
denotes the total derivative operator with respect to x. By successive derivations, (2.2) can be written in
terms of {X, y, y1, ..., Ynt1} @S an (n + 1)th-order differential equation in variables (x, y):

Ax, y™y = 0. (2.4)

It is clear that V; = ai is a Lie point symmetry of (2.4). Since x and u are invariants of Vl(l), (2.2)

corresponds to a reduced equation by the classical Lie method of reduction associated to V.
Our next goal is to search the conditions that V must verify to arise from another Lie symmetry V,
of (2.4). First, such Lie point symmetry

~ 0 _ 0
Vo = £&(X, Y)a—x + n(X, Y)a (2.9)

must verify [V1, Vo] = cV,, for some ¢ € R, ¢ £ 0. It can be assumed that ¢ = 1. This implies

E(x,y) = e¥a(x),

_ (2.6)
n(x,y) =e'b(x),

for some functions a(x) and b(x). By the prolongation formula, Vz(l) =Vo + 7D, y, yx)%, where
TV Y, ¥ = ¥(—a()yx® + b0 yx — & () yx + b'(x)). 2.7)
The vector field e‘yvz(l) is projectable by means of 7 (X, y, yx) = (X, yx) and
—yyv, D 0 2 / / 0
7. (e7V,7) = a(x) — + (ma)yx” + b yx — & (X)yx + b (X))ﬁ' (2.8)
X

The vector field n*(e—yvz(”), written in variables (x, u) by (2.3), must become V. Therefore, we deduce
that & does not depend on u and & = a, and function b must verify the following relation:

b’ + Ab = &A% + &4+ Ex + . (2.9)

In consequence, we have proved the following result.

Lin this paper, the expression differentiable means 4" but the results can be checked in each case for lower order of
differentiability.
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THEOREM 2.1 Let V be a °°-symmetry for some function 4 = A(x, u) of an equation 4(x, u™) = 0.
Consider the (n + 1)th-order equation (2.4) obtained by the transformation yx = A(x, u).
Then, V arises from a Lie symmetry V, of (2.4) if and only if V is of the form

, _ 2 _ @ -
B (X) ++ Ab(X) — E(X) 12 — &'(X)A E(X)ix)i (2.10)

0
Vzg(X)a_X-i_( /lu 6U-

In this case, V5 is given by ey(f(x)% + b(x)aiy) and it is a hidden symmetry of type I.

In what follows, for a given equation, .7 will denote the subclass of the ¥ °°-symmetries of the
form (2.10). The following property of the class .7 will be used later.

THEOREM 2.2 Let V be a ¥°°-symmetry of (2.2) such that V € . Then, fV e J# for any differen-
tiable function f depending on x.

Proof. If V e 57, then V is a €>°-symmetry of (2.2), for 1 = A(x, u), and V = &(X) £, + n(x, u) %,
where

Wb — A2 -0 = Eax
= o

n (2.11)

for some function b depending on x.
If f = f(x), the vector field fV is a ©>°-symmetry of (2.2) for the function 7 = 4 — fT (Muriel &
Romero, 2001, Lemma 5.1). Let us check that 4 does only depend on (x, u). Let us prove that

B 4Ib— (fO)2% - (FO)T — (1)

f 2.12
n T (2.12)

for some function b = b(x). If 7 is replaced by /. — X', the right member of (2.12) becomes

B 4 aB+ 1) = KB+ f (=222 = &a — Eay) + T8 &t — L2
2.13)
Au
The comparison between (2.11) and (2.13) leads us to consider

b=bf —¢&f’. (2.14)

By (2.11), we have that (2.13) becomes % (0 +Ab—E12 =& ) —EAy) = . Therefore, identity (2.12)
is satisfied. O

3. Order reduction

In this section, we apply the method of reduction associated to a €>°-symmetry V e 7 (for the general
case, see Muriel & Romero, 2003, Theorem 5.2). The following result about ©°°-symmetries will be
used in what follows.

LEMMA 3.1 Let V be a €>°-symmetry of u, = F(x, u™ D) for some function 4. If the equation is
written in a new local system of coordinates {X, U™}, U, = G(X, U"=D), then the vector field V, in
variables {X, U}, is a €>°-symmetry for the function 1/Dy X in variables { X, U™},
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Proof. Since V is a ¢°°-symmetry of the equation, we have (Muriel & Romero, 2001)
[V[L(n_l)], A(x,u)] = iv[l’(n_l)] + ﬂA(x,u)a (3-1)

where Axu = S + U1 + - + F(X, u(”‘l))auLn_1 is the vector field associated to the equation

un = F(x, u™ D). It can be checked that the vector field associated to the equation U, = G(X, U™~D)
is the vector field A uy/Dx(X) in variables {X, U (M1, By the properties of the Lie bracket, we deduce

[v[’w(”-lﬂ, Acx,u) ] _vio-nl g Axe (3.2)
Dx(X) Dx (X)

where 7 = 4/Dyx(X) and 7 = u + VIH0M=DI(1/Dy(X)). By writing (3.2) in terms of the variables

{X, U™}, we get the result. O
Let V € JZ be a €°°-symmetry of (2.2), of the form (2.10), for 2 = (X, u).

3.1 Determination of two invariants X = X(x, u) and W = W(x, u, uy) of V%@

Case l: If &(x) = 0, V becomes (b/%jb)o% Let us observe that b(x) # 0. We consider the following
change of variables:
X =X,
b0 (33)

U= 706G Wb(X) B (X) *

It is clear that V(X) = 0 and V(U) = —b(X)U. This expression suggests to consider V= —ﬁv
instead of V. Clearly, V in variables {X, U} becomes U%. By Lemma 3.1, the vector field Visa
€ -symmetry, for 2 (X, U) = —%, of (2.2) transformed by (3.3):

AX, UM =0, (3.4)

A first-order invariant of (U %)[7’(1)] is given by

Ux —1
U
and it is also an invariant of V[ M1,
Case2: For £(x) # 0, let us denote
b(x
AX) = exp(— ?X;dx) (3.6)
and consider the following change of variables:
—_ [ AX) A(X)
X = [ 09X+ =1 0 37)

b(x)—7(x,u)(x) *
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It can be checked that V (X) = 0and V (U) = — A(x). Therefore, we can consider V = —ﬁx)v instead

of V. In variables {X, U}, V becomes -Z;. This vector field is a ¢"°-symmetry, for Z(X, U) = 951,

of (2.2) transformed by (3.7) (Lemma 3.1):
AX,UuM) =0, (3.8)
A first-order invariant of (%)[I,(l)] and, therefore, of VI*-M] js given by

Ux —1
W= -2"= (3.9)
U

3.2 Reduction of order and recovery of solutions

In both cases, we have determined two invariants X and W of VI*-M1, By derivation, Wy = Bxx\;(v is

an invariant of VI*:®] (Muriel & Romero, 2001, Theorem 3.1). If we continue the process, we get a
complete system {X, W=D} of invariants of VI*(™]_ In terms of {X, W=D}, (3.4) or (3.8) becomes
an (n — 1)th-order equation of the form

Wi_1 = Fn_1(X, W"=2)), (3.10)

If W(X) = G(X,Cq,...,Cpu1) is the general solution of (3.10), we solve the first-order and linear
equation
Ux —1
U
to obtain the general solution U(X) = H(X, Cy,..., Cy) of (3.4) or (3.8). Finally, we express this

general solution in terms of the original variables, by means of (3.3) or (3.7), to get the general solution
of the original equation.

= G(X,Cq,...,Cn1) (3.11)

3.3 Anexample
Let us consider the second-order differential equation
2
X 1
u — +u+4+—=0. 3.12
xx+ g3 F U+ o 3.12)

This equation was proposed in Muriel & Romero (2001) as an example of an equation with no Lie
symmetries, but integrable by using €">°-symmetries. The vector field V = u4; is a ¢"°°- symmetry for
the function A = u—xz It is clear that & = 0 does not depend on u and the corresponding condition (2.9)

X —2X

is satisfied, e.g. by the constant function b = —2. Theorem 2.1 implies that V arises from a type | hidden
symmetry of the third-order equation

3x2y2, — 2XYx Yxx + X2Y4 + 2xy3 — y2
2X2yy ’

(3.14)

Yxxx =

where yy = % The corresponding type | hidden symmetry is given by Vo, = —2 ey(%.
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Since ¢ = 0, we consider the change of variables (3.3) to reduce the order of the equation

X =X,
U _7”2 (3.15)
In this case,
2uyx X 1
W=°"X,2 _= 3.16
u + Uz x (3.16)

gy W 1
Wy = W +=5—4). (3.17)

This is a Bernoulli equation, whose general solution is W(X) = —2tan(X — ¢1) — % We can recover
the general solution of (3.12) by two ways:

1. From (3.16), we have
1 2Uyx X 1
—2tan(x—¢c)—— = —+ — — —. 3.18
(X—e) = ="+ = (3.18)

This is also a Bernoulli equation; its general solution is given by

u(x) = £cos(x — Cl)\/Cg — In(cos(x — ¢1)) — xtan(x — c1). (3.19)

2. Alternatively, we can calculate U from (3.5):

1 Ux —1
—2tan(X —c) — — = ——. 3.20
( D~ % U (3.20)
This is a linear equation whose general solution is given by
U0 = cos(X — ¢1)?(Cz + In(cos(X — ¢1)) + X tan(X — o) (3.21)

X

By (3.15), we replace X by x and U (X) by _7“2 and the general solution (3.19) is again obtained.

4. Classification of equations

As a consequence of the previous discussion, we can give the general form of an nth-order equation that
admits a ¥"°>°-symmetry of the type described in Theorem 2.1.

By successive derivations of W with respect to X, we can write Wi, ..., Wh—1 in terms of
X,U, ..., Un. Forexample,

W= Ut (4.1)
w=% - (%) %, 42)

Us (3U;—1\ U, Up — 1\ [U1\?
WY (Jamt) Uy (U (L 49
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When these values are substituted into (3.10), we get an equation of order n in variables X and U.
Forn=1,2, 3, we get

Ui =UFy(X) + 1, (4.4)
U =UF (x, %) + (%) Ui, (4.5)
Us=UR (X, %55 % - (%) §) + (%72 v —2 (%) v (4.6)

Equations of higher orders can be derived in a similar way. By the change of variables (3.3) or (3.7),
we can obtain the general form of an equation of order n that admits a ¥°°-symmetry V satisfying (2.9).
The associated reduced equations of (4.4)—(4.6) are

W = Fy(X), 4.7
W = F1(X, W), (4.8)
Wy = Fa(X, W, W), (4.9)

; _ Ux-1
respectively, where W = =—=.

4.1 Integration of equations not possessing Lie symmetries

The families of equations (4.4)—(4.6) include equations that have no Lie symmetries and that are not
obviously integrable by standard methods. As an example, let us consider the following second-order
equation:

_ ((Ux)® —2(Ux)2 + U)X + U®
a (UUx — U)X

It can be checked that this equation has no Lie symmetries. We observe that (4.10) can be written in the
form

Uxx

(4.10)

Ux —1 Ux —1
Uxx = F (x, XU )u + U2 (4.11)
for F(a, b) = 1/(ab); therefore, (4.10) belongs to the family of equations (4.5).
If W = 2x=L the corresponding reduced equation (4.8) is given by
Wy = — (4.12)
X T Xw’ '

which is separable. The general solution of (4.12) is given by W? = In(X?) + C1, C; € R. From the
linear first order equation:

Ux —1
XT = +/In(X2) + C4, (4.13)
we recover the general solution of (4.10):
U=ef® (/e:Ff(X)dX-i-Cz), (4.14)

where f(X) = [VIn(X?) + C1dX.
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5. Linearization of first-order differential equations

In general, canonical coordinates for a ¥ °°-symmetry of a first-order ordinary differential equation do
not lead to the integration by quadratures. However, the %°°-symmetries of the subclass .72 allow us to
give the explicit changes of coordinates to transform the equation into a linear first-order equation.

Let

AX,u,uy) =0 (5.1)

be a first-order ordinary differential equation. Let us suppose that (5.1) admits a €°°-symmetry V =
E(X) S + n(x, u)-Z for some function 4. In this case, it can always be assumed that 2 does only depend
on (X, u) because if 1 depends on derivatives of u, then they can be expressed in terms of (X, u) by using
(5.1) and its derivatives. Let us suppose that there exists some function b satisfying (2.9).

As a consequence of the discussion presented in Section 2, we have proved the following result.

COROLLARY 5.1 Any first-order equation that admits a "*°-symmetry V = 5(x)% +n(X, u)% e N,
for some function 4, is linearizable by (3.3) if ¢ = 0 or by (3.7) if & #£ 0. The transformed linear equation
is of the form Ux = U Fg(X) + 1, for some function Fo(X).

This result let us obtain exact solutions of first-order equations which are not obviously integrable but
have ¢ °°-symmetries of the subclass .7#. In Section 6, we illustrate the method with several examples
of some Riccati and Abel equations of the second kind.

5.1 Exponential nonlocal symmetry approaches

The integration of first-order ordinary differential equation by nonlocal symmetries has been studied by
other authors (Adam & Mahomed, 2002; Edelstein et al., 2001; Geronimi et al., 2001, etc.). In what
follows, we compare these approaches with the method presented in previous sections.

Theorem 2 in Adam & Mahomed (2002) gives a criterion that must satisfy a nonlocal symmetry

~ 0 0
V = exp(/ N (X, u)dx) (é(x)a—x + (X, u)a) (5.2)

to transform a first-order equation into an integrable form: the equation
a'éa’ —a'éa +alay +anay =0 (5.3)

must be satisfied for some function a(x), where & = N 4 a”/a + & /<.

This is derived by considering second-order equations that admit a non-Abelian algebra of dimen-
sion two. These equations admit two symmetries V1 and V, such that [Vi, V2] = Vi. When the order of
the second-order equation is reduced by using V», then Vi generates the nonlocal symmetry (5.2). This
is valid when V> # p(x, u)Vy for any function p (type I algebras; Ibragimov, 1995), but the authors in
Adam & Mahomed (2002) mention that a similar theorem is not obvious for the case of algebras of the
second type.

The following theorem, that can be proved by a straightforward procedure, let us obtain former
results from our previous discussions.

THEOREM 5.2 I V in (5.2) satisfies (5.3), then V = &(x) 2 +7(x, u) < belongs to 72, for 2 = N(x, u)
andb= (1 —a).
Conversely, if V = g“(x)aix + n(X, U)a% e J for A = (X, u) and some b = b(x), and & # 0, then

V =exp( [ 2dx)V satisfies (5.3) fora = [ ?Tg’f)ldx and a =/ — 2, where Als given by (3.6).
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In consequence, Corollary 5.1 let us recover, in a simpler version, the result of Theorem 2 in
Adam & Mahomed (2002) for first-order equations. It must be stressed that our result is also valid
for the second type of 2D non-Abelian algebras.

6. Some examples of linearization of first-order equations
6.1 Riccati equations
Let us consider an arbitrary Riccati equation
= fo()U? + f1(OU + f2(X). (6.1)

The determining equation for the >°-symmetries of the form V = &(x) £ +#(x, )<, for 1 = A(x, u),
is given by

A((fol? + fru+ f2)& = 1) = nx = ((fod)xU? + (F1)xu + (F28)%)
+nu(U? fo + fru+ f2) + Qufo+ fi)n. (6.2)
The ¢°°-symmetry V is of the form (2.10) if and only if

/ _ 2 _ ozt _
oy = B0 200 = £ == 00 69

for some function b(x). When this value is substituted into the determining equation (6.2), we obtain a
second-order partial differential equation for A. To obtain particular solutions of this partial differential
equation, we search solutions of the form A(x, u) = 11(X)u 4+ Z2(x). It can be assumed that 12(x) =0
because by Theorem 2.2, V € 7 for 1 = A1u + Ay if and only if el 20Xy e 7 for 7l = A1U.

From the study of the resulting determining equations, we deduce the following result.

PROPOSITION 6.1 The unique €°°-symmetries of the form V = 5(X, u)% e ¢ for A(X, u) linear on
u are

V = f(xX)b(X)(u — s(x))a%I for 1 = fo(X)u — %, (6.4)

where s(x) is a particular solution of the Riccati equation.

The corresponding transformation (3.3) is given by

X =X,
{ 1 (6.5)

U = —Tu—so
that transforms the Riccati equation (6.1) into the linear equation Uyx = 1 + Fo(X)U, where Fp(X) =

f/
— {2655 = f1(0) = 2fo(X)S(x).

6.1.1 Someparticular examples. The examples in Adam & Mahomed (1988, 2002) of Riccati equa-
tions that are integrable by means of nonlocal symmetries are particular cases of Proposition 6.1: the
equations

Uy + U2 +xu—1=0, (6.6)

1
ux+u2+u—;=0 (6.7)
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admit V = (1 — xu)exp(— fudx)% as a nonlocal symmetry. In consequence, V = (1 — xu)% isa
©°°-symmetry for 1 = —u. Since 1 is linear in u (1(x, u) = fo(x)u), then V is a €*°-symmetry of
the type considered in Proposition 6.1. In this case, f(x) = 1, b(x) = x and s(X) = % is a particular
solution of (6.6). By means of (6.5),

H o 69)
6.8
U= 55
the Riccati equations (6.6) and (6.7) become, respectively, the linear equations
2
UX=1+(X+§)U, (6.9)
2
Ux =1+(1+Y)U' (6.10)

6.2 Abel equations of the second kind
Let us consider an arbitrary family of Abel equations of the second kind
uuy = g(x)u+ f(x). (6.11)

Next, we determine some equations in this family that can be written in an integrable form by the method
of Section 2. .
A vector field V = £(X) 5, + n(X, u)% is a ¥°°-symmetry of (6.11) for 1 = A(x, u) if and only if

((n — Q)¢u? — FEU)A=—(nx + iy — 9& — Gx&)U?

—(fypu— & — &xHU - Ty (6.12)
and V e 7 if and only if

b/ () + Ab(X) — E00A% = &' ()4 — £(X)Ax
lu ’
for some function b(x). When this value is substituted into (6.12), a second-order partial differential

equation for A is obtained. We have obtained several particular solutions:
Casel: For 1 = 11xM/u, where 11, m € R and m # —1, we obtain

n(X,u) = (6.13)

(X)) = p2x™M + pax,
(6.14)
n(x,u) = 21 p1x™L 4+ (M +1)p1 — b)u + A1 py,

where p1, p2, f1, 01 € R. Depending on the values of p; and b, we get four different families of
functions g and f (see Table 1). In Tables 1 and 2, k; = b/(p1(m+ 1)) and ky = b/(p2(m + 1)).
Casell: For A = A1x™/u, where A1 € R and m = —1, we obtain

¢ =x(p2Inx + p1),
n(X,u) = A1p2 InX + (p2 — b)u + A1 p1,

where p1, p2, f1, 01 € R. Depending on the values of p; and b, we get four different families of
functions g and f (see Table 3). In Tables 3and 4, ks = b/p2 and kg = b/ ps.

(6.15)
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TABLE 1 Casel: m # —1. Families of functions g and f

k:
-1 pr#0, g(x)=x" ( o 24P (m 4 1) — zl) :

(PLx™H L4 pp)kL
b#0 00 = —g5 (bi g (px™ L + pylh
— b2 P2 £ (pax™ + P2) 12K 4 prA2((m+ 1) py — b)(pix™ + py))

12 p1=0, g0)=x" (91 el “) ’
b0 00 =x"(fe 2™ - 442 (geex™ — 1))
-3 p1#0, gx)=x" (2/11 In (%ﬁm) + 91) )

b=0 f(x)= gw%wxm (fl - F’l_h In (%‘)—2) (91 — 21+ 41ln (P—p—lxm;llJr 2)))

1-4 p1 = O, g(X) — 91Xm,
b=0 f(x) = fixM— %XZmﬁ-l

TABLE 2 Casel: m# —1. Linearization and Fo(X) = m

A= bi% p1,

_ 52
1 X — 1 (p1X™ 4 )ikt U= u(pyX™ 4 py) Kt C=2ipi(b—(M+1)p),
b(bu—71 (p1x™14py))” bu—Ai(pX™4p2) D = h2gy 14 p|1(1+1,

E = b f p2

A=iip,
2 x =2y U= 2™ C=2ipe
b(bu—/hpz) ’ bU—Alpz D — 91/11 pzb,
E = f]_b3
A=i3(m+1)p,
B=—-fi(m+1)— A1In(p1)
13 X = nex™ipy) u U—-— u (91 — 41 — A1In(p1)),
p1(m+1) Z1(pr XM+ 14pp)? 21(Pr XM 14 ) C= i%(m + 1)2 p%’
D =/1(m+1)
P1(01 — A1 — 241 In(p1))
A = _/1% p27
1 m+1
4 X=3& (5 - £). U=-—4 B = fi,

C=Ahl(1—-g)p




TABLE 4 Casell: m = —1. Linearization and Fp(X) =
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TABLE 3 Casell: m = —1. Families of functionsg and f

-1 p #0,
b#0
-2 p, =0,
b#0
-3 p2 #0,
b=0
-4 p, =0,
b=0

X P2

_h _ _P _
f(x) = — poAre P2y (poInx+p1 ks+1 L8 P2 f; (poInx+p1 Zkg+1
)= bx P2 X [

P1

) —k .

5 3

gx) = & 2 g1 ( p2ln X+|01) 2/1leP2 Axl i

22(p |
4 4P anX+pl) (1 — ka)

g(X) = ng—k4—l - ;L_)(ZL, 5
f(x) = 113 x—ka=1 + f1X_2k4_1 + ﬁé%

900 = } (2110 (=%52) +.01)
p
fu)=g5%§ﬂﬁ(gw§ﬁ_zlmmy+pﬂMM)

+A1In(p1 + p2 In(X)) (=01 + 41 + 241 |n(p2)))

9(x) = g1/X,
) =202 - agnInx+ &

A

B+CX+DX2+EX3
A= bepl/pz,li P2,
— 2
-1 X = — _A(pi+ppIneo)t=s U = — U(pr+pp InG) s C =eP/P22(h — pp) p,
= _Ub2+llb( p1+p2 In(x))”’ - A1(p1+p2 In(x))—bu D= bzgl/ll p|2(3+1’
E = bf f; pe
A=iip,
2
- _ _Apix® _ _ux C=Ai1p1,
-2 X = b(bu—/i1p1)° U= bu—41p1 D= bglll]_ pL,
E=Db%f
A= ePl/Pz,{i P2,
B - - fla
_ _ In(m+p2In(x)) __ u - _ u — eh1/P
s X= p2 A1(p1+p2 In(x))? U= 71(p1+p2 IN(X)) C=el/Piip
(01 — A1 — 221 In(p2)),
D= epl/pz,ﬁ p%
A=—-23pi,
_ __ Z1In(x)—u o _u_ _
-4 X = T U= T B = f1,

C=A(1—-09)p1
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In Table 2 (m # —1) and Table 4 (m = —1), we present the explicit changes of variables to
linearize the corresponding equations. In all cases, the resulting first-order linear equations are of the

_ A
fqrm Ux =1+ mu . The values of constants A, B, C, D and E that are not null are also
given.

6.2.1 Someparticular examples. Several of the exact solutions of Abel equations of the second kind
that appear in Polyanin & Zaitsev (2003) can be obtained from the previous general method of lineariza-
tion. For example, it can be checked that the functions g and f of the following equations are particular
cases of the families indicated in each case.

I-1 uuy = (ax + 3byu + cx® — abx? — 2b%x,
uuy = (3ax + byu — a?x® — abx? — %x,

2uUy = (3 — m)X — 1)U + (M+ 1) (x3 X2y fr%)lgx)

-2 uuy = (ae* + b)u+ce?* —abe* — b?
-3 uuy = 2Inx+a+ 1)u+x(—In?x —alnx + b)
I-4 Uux =u+ Ax+ B

The Abel equations of the second kind considered in Examples 4-8 in Adam & Mahomed (2002)
(some of them are also contained in Polyanin & Zaitsev, 2003) correspond to particular cases of func-
tions appearing in Table 3.

7. Conclusions

In this work, we identify the nonlocal symmetries generated by type | hidden symmetries as a specific
subclass .7# of the €°°-symmetries of the given nth-order equation. This provides an algorithm to find
this type of nonlocal symmetries. As a consequence of the general method of reduction associated to a
€°°-symmetry in 27, we can give the explicit transformations that reduce the order in the general case.

We have also provided a classification of the equations of arbitrary order that admits a 4">°-symmetry
in ¢ and hence, nonlocal symmetries derived by type | hidden symmetries. Several examples of equa-
tions without Lie symmetries are included in these families of equations.

For first-order equations, the method provides a general method of linearization. This can be applied
to equations that are not obviously given in an integrable form, including examples of Riccati and Abel
equations of the second kind.
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