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Abstract

We characterize those Leavitt path algebras which are exchange rings in terms of intrinsic proper-
ties of the graph and show that the values of the stable rank for these algebras are 1, 2 or ∞. Concrete
criteria in terms of properties of the underlying graph are given for each case.
© 2005 Elsevier Inc. All rights reserved.
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0. Introduction

For a row-finite graph E, the Leavitt path algebra L(E) is the algebraic analogue of
the Cuntz–Krieger algebra C∗(E) described in [17]. The pioneering papers in which L(E)

✩ The first author was partially supported by a FPU grant AP2001-1368 by the MEC. The first and third authors
were partially supported by the MCYT and Fondos FEDER, BFM2001-1938-C02-01, MTM2004-06580-C02-02
and the “Plan Andaluz de Investigación y Desarrollo Tecnológico”, FQM 336. The second author was partially
supported by the DGI and European Regional Development Fund, jointly, through Project MTM2004-00149,
by PAI III grant FQM-298 of the Junta de Andalucía, and by the Comissionat per Universitats i Recerca de la
Generalitat de Catalunya.

* Corresponding author.
E-mail addresses: gonzalo@agt.cie.uma.es (G. Aranda Pino), enrique.pardo@uca.es (E. Pardo),

mercedes@agt.cie.uma.es (M. Siles Molina).
URL: http://www.uca.es/dept/matematicas/PPersonales/PardoEspino/index.HTML (E. Pardo).
0021-8693/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2005.12.009



G. Aranda Pino et al. / Journal of Algebra 305 (2006) 912–936 913
is introduced and studied are [1,2,7]. In [7], Ara, Moreno and Pardo carry out a study of
the monoid V (L(E)). Concretely they show that there is an explicitly described natural
isomorphism between the lattice of graded ideals of L(E) and the lattice of order ideals
of V (L(E)). In [1,2] Abrams and Aranda Pino provide characterizations of the simplicity
and purely infinite simplicity, respectively, of the Leavitt path algebra L(E) in terms of
properties involving the graph E only.

An associative unital ring R is said to be an exchange ring if RR has the exchange
property introduced by Crawley and Jónsson. The structure of exchange rings has been
intensively investigated by several authors; in the not necessarily unital case, their study
was initiated by Ara in [3]. On the other hand, the concept of stable rank, introduced by
Bass for unital rings (see, e.g., [9]), is very useful in treating the stabilization problem in
K-theory. In [20], Vaserstein presents the definition of stable rank for a not necessarily
unital ring. For the more specific case of C∗-algebras, the exchange property is closely
related with the real rank, because a C∗-algebra has real rank zero if and only if it is an
exchange ring [6, Theorem 7.2].

Following the philosophy of [1,2,7], the aim of this paper is to study the exchange
property for Leavitt path algebras and, within this class of Leavitt path algebras, their
stable rank.

Some of the motivating ideas for our characterization of the exchange property are con-
tained in the works of Jeong and Park [13] and Bates, Hong, Raeburn and Szymański [10],
while ideas regarding the stable rank grew from the paper by Deicke, Hong and Szy-
mański [11]. The proofs presented here significantly differ from those of the analytic
setting of C∗-algebras and the arguments are necessarily different in the purely algebraic
context since many of the tools used there are not available in our setting.

The paper is divided into seven sections. After some preliminaries, we begin by stating
basic properties concerning special subsets of graphs. In particular, we study the ideals
generated by hereditary and saturated subsets of vertices and cofinality of the graph.

Condition (K), studied in the third section, plays a central role in the paper. On the one
hand, it is precisely the condition we need to impose on E so that L(E) is exchange; on
the other hand, the development of results concerning the stable rank of L(E) occur under
this hypothesis.

The main result characterizing exchange Leavitt path algebras appears in Section 4:

Theorem 4.5. For a graph E, the following conditions are equivalent:

(1) L(E) is an exchange ring.
(2) E/H satisfies Condition (L) for every hereditary saturated subset H of E0.
(3) E satisfies Condition (K).
(4) Lgr(L(E)) = L(L(E)).
(5) EH and E/H satisfy Condition (K) for every hereditary saturated subset H of E0.
(6) EH and E/H satisfy Condition (K) for some hereditary saturated subset H of E0.

The rest of the sections are devoted to computing the stable rank in Leavitt path algebras
satisfying Condition (K). The first step towards this aim is done in Section 5, first by in-
vestigating the absence of unital purely infinite simple quotients of L(E) (Proposition 5.4)
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and secondly by relating prime graded ideals with maximal tails (Proposition 5.6). Then, in
Section 6, we calculate the stable rank for Leavitt path algebras which do not have nonzero
bounded graph traces and for which every vertex lying on a closed simple path is left infi-
nite (Corollary 6.8). The paper finishes in Section 7 with a criterion to compute the stable
rank for exchange Leavitt path algebras:

Theorem 7.6. Let E be a graph satisfying Condition (K). Then, the values of the stable
rank of L(E) are:

(1) sr(L(E)) = 1 if E is acyclic.
(2) sr(L(E)) = ∞ if there exists H ∈ HE such that the quotient graph E/H is nonempty,

finite, cofinal and contains no sinks.
(3) sr(L(E)) = 2 otherwise.

1. Preliminaries

Throughout this paper, we describe Leavitt path algebras following the presentation of
[7, Sections 2 and 4] but using the notation of [1] for the elements.

A (directed) graph E = (E0,E1, r, s) consists of two countable sets E0,E1 and maps
r, s :E1 → E0. The elements of E0 are called vertices and the elements of E1 edges.

A vertex which emits no edges is called a sink. A graph E is finite if E0 is a fi-
nite set. If s−1(v) is a finite set for every v ∈ E0, then the graph is called row-finite.
A path μ in a graph E is a sequence of edges μ = (μ1, . . . ,μn) such that r(μi) = s(μi+1)

for i = 1, . . . , n − 1. In such a case, s(μ) := s(μ1) is the source of μ and r(μ) := r(μn)

is the range of μ. An edge e is an exit for a path μ if there exists i such that s(e) = s(μi)

and e �= μi . If s(μ) = r(μ) and s(μi) �= s(μj ) for every i �= j , then μ is a called a cy-
cle. If v = s(μ) = r(μ) and s(μi) �= v for every i > 1, then μ is a called a closed simple
path based at v. We denote by CSPE(v) the set of closed simple paths in E based at v.
For a path μ we denote by μ0 the set of its vertices, i.e., {s(μ1), r(μi) | i = 1, . . . , n}.
For n � 2 we define En to be the set of paths of length n, and E∗ = ⋃

n�0 En the set

of all paths. We define a relation � on E0 by setting v � w if there is a path μ ∈ E∗
with s(μ) = v and r(μ) = w. A subset H of E0 is called hereditary if v � w and v ∈ H

imply w ∈ H . A hereditary set is saturated if every vertex which feeds into H and only
into H is again in H , that is, if s−1(v) �= ∅ and r(s−1(v)) ⊆ H imply v ∈ H . The set
T (v) = {w ∈ E0 | v � w} is the tree of v, and it is the smallest hereditary subset of E0

containing v. We extend this definition for an arbitrary set X ⊆ E0 by T (X) = ⋃
x∈X T (x).

Denote by H (or by HE when it is necessary to emphasize the dependence on E) the set of
hereditary saturated subsets of E0. The hereditary saturated closure of a set X is defined
as the smallest hereditary and saturated subset of E0 containing X. It is shown in [7] that
the hereditary saturated closure of a set X is X̄ = ⋃∞

n=0 Λn(X), where

(1) Λ0(X) = T (X),
(2) Λn(X) = {y ∈ E0 | s−1(y) �= ∅ and r(s−1(y)) ⊆ Λn−1(X)} ∪ Λn−1(X), for n � 1.
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Let E = (E0,E1, r, s) be a graph, and let K be a field. We define the Leavitt path K-al-
gebra LK(E) associated with E (L(E) when the base field is understood) as the K-algebra
generated by a set {v | v ∈ E0} of pairwise orthogonal idempotents, together with a set of
variables {e, e∗ | e ∈ E1}, which satisfy the following relations:

(1) s(e)e = er(e) = e for all e ∈ E1.
(2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.
(3) e∗e′ = δe,e′r(e) for all e, e′ ∈ E1.
(4) v = ∑

{e∈E1|s(e)=v} ee∗ for every v ∈ E0 that emits edges.

Note that the relations above imply that {ee∗ | e ∈ E1} is a set of pairwise orthogonal
idempotents in L(E). Note also that if E is a finite graph then we have

∑
v∈E0 v = 1.

In general the algebra L(E) is not unital, but it can be written as a direct limit of unital
Leavitt path algebras (with not unital transition maps), so that it is an algebra with local
units. Throughout this paper, we will be concerned only with row-finite graphs.

2. Basic properties of graphs

Let E be a graph. For any subset H of E0, we will denote by I (H) the ideal of L(E)

generated by H .

Lemma 2.1. If H is a subset of E0, then I (H) = I (H̄ ), and H̄ = I (H) ∩ E0.

Proof. Take G = I (H) ∩ E0. By [1, Lemma 3.9], G ∈ H. Thus, by minimality, we get
H ⊆ H̄ ⊆ G, whence I (H) ⊆ I (H̄ ) ⊆ I (G). Since G ⊆ I (H), we have I (G) ⊆ I (H),
so we get the desired equality. The second statement holds by [7, Proposition 4.2 and
Theorem 4.3], as desired. �

For a graph E and a hereditary subset H of E0, we denote by E/H the quotient graph(
E0 \ H,

{
e ∈ E1 | r(e) /∈ H

}
, r|(E/H)1 , s|(E/H)1

)
,

and by EH the restriction graph(
H,

{
e ∈ E1 | s(e) ∈ H

}
, r|(EH )1 , s|(EH )1

)
.

Thus both E/H and EH are simply the full subgraphs of E0 generated by E0 \ H and H ,
respectively. Observe that while L(EH ) can be seen as a subalgebra of L(E), the same
cannot be said about L(E/H).

Now, we recall that L(E) has a Z-grading. For every e ∈ E1, set the degree of e as 1,
the degree of e∗ as −1, and the degree of every element in E0 as 0. Then we obtain a well-
defined degree on the Leavitt path K-algebra L(E), thus, L(E) is a Z-graded algebra:

L(E) =
⊕

L(E)n, L(E)nL(E)m ⊆ L(E)n+m, for all n,m ∈ Z.
n∈Z
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An ideal I of a Z-graded algebra A = ⊕
n∈Z

An is a graded ideal in case
I = ⊕

n∈Z
(I ∩ An).

Remark 2.2. An ideal J of L(E) is graded if and only if it is generated by idempotents;
in fact, J = I (H), where H = J ∩ E0 ∈ HE . (See the proofs of [7, Proposition 4.2 and
Theorem 4.3].)

Lemma 2.3. Let E be a graph and consider a proper H ∈ HE . Define Ψ :L(E) →
L(E/H) by setting Ψ (v) = χ(E/H)0(v)v, Ψ (e) = χ(E/H)1(e)e and Ψ (e∗) =
χ((E/H)1)∗(e

∗)e∗ for every vertex v and every edge e, where χ(E/H)0 :E0 → K and

χ(E/H)1 :E1 → K denote the characteristic functions. Then:

(1) The map Ψ extends to a K-algebra epimorphism of Z-graded algebras with Ker(Ψ ) =
I (H) and therefore L(E)/I (H) ∼= L(E/H).

(2) If X is hereditary in E, then Ψ (X) ∩ (E/H)0 is hereditary in E/H .
(3) For X ⊇ H , X ∈ HE if and only if Ψ (X) ∩ (E/H)0 ∈H(E/H).

(4) For every X ⊇ H , Ψ (X) ∩ (E/H)0 = Ψ (X̄) ∩ (E/H)0.

Proof. (1) It was shown in [1, Proof of Theorem 3.11] that Ψ extends to a K-algebra
morphism. By definition, Ψ is Z-graded and onto. Moreover, I (H) ⊆ Ker(Ψ ).

Since Ψ is a graded morphism, Ker(Ψ ) ∈ Lgr(L(E)). By [7, Theorem 4.3], there exists
X ∈ HE such that Ker(Ψ ) = I (X). By Lemma 2.1, H = I (H) ∩ E0 ⊆ I (X) ∩ E0 = X.
Hence, I (H) �= Ker(Ψ ) if and only if there exists v ∈ X \ H . But then Ψ (v) = v �= 0
and v ∈ Ker(Ψ ), which is impossible.

(2) It is clear by the definition of Ψ .
(3) Since Ψ is a graded epimorphism, there is a bijection between graded ideals

of L(E/H) and graded ideals of L(E) containing I (H). Thus, the result holds by
[7, Theorem 4.3].

(4) It is immediate by part (3). �
Recall that a ring R is said to be an idempotent ring if R = R2. For an idempotent

ring R we denote by R-Mod the full subcategory of the category of all left R-modules
whose objects are the “unital” nondegenerate modules. Here a left R-module M is said to
be unital if M = RM , and M is said to be nondegenerate if, for m ∈ M , Rm = 0 implies
m = 0. Note that if R has an identity then R-Mod is the usual category of left R-modules.

We will use the well-known definition of a Morita context in the case where the rings
R and S do not necessarily have an identity. Let R and S be idempotent rings. We say
that (R,S,M,N,ϕ,ψ) is a (surjective) Morita context if RMS and SNR are unital bimod-
ules and ϕ :N⊗RM → S, ψ :M⊗SN → R are surjective S-bimodule and R-bimodule
maps, respectively, satisfying the compatibility relations: ϕ(n ⊗ m)n′ = nψ(m ⊗ n′),
m′ϕ(n ⊗ m) = ψ(m′ ⊗ n)m for every m,m′ ∈ M , n,n′ ∈ N .

In [12] (see Proposition 2.5 and Theorem 2.7) it is proved that if R and S are two
idempotent rings, then R-Mod and S-Mod are equivalent categories if and only if there
exists a (surjective) Morita context (R,S,M,N,ϕ,ψ). In this case, we will say that the
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rings R and S are Morita equivalent and we will refer to as the (surjective) Morita context
(R,S,M,N).

Lemma 2.4. Let E be a graph and H ⊆ E0 a proper hereditary subset. Then L(EH ) is
Morita equivalent to I (H).

Proof. Define Λ as N if H is an infinite set or as {1, . . . , card(H)} otherwise. Let
H = {vi | i ∈ Λ}, and consider the ascending family of idempotents en = ∑n

i=1 vi (n ∈ Λ).
By [1, Lemma 1.6], {en | n ∈ Λ} is a set of local units for L(EH ), so that L(EH ) =⋃

i∈Λ eiL(E)ei . Since I (H) is generated by the idempotents vi ∈ H , it is an idempotent
ring. Moreover, I (H) = ⋃

i∈Λ L(E)eiL(E). It is not difficult to see that(∑
i∈Λ

eiL(E)ei,
∑
i∈Λ

L(E)eiL(E),
∑
i∈Λ

L(E)ei,
∑
i∈Λ

eiL(E)

)

is a (surjective) Morita context for the idempotent rings L(EH ) = ∑
i∈Λ eiL(E)ei and

I (H) = ∑
i∈Λ L(E)eiL(E), hence I (H) is Morita equivalent to L(EH ). �

Under certain conditions we will see in Section 5 that I (H) is not only Morita equiva-
lent to a Leavitt path algebra; in fact it is isomorphic to a Leavitt path algebra.

The proof of the following lemma is straightforward.

Lemma 2.5. Let H ∈ HE , and let X ⊆ H be any subset. Then, X ∈ HE if and only
if X ∈HEH

.

Lemma 2.6. Let E be a graph and H ∈ HE . Then, the canonical map

K0
(
L(E)

) → K0
(
L(E)/I (H)

)
is an epimorphism.

Proof. If H = E0 or H = ∅, the result follows trivially. Now, suppose H is a proper subset
of E0. By Lemma 2.3(1) we have L(E)/I (H) ∼= L(E/H). By [7, Lemma 5.6],

V
(
L(E)

)
/V

(
I (H)

) ∼= V
(
L(E/H)

) ∼= V
(
L(E)/I (H)

)
.

Since L(E) and L(E/H) have a countable unit, we have that K0(L(E)) = Grot(V (L(E)))

and K0(L(E/H)) = Grot(V (L(E/H))). Hence, the canonical map K0(L(E)) →
K0(L(E)/I (H)) is clearly an epimorphism, as desired. �

We denote by E∞ the set of infinite paths γ = (γn)
∞
n=1 of the graph E and by E�∞ the

set E∞ together with the set of finite paths in E whose end vertex is a sink. We say that
a vertex v in a graph E is cofinal if for every γ ∈ E�∞ there is a vertex w in the path γ

such that v � w. We say that a graph E is cofinal if so are all the vertices of E.
Observe that if a graph E has cycles, then E cofinal implies that every vertex connects

to a cycle (in fact to any cycle).
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Lemma 2.7. If E is cofinal and v ∈ E0 is a sink, then:

(1) The only sink of E is v.
(2) For every w ∈ E0, v ∈ T (w).
(3) E contains no infinite paths. In particular, E is acyclic.

Proof. (1) It is obvious from the definition.
(2) Since T (v) = {v}, the result follows from the definition of T (v) by considering the

path γ = v ∈ E�∞.
(3) If α ∈ E∞, then there exists w ∈ α0 such that v � w, which is impossible. Thus, in

particular, E contains no closed simple paths, and therefore no cycles. �
The next result is known in the case of graphs without sinks. Since we have no knowl-

edge of the existence of a (published) version of the result in the general case, we give a
proof for the sake of completeness.

Lemma 2.8. A graph E is cofinal if and only if H = {∅,E0}.

Proof. Suppose E to be cofinal. Let H ∈ H with ∅ �= H �= E0. Fix v ∈ E0 \H and build a
path γ ∈ E�∞ such that γ 0 ∩H = ∅: If v is a sink, take γ = v. If not, then s−1(v) �= ∅ and
r(s−1(v)) � H ; otherwise, H saturated implies v ∈ H , which is impossible. Hence, there
exists e1 ∈ s−1(v) such that r(e1) /∈ H . Let γ1 = e1 and repeat this process with r(e1) /∈ H .
By recurrence either we reach a sink or we have an infinite path γ whose vertices are not
in H , as desired. Now consider w ∈ H . By the hypothesis, there exists z ∈ γ such that
w � z, and by hereditariness of H we get z ∈ H , contradicting the definition of γ .

Conversely, suppose that H = {∅,E0}. Take v ∈ E0 and γ ∈ E�∞, with v /∈ γ 0 (the
case v ∈ γ 0 is obvious). By hypothesis the hereditary saturated subset generated by v

is E0, i.e., E0 = ⋃
n�0 Λn(v). Consider m the minimum n such that Λn(v) ∩ γ 0 �= ∅,

and let w ∈ Λm(v) ∩ γ 0. If m > 0, then by minimality of m it must be s−1(w) �= ∅ and
r(s−1(w)) ⊆ Λm−1(v). The first condition implies that w is not a sink and since γ =
(γn) ∈ E�∞, there exists i � 1 such that s(γi) = w and r(γi) = w′ ∈ γ 0, the latter meaning
that w′ ∈ r(s−1(w)) ⊆ Λm−1(v), contradicting the minimality of m. Therefore m = 0 and
then w ∈ Λ0(v) = T (v), as we needed. �

3. Condition (K)

We begin this section by recalling the two following well-known notions which will
play a central role in the sequel. The name of Condition (L) was given in [14], while
Condition (K) was formulated in [15].

(1) A graph E satisfies Condition (L) if every closed simple path has an exit, equivalently
[1, Lemma 2.5], if every cycle has an exit.

(2) A graph E satisfies Condition (K) if for each vertex v on a closed simple path there ex-
ists at least two distinct closed simple paths α,β based at v, or, following [2], V1 = ∅.
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Remark 3.1.

(1) Notice that if E satisfies Condition (K) then it satisfies Condition (L).
(2) According to [2, Lemma 7], if L(E) is simple then it satisfies Condition (K).

It is not difficult to see that if E satisfies Condition (L) then so does EH , whereas E/H

need not. Condition (K) has a better behavior as is shown in the following result.

Lemma 3.2. Let E be a graph and H a hereditary subset of E0. If E satisfies Condi-
tion (K), so do EH and E/H .

Proof. We will see CSPE(v) = CSPEH
(v) and CSPE(w) = CSPE/H (w) for every v ∈ H

and w ∈ E0 \ H . Clearly, CSPEH
(v) ⊆ CSPE(v); conversely, let α ∈ CSPE(v), and

suppose α = (α1, . . . , αn). Since H is hereditary and s(α1) = v ∈ H , we get r(α1) =
s(α2) ∈ H . Thus, by recurrence, α ∈ CSPEH

(v) and the result holds.
Now, let v ∈ E0 \ H and consider α = (α1, . . . , αn) ∈ CSPE(v). Since r(αn) = v /∈ H

we get αn ∈ (E/H)1. If αn−1 /∈ (E/H)1 then r(αn−1) = s(αn) ∈ H and H hereditary
implies v = r(αn) ∈ H , a contradiction. By recurrence, α ∈ CSPE/H (v); since the converse
is immediate, the result follows. �

For a graded algebra A, denote by L(A) and Lgr(A) the lattices of ideals and graded
ideals, respectively, of A. The following proposition provides a description of the ideals
of L(E) for E a graph satisfying Condition (K).

Proposition 3.3. If a graph E satisfies Condition (K) then, for every ideal J of L(E),
J = I (H), where H = J ∩ E0 is a hereditary saturated subset of E0. In particular,
Lgr(L(E)) = L(L(E)).

Proof. Let J be a nonzero ideal of L(E). By [1, Lemma 3.9] (which can be applied be-
cause E satisfies Condition (L) by Remark 3.1(1)) and [2, Proposition 6], H = J ∩E0 �= ∅
is a hereditary saturated subset of E0. Therefore, and taking into account Remark 2.2,
I (H) is a graded ideal of L(E) contained in J.

Suppose I (H) �= J . Then, by Lemma 2.3(1),

0 �= J/I (H) � L(E)/I (H) ∼= L(E/H).

Thus, E/H satisfies Condition (L) by Lemma 3.2 and Remark 3.1(1). Now, consider the
isomorphism (of K-algebras) Ψ̄ :L(E)/I (H) → L(E/H) given by Ψ̄ (x + I (H)) = Ψ (x)

(for Ψ as in Lemma 2.3). By [2, Proposition 6], ∅ �= Ψ̄ (J/I (H)) ∩ (E0 \ H) = Ψ (J ) ∩
(E0 \ H), so there exists v ∈ J ∩ (E0 \ H) with Ψ (v) ∈ Ψ (J ). But v ∈ E0 ∩ J = H and,
on the other hand, v = Ψ (v) ∈ E0 \ H , which is impossible.

To finish, take into account that J is an ideal generated by idempotents and apply Re-
mark 2.2. �

In Theorem 4.5 the converse of the previous result is proved.
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Corollary 3.4. If E satisfies Condition (K) then for every ideal I of L(E) the canonical
map

K0
(
L(E)

) → K0
(
L(E)/I

)
is an epimorphism.

Proof. By Proposition 3.3, I = I (H) for the hereditary saturated subset H = I ∩E0 of E0.
Then, the result holds by Lemma 2.6. �

Recall that a matricial algebra is a finite direct product of full matrix algebras over K ,
while a locally matricial algebra is a direct limit of matricial algebras.

The following result can be obtained as a corollary of Proposition 3.3. However we do
not include its proof because it can be reached by slightly modifying that of [14, Corol-
lary 2.3].

Corollary 3.5. If E is a finite acyclic graph, then L(E) is a K-matricial algebra.

Corollary 3.6. If E is an acyclic graph, then L(E) is a locally matricial K-algebra.

Proof. By [7, Lemma 2.2], L(E) ∼= lim−→ L(Xn), where Xn is a finite subgraph of E for
all n � 1. Hence, Xn is a finite acyclic graph for every n � 1, whence the result holds by
Corollary 3.5. �

Recall that a graph homomorphism f :E = (E0,E1) → F = (F 0,F 1) is given by two
maps f 0:E0 → F 0 and f 1:E1 → F 1 such that rF (f 1(e)) = f 0(rE(e)) and sF (f 1(e)) =
f 0(sE(e)) for every e ∈ E1. A graph homomorphism f is said to be complete in case f 0 is
injective and f 1 restricts to a bijection from s−1

E (v) onto s−1
F (f 0(v)) for every v ∈ E0 that

emits edges. Note that under the assumptions above, the map f 1 must also be injective.

Lemma 3.7. If E is a graph satisfying Condition (K) then there exists an ascending family
{Xn}n�0 of finite subgraphs such that:

(1) For every n � 0, Xn satisfies Condition (K).
(2) For every n � 0, the inclusion map Xn ⊆ E is a complete graph homomorphism.
(3) E = ⋃

n�0 Xn.

Proof. We will construct Xn by recurrence on n. First, we enumerate E0 = {vn | n � 0}.
Then, we define X0 = {v0}. Clearly, X0 satisfies Condition (K) and also X0 ⊆ E is a
complete graph homomorphism.

Now, suppose we have constructed X0,X1, . . . ,Xn satisfying (1) and (2). Consider
the graph X̃n+1 with: (a) X̃1

n+1 = X1
n ∪ {e ∈ E1 | s(e) ∈ X0

n}; (b) X̃0
n+1 = X0

n ∪ {vn+1} ∪
{r(e) | e ∈ X̃1

n+1}. Clearly, X̃n+1 is finite and satisfies (2). If it also satisfies (1), we define

Xn+1 = X̃n+1.
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Suppose that X̃n+1 does not satisfy Condition (K). Consider the set of all cycles based
at vertices in X̃n+1, μ1

1, . . . ,μ
k
1 ⊆ X̃n+1 such that: (i) μi

1 � Xn for any 1 � i � k; (ii) for
every 1 � i � k and some v ∈ μi

1, card(CSP
X̃n+1

(v)) = 1. Since X̃n+1 ⊆ E and E satisfies

Condition (K), there exist closed simple paths μ1
2, . . . ,μ

k
2 ⊆ E such that, for each 1 �

i � k, μi
1 �= μi

2 and μi
1 ∩ μi

2 �= ∅. For each 1 � i � k, let μi
2 = (ei

1, . . . , e
i
ji
).

We consider the finite subgraph Ỹn+1 of E such that: (a) Ỹ 1
n+1 = X̃1

n+1 ∪ {ei
l | 1� i � k,

1 � l � ji}; (b) Ỹ 0
n+1 = X̃0

n+1 ∪ {s(ei
l ), r(e

i
l ) | 1 � i � k, 1 � l � ji}. Clearly, Ỹn+1 satis-

fies (1).
Now, let Xn+1 be the finite subgraph of E such that: (a) X1

n+1 = Ỹ 1
n+1 ∪ {f ∈ E1 |

s(f ) ∈ (μi
2)

0 for some 1 � i � k}; (b) X0
n+1 = Ỹ 0

n+1 ∪ {r(e) | e ∈ X1
n+1}. If μ ⊆ Xn+1

is a closed simple path such that μ � Ỹn+1, then either it appears because one of
the e ∈ X1

n+1 \ Ỹ 1
n+1 is a single loop (i.e., a cycle with an edge only) based at some vertex

in one μi
2, or s(e) ∈ (μi

2)
0 and r(e) connects to a path that comes back to s(e). In any case,

the (potential) new closed simple paths are based at vertices of μi
2 for some i, whence

Xn+1 satisfies (1). Also, since the step from Ỹn+1 to Xn+1 adds all the exits of all the
vertices in the cycles μi

2, we conclude that for any vertex v ∈ X0
n+1, v is either a sink, or

every e ∈ E1 with s(e) ∈ X0
n+1 belongs to X1

n+1. Hence, Xn+1 ⊆ E is a complete graph
homomorphism. This completes the recurrence argument.

Finally, since vn ∈ Xn for every n � 0, we conclude that E0 = ⋃
n�0 X0

n and by the

construction, E1 = ⋃
n�0 X1

n. �
The following definitions can be found in [13, Definition 3.2]. Let F be a subgraph of a

graph E. Then:

(1) The loop completion �E(F ) of F in E is the subgraph of E obtained as the union of F

with every closed path based at an element of F 0.
(2) The exit completion Fe of F is a subgraph obtained by adding to F the edges V =

{e ∈ E1 | s(e) = s(f ) for some f ∈ F 1}, and the vertices {r(e) | e ∈ V }. We say that
F is exit complete if F = Fe.

Lemma 3.8. If F is an exit complete subgraph of a graph E, then L(F) is isomorphic to a
subalgebra of L(E).

Proof. Since F = Fe, for every vertex v ∈ F 0 we have that either v is a sink or s−1
F (v) =

s−1
E (v). Thus, the relations defining L(F) and L(F ′) ⊆ L(E) are exactly the same, so that

there is a natural injective morphism form L(F) to L(E), as desired. �
Lemma 3.9. If F is a subgraph of a graph E then:

(1) Fe is exit complete.
(2) If F is finite then so is Fe whereas lE(F ) need not be.
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Proof. (1) Clearly F 1
e ⊆ (Fe)

1
e . Let us see the other inclusion. Take g ∈ (Fe)

1
e . If g ∈ F 1

e

we have finished. If not, there exists f ∈ F 1
e with s(g) = s(f ). We have two possibilities:

If f ∈ F 1 then, by definition, g ∈ F 1
e . If f /∈ F 1 we can find h ∈ F 1 for which s(f ) = s(h).

Therefore s(g) = s(h) and again g ∈ F 1
e . Now it easily follows F 0

e = (Fe)
0
e .

(2) Since F is finite (and row-finite) then F 1 is finite. Now, for each f ∈ F 1 there are
finitely many edges e ∈ E1 with s(e) = s(f ) (because E is row-finite), and therefore we
are adding a finite number of edges and consequently of vertices. Thus, Fe is finite. To
show that lE(F ) can be infinite, consider the infinite graph E

•v • • • . . .

Then F = ({v},∅) is finite while lE(F ) = E is not. �
Lemma 3.10. Let E be a graph and T be any subgraph of E. Define F = lE(T ),
G = lE(T )e , S the set of sinks of G and J = G/S̄. Then:

(1) CSPF (v) = CSPE(v) for every v ∈ F 0.
(2) CSPG(v) = CSPE(v) for every v ∈ G0 such that CSPG(v) �= ∅.
(3) CSPJ (v) = CSPE(v) for every v ∈ J 0 such that CSPJ (v) �= ∅.
(4) If E satisfies Condition (K) then so do F , G and J .

Proof. (1) is evident from the definition of the loop completion.
(2) Consider v ∈ G0 such that CSPG(v) �= ∅ and take p = (p1, . . . , pn) ∈ CSPG(v).

Suppose p0 ∩ F 0 = ∅; then for an arbitrary edge pi we have r(pi) /∈ F 0. The construc-
tion of the exit completion yields that pi is a new added edge and consequently there
exists f ∈ F 1 with s(f ) = s(pi) and hence s(pi) ∈ p0 ∩ F 0, a contradiction. Therefore,
p0 ∩ F 0 �= ∅. Take w in the previous intersection. Then CSPG(v) = (v and w are in
the same closed path) CSPG(w) ⊇ (because F is a subgraph of G) CSPF (w) = (by (1))
CSPE(w) = (v and w are in the same closed path) CSPE(v) ⊇ CSPG(v). Hence, (2) holds.
Note that the result may fail for CSPG(v) = ∅.

(3) Let v ∈ J 0 such that CSPJ (v) �= ∅. Obviously CSPJ (v) ⊆ CSPG(v). Now con-
sider p = (p1, . . . , pk) ∈ CSPG(v). We claim that p0 ∩ S̄ = ∅. If not, there exists m =
min{n ∈ N | p0 ∩ Λn(S) �= ∅}. Take v ∈ p0 ∩ Λm(S). If m > 0 then by minimality we
have that r(s−1(v)) ⊆ Λm−1(S). In particular, if v = s(pi) then r(pi) ∈ p0 ∩ Λm−1(S),
which contradicts the minimality of m. If m = 0 then v ∈ p0 ∩ Λ0(S) = (S is the set of
sinks) p0 ∩ S. This is absurd since p has no sinks. Any possibility leads to a contradiction
so p0 ⊆ J 0 and, consequently, p1, . . . , pk ∈ J 1. Thus, p ∈ CSPJ (v). Now (2) gives the
result.

(4) follows directly from (1)–(3). �

4. Exchange Leavitt path algebras

A (not necessarily unital) ring R is called an exchange ring (see [3]) if for every ele-
ment x ∈ R the equivalent conditions in the next lemma are satisfied.
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Lemma 4.1. [3, Lemma 1.1] Let R be a ring and let R′ be a unital ring containing R as a
two-sided ideal. Then the following conditions are equivalent for an element x ∈ R:

(1) there exists e2 = e ∈ R with e − x ∈ R′(x − x2),
(2) there exist e2 = e ∈ Rx and c ∈ R′ such that (1 − e) − c(1 − x) ∈ J (R′),
(3) there exists e2 = e ∈ Rx such that R′ = Re + R′(1 − x),
(4) there exists e2 = e ∈ Rx such that 1 − e ∈ R′(1 − x),
(5) there exist r, s ∈ R, e2 = e ∈ R such that e = rx = s + x − sx.

(Here J (R′) denotes the Jacobson radical of R′.)

Observe that R being an exchange ring does not depend on the particular unital ring
where R is embedded as an ideal (look at condition (5) in the previous lemma). Other
characterizations of the exchange property for not necessarily unital rings can be found
in [3].

Remark 4.2. Since any K-matricial algebra is an exchange ring, then so is any K-locally
matricial algebra (apply [5, Theorem 3.2]).

Theorem 4.3. Let E be a graph. If L(E) is an exchange ring, then E satisfies Condi-
tion (K).

Proof. We claim that E satisfies Condition (L). Suppose that there exist a vertex v and
a cycle α with s(α) = v such that α has no exits. Denote by H the hereditary saturated
subset of E0 generated by α0. By Lemma 2.4, I (H) is Morita equivalent to L(EH ).
If M is the graph having only a vertex w and an edge e such that r(e) = s(e) = w, then
L(M) ∼= K[x, x−1] by [1, Example 1.4(ii)]. Consider the map f :L(M) → L(EH ) given
by f (w) = v, f (e) = α, f (e∗) = α∗. It is well defined because the relations in M are con-
sistent with those in L(EH ) (the only nontrivial one being αα∗ = v, which holds due to the
absence of exits for α, as in [1, p. 330]). It is a (nonunital) monomorphism of K-algebras;
clearly, Imf ⊆ vL(EH )v. Now, we prove vL(EH )v ⊆ Imf . To this end, it is enough to
see vpq∗v ∈ Imf for every p = e′

1 . . . e′
r , q = e1 . . . es , with e′

1, . . . , e
′
r , e1, . . . , es ∈ E1

H .
Reasoning as in [1, proof of Theorem 3.11] we get that vpq∗v has the form: v, vαnv or
v(α∗)mv, with m,n ∈ N. Hence our claim follows.

By [3, Theorem 2.3], the ring I (H) is an exchange ring; moreover, L(EH ) is an ex-
change ring by Lemma 2.4 and [5, Theorem 2.3], and the same can be said about the corner
vL(EH )v by [5, Corollary 1.5]. But vL(EH )v ∼= L(H) ∼= K[x, x−1] is not an exchange
ring, which leads to a contradiction.

Now, we will prove that E satisfies Condition (K). Suppose on the contrary that there
exists a vertex v and α = (α1, . . . , αn) ∈ CSP(v), with card(CSP(v)) = 1 (in fact, α must
be a cycle). Consider A = {e ∈ E1 | e exit of α}, B = {r(e) | e ∈ A}, and let H be the
hereditary saturated closure of B . With a similar argument to that used in [2, p. 6] we
get that H ∩ α0 = ∅, so that, H is a proper subset of E0. Then, α0 ⊆ (E/H)0 and
{α1, . . . , αn} ⊆ (E/H)1, whence α is a cycle in E/H with no exits.
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Since L(E/H) ∼= L(E)/I (H) (Lemma 2.3(1)), L(E/H) is an exchange ring [3, Theo-
rem 2.2] and, by the previous step, E/H satisfies Condition (L), a contradiction. �

Recall that an idempotent e in a ring R is called infinite if eR is isomorphic as a right
R-module to a proper direct summand of itself. The ring R is called purely infinite in case
every nonzero right ideal of R contains an infinite idempotent.

Proposition 4.4. If E is a graph satisfying Condition (K) and L(L(E)) is finite, then L(E)

is an exchange ring.

Proof. Since L(L(E)) is finite, we can construct an ascending chain of ideals

0 = I0 ⊆ I1 ⊆ · · · ⊆ In = L(E)

such that, for every 0 � i � n − 1, Ii is maximal among the ideals of L(E) contained
in Ii+1. Now, let us prove the result by induction on n.

If n = 1, then L(E) is a simple ring and then E is cofinal by Lemma 2.8 and [1, Theo-
rem 3.11]. Since E satisfies Condition (K), exactly two possibilities can occur:

(1) E has no closed simple paths, whence it is acyclic and thus, by Corollary 3.6,L(E) is
a locally matricial algebra, and so an exchange ring by Remark 4.2.

(2) E has at least one closed simple path, whence L(E) is a purely infinite simple ring by
cofinality [1, Theorem 3.11] and [2, Theorem 11]. Thus, L(E) is an exchange ring by
[4, Corollary 1.2].

In any case, L(E) turns out to be an exchange ring.
Now, suppose that the result holds for k < n. By Proposition 3.3 and [7, Theorem 4.3],

there exist hereditary saturated sets Hi (1 � i � n) such that:

(i) Ii = I (Hi) for every 0 � i � n; in particular, Hi � Hi+1 for every 0 � i � n − 1.
(ii) For any 0 � i � n − 1, there does not exist an hereditary saturated set T such that

Hi � T � Hi+1.

Consider the restriction graph EHn−1 . By Lemma 3.2, EHn−1 satisfies Condition (K),
so that Lgr(L(EHn−1)) = L(L(EHn−1)) by Proposition 3.3. If for each 0 � i � n − 1,
Ji � L(EHn−1) is the ideal generated by Hi , then the previous remarks imply that

0 = J0 ⊆ J1 ⊆ · · · ⊆ Jn−1 = L(EHn−1),

where, for every 0 � i � n− 2, Ji is maximal among the ideals of L(E) contained in Ji+1;
otherwise, since Lgr(L(EHn−1)) = L(L(EHn−1)), Lemma 2.5 would contradict prop-
erty (ii) satisfied by the set Hi . Thus, by induction hypothesis, L(EHn−1) is an exchange
ring. Since I (Hn−1) is Morita equivalent to L(EHn−1) by Lemma 2.4, I (Hn−1) is an ex-
change ideal by [5, Theorem 2.3]. Now, by Lemma 2.3(1), L(E)/I (Hn−1) ∼= L(E/Hn−1).



G. Aranda Pino et al. / Journal of Algebra 305 (2006) 912–936 925
Hence, E/Hn−1 is a graph satisfying Condition (K) by Lemma 3.2, and L(E/Hn−1) is sim-
ple by construction. Following the same dichotomy for E/Hn−1 as in (1) and (2) above, we
get that L(E/Hn−1) is an exchange ring. Then, by using Lemma 2.6 and [3, Theorem 3.5],
we conclude that L(E) is an exchange ring, as desired. �

We would like to thank Gene Abrams for showing (4) ⇒ (3) in the following theorem.

Theorem 4.5. For a graph E, the following conditions are equivalent:

(1) L(E) is an exchange ring.
(2) E/H satisfies Condition (L) for every hereditary saturated subset H of E0.
(3) E satisfies Condition (K).
(4) Lgr(L(E)) = L(L(E)).
(5) EH and E/H satisfy Condition (K) for every hereditary saturated subset H of E0.
(6) EH and E/H satisfy Condition (K) for some hereditary saturated subset H of E0.

Proof. (1) ⇒ (2). By Lemma 2.3(1), L(E)/I (H) ∼= L(E/H). Then, by [3, Theorem 2.2],
L(E/H) is an exchange ring. Apply Theorem 4.3 and Remark 3.1(1) to obtain (2).

(2) ⇒ (3) is just the third paragraph in the proof of Theorem 4.3.
(3) ⇒ (4) is Proposition 3.3.
(4) ⇒ (3). Suppose on the contrary that E does not satisfy Condition (K). Apply

(2) ⇒ (3) to find a hereditary saturated subset H of E0 such that E/H does not sat-
isfy Condition (L), that is, there exists a cycle p in E/H based at v without an exit.
Now [1, Theorem 3.11, pp. 330, 331] shows that in this situation we have v /∈ J :=
I (v + p), meaning in particular that the ideal J is not graded. Now if H �= ∅, Lemma 2.3
shows that there exists a graded isomorphism Φ :L(E)/I (H) → L(E/H) so that we can
lift Φ−1(J ) to an ideal J of L(E) which cannot be graded (a quotient of a graded ideal is
again graded). If H = ∅ then clearly J is an ideal of L(E/H) = L(E) which is not graded.
In any case we get a contradiction.

(3) ⇒ (1). We have two different proofs of this fact. The first one is inspired in the
results of [7], while the second one follows the style of [13, proof of Theorem 4.1]:

(i) By Lemma 3.7, there exists a family {Xn}n�0 of finite subgraphs such that, for
every n � 0, Xn satisfies Condition (K), E = ⋃

n�0 Xn and the natural inclu-
sion maps fn :Xn ↪→ E are complete graph homomorphisms (therefore so are
the inclusions fn,n+1 :Xn ↪→ Xn+1). By [7, Lemma 2.2], we have induced maps
L(fn,n+1) :L(Xn) → L(Xn+1) and L(fn) :L(Xn) → L(E) such that L(E) ∼=
lim−→(L(Xn),L(fn,n+1)).

Fix n � 0. Since Xn satisfies Condition (K), by Proposition 3.3 and [7, Theo-
rem 4.3], L(L(Xn)) is isomorphic to the lattice of hereditary saturated subsets of X0

n.
Hence, L(L(Xn)) is finite. Thus, L(Xn) is an exchange ring by Proposition 4.4. Since
L(E) is a direct limit of exchange rings, it is itself an exchange ring, as desired.

(ii) Take an element x ∈ L(E). By [1, Lemma 1.5], there exist a finite family of vertices
V = {v1, . . . , vm}, and a finite family of edges W = {e1, . . . , en}, such that x is in
the linear span of V and the set consisting of expressions ei . . . eir e

∗ . . . e∗ , with eil
1 j1 js
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and ejk
edges in W . For T 1 = W and T 0 = V ∪ {r(ei), s(ei), i = 1, . . . , n}, let T

be the graph T = (T 0, T 1, r|T 1, s|T 1) and consider G, J and S as in Lemma 3.10. It
can be proved, as in [13, p. 224], that the number of hereditary subsets of J 0 is finite.
Apply Lemma 3.10(4), Proposition 3.3 and [7, Theorem 4.3] to obtain that L(L(J )) is
finite. Now, Proposition 4.4 shows that L(J ) is an exchange ring. By Lemma 2.3(1),
L(J ) ∼= L(G)/I (S̄), and by Lemma 2.6 and [3, Theorem 3.5], L(G) is an exchange
ring. This means (use condition (5) in Lemma 4.1) that given x there exist e2 = e, r, s ∈
L(G) ⊆ L(E) (Lemmas 3.9(1) and 3.8) such that e = rx = s +x − sx. Whence, L(E)

is an exchange ring.

(3) ⇒ (5) is Lemma 3.2.
(5) ⇒ (6) is a tautology.
(6) ⇒ (1). By (3) ⇒ (1), L(EH ) and L(E/H) are exchange rings. Since L(EH ) is

Morita equivalent to I (H) by Lemma 2.4 then I (H) is an exchange ring because both
are idempotent rings and we may apply [5, Theorem 2.3]. By Lemma 2.3(1), L(E/H) ∼=
L(E)/I (H). Now, L(E)/I (H) and I (H) exchange rings, Lemma 2.6 and [3, Theo-
rem 3.5] imply that L(E) is an exchange ring. �

5. Some special facts

The following definitions are particular cases of those appearing in [11, Definition 1.3].
Let E be a graph and let ∅ �= H ∈ HE . Define

FE(H) = {
α = (α1, . . . , αn) | αi ∈ E1, s(α1), r(αi) ∈ E0 \ H for i < n,

r(αn) ∈ H
}
.

Denote by F̄E(H) another copy of FE(H). For α ∈ FE(H), we write ᾱ to denote a copy
of α in F̄E(H). Then, we define the graph H E = (H E0, H E1, s′, r ′) as follows:

(1) H E0 = (H E)0 = H ∪ FE(H).
(2) H E1 = (H E)1 = {e ∈ E1 | s(e) ∈ H } ∪ F̄E(H).
(3) For every e ∈ E1 with s(e) ∈ H , s′(e) = s(e) and r ′(e) = r(e).
(4) For every ᾱ ∈ F̄E(H), s′(ᾱ) = α and r ′(ᾱ) = r(α).

Lemma 5.1. Let E be a graph, and let ∅ �= H ∈ HE . Then:

(1) If EH satisfies Condition (L), then so does H E.
(2) If EH satisfies Condition (K), then so does H E.

Proof. Notice that each vertex α ∈ FE(H) is a source emitting exactly one edge
ᾱ ∈ F̄E(H) which ends in H . Thus, every closed simple path in the graph H E comes
from a closed simple path in EH , hence, the result follows. �



G. Aranda Pino et al. / Journal of Algebra 305 (2006) 912–936 927
The class of Leavitt path algebras is closed under quotients (Lemma 2.3(1)). A direct
consequence of the next result is that under Condition (L), this class is also closed for
ideals.

Lemma 5.2. (Cf. [11, Lemma 1.5].) Let E be a graph, and let ∅ �= H ∈HE . If EH satisfies
Condition (L), then I (H) and L(H E) are isomorphic as not necessarily unital rings.

Proof. We define a map φ :L(H E) → I (H) as follows: (i) For every v ∈ H , φ(v) = v;
(ii) for every α ∈ FE(H), φ(α) = αα∗; (iii) for every e ∈ E1 with s(e) ∈ H , φ(e) = e and
φ(e∗) = e∗; (iv) for every ᾱ ∈ F̄E(H), φ(ᾱ) = α and φ(ᾱ∗) = α∗.

By definition, it is tedious but straightforward to check that the images of the relations
in L(H E) satisfy the relations defining L(E). Thus, φ is a well-defined K-algebra mor-
phism.

Since for any v ∈ H , φ(v) = v, to see that φ is surjective, by [1, Lemma 1.5], it is
enough to show that every finite path α of E with r(α) or s(α) in H is in the image
of φ. So let α = (α1, . . . , αn) be with αi ∈ E1. If s(α) ∈ H , then s(αi) ∈ H for every i

because H is hereditary and thus α = φ(α1) · · ·φ(αn) = φ(α).
Suppose that s(α1) ∈ E0 \ H and r(αn) ∈ H . Then, there exists 1 � j � n − 1 such

that r(αj ) ∈ E0 \ H and r(αj+1) ∈ H . Thus, α = (α1, . . . , αj+1)(αj+2, . . . , αn), where
β = (α1, . . . , αj+1) ∈ FE(H). Hence, α = φ(β̄)φ(αj+2) · · ·φ(αn).

Similarly it can be proved that α∗ ∈ Imφ.
Finally, if 0 �= Ker(φ), then Ker(φ) ∩ (H E)0 �= ∅ by [2, Proposition 6] and Lem-

ma 5.1(1), contradicting the definition of φ. �
Note that the isomorphism above is not Z-graded because while ᾱ has degree 1 in H E

for every α ∈ FE(H), φ(ᾱ) = α does not necessarily have degree 1.

Lemma 5.3. Let E be a graph satisfying Condition (K). Then:

(1) If J � I � L(E), then J � L(E).
(2) In particular, if H ∈ HE and J � I (H), then there exists X ∈ HE such that X ⊂ H

and J = I (X).

Proof. (1) By Proposition 3.3, I = I (H) for H = I ∩ E0 ∈ HE , and by Proposition 5.2
(and Remark 3.1(1)) I (H) is isomorphic to the Leavitt path algebra L(H E) and therefore
it has a set of local units. Take x ∈ J and z ∈ L(E), then there exists y ∈ I such that
x = xy = yx. Now zx = (zy)x ∈ IJ ⊆ J and similarly xz ∈ J .

(2) Again Proposition 3.3 gives that J = I (X) for X = J ∩ E0, and therefore X =
J ∩ E0 ⊆ I ∩ E0 = H . �
Proposition 5.4. Let E be a graph satisfying Condition (K), let

X0 = {
v ∈ E0 | ∃e �= f ∈ E1 with s(e) = s(f ) = v, r(e) � v, r(f ) � v

}
,

and let X be the hereditary saturated closure of X0. If L(E) has no unital purely infinite
simple quotients, then neither does I (X).
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Proof. We will suppose that X0 �= ∅, because otherwise there is nothing to prove.

Case 1. We will begin by proving that if L(E) has no unital purely infinite simple quotients,
then I (X) cannot be a unital purely infinite simple ring. Suppose that this statement is
false. By Lemma 5.2 and Remark 3.1(1), I (X) ∼= L(XE), thus, since I (X) is unital, XE is
a finite graph; in particular, both X and FE(X) are finite, and so are

X1 = {
v ∈ E0 | v = s(αi) for some α = (α1, . . . , αn) ∈ FE(X)

}
and Y = X ∪ X1. We claim that K = E0 \ Y belongs to HE . Let v ∈ K , w ∈ E0, e ∈ E1

be such that s(e) = v and r(e) = w. We want to prove w ∈ K . Suppose on the contrary
that w ∈ Y . If w ∈ X, then e ∈ FE(X) and so v = s(e) ∈ X1 ⊆ Y , a contradiction, hence
w ∈ X1 \X. In this case there exists a path α = (α1, . . . , αn) ∈ FE(X) such that w = s(αi),
for some i ∈ {1, . . . , n − 1}. Then β = (e,αi, . . . , αn) ∈ FE(X) and v = s(β) ∈ X1 ⊆ Y , a
contradiction. This shows that K is hereditary. Now we prove that it is saturated. Consider
v ∈ E0 and ∅ �= r(s−1(v)) ⊆ K . Suppose v /∈ K . Then v ∈ X or v ∈ X1 \ X. In the first
case, since X is hereditary, ∅ �= r(s−1(v)) ⊆ X, a contradiction. In the second one, there
exists α = (α1, . . . , αn) ∈ FE(X) such that v = s(αi) for some i ∈ {1, . . . , n − 1}. Then
r(αi) ∈ r(s−1(v)) ⊆ K , a contradiction because r(αi) ∈ Y , by the definition of Y .

The following step consists of showing that L(E/K), which is isomorphic to L(E)/

I (K) by Lemma 2.3, is a unital purely infinite simple ring. First note that (E/K)0 = Y is
finite and therefore L(E/K) is a unital ring.

Now, since X is finite, L(EX) is unital. As L(EX) is Morita equivalent to the uni-
tal purely infinite simple ring I (X) by Lemma 2.4, L(EX) is purely infinite simple. By
[2, Theorem 11] and Lemma 28, EX is cofinal, satisfies Condition (L), and every vertex in
E0

X connects to a cycle. As E satisfies Condition (K), so does E/K by Lemma 3.2, whence
E/K satisfies Condition (L). Observe that E/K contains at least a cycle; moreover, since
every vertex in FE(X) connects to a vertex in X, then every vertex in E/K connects to a
cycle. Finally, notice that E/K has no sinks, as otherwise, since any sink would be in X

because (E/K)0 = X ∪X1 and X1 \X clearly does not have sinks, XE would have a sink,
which is not possible because L(XE) ∼= I (X) is a unital purely infinite simple ring. Then,
(E/K)�∞ = (E/K)∞. Hence, if v ∈ (E/K)0 and α is in (E/K)∞, then card(α0) < ∞
because Y is finite, so α contains a cycle β (note that for a cycle β ′ in E/K , β ′0 ∩ X0 �= ∅
because E satisfies Condition (K), and then by hereditariness β ′0 ⊆ X), thus E/K is cofi-
nal. By [2, Theorem 11] and Lemma 2.8, L(E/K) is a unital purely infinite simple ring, a
contradiction.

Case 2. I (X) has no unital purely infinite simple quotients. Suppose that I (X)/J is a
unital purely infinite simple ring for some ideal J of I (X). By Lemma 3.2, EX satisfies
Condition (K), whence so does XE by Lemma 5.1(2). Lemma 5.3 implies that there ex-
ists H ∈ HE such that H ⊆ X and J = I (H). By Lemma 2.3 L(E)/I (H) ∼= L(E/H),
and by Lemma 3.2, E/H satisfies Condition (K). This isomorphism shows that L(E/H)

has no unital purely infinite simple quotients because neither does L(E). If Ψ is the iso-
morphism in Lemma 2.3, and Z0 = Ψ (X0), then Z = Z0 = Ψ (X) by Lemma 2.3(4), and,
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in particular, I (Z) = Ψ (I (X)). Thus, by Case 1, applied to E/H,Z0 and Z, we get a
contradiction. �

The rest of this section is devoted to characterizing the primeness of an ideal of the
form I (H), for H hereditary and saturated, in terms of the so-called maximal tails.

The following definition is a particular case of that of [10]: Let E be a graph. A non-
empty subset M ⊆ E0 is a maximal tail if it satisfies the following properties:

(MT1) If v ∈ E0, w ∈ M and v � w, then v ∈ M .
(MT2) If v ∈ M with s−1(v) �= ∅, then there exists e ∈ E1 with s(e) = v and r(e) ∈ M .
(MT3) For every v,w ∈ M there exists y ∈ M such that v � y and w � y.

Remark 5.5. Let E be a graph. If J,K ∈ HE , then I (J )I (K) = I (J ∩ K). To see this,
notice that by Remark 2.2, I (J )∩I (K) = I (J ∩K). It is clear that I (J )I (K) ⊆ I (J ∩K).
Since every vertex is an idempotent, the reverse inclusion is clear.

Recall that a graded ideal I of a graded ring R is said to be graded prime if for every pair
of graded ideals J,K of R such that JK ⊆ I , it is necessary that either J ⊆ I or K ⊆ I .
The definition of prime ideal is analogous to the previous one by eliminating the condition
of being graded. It follows by [16, Proposition II.1.4] that for an ordered group (as it is our
case), a graded ideal is graded prime if and only if it is prime.

Proposition 5.6. Let E be a graph, and let H ∈HE . Then, the following are equivalent:

(1) The ideal I (H) is prime.
(2) M = E0 \ H is a maximal tail.

Proof. (1) ⇒ (2). It is not difficult to see that M satisfies (MT1) and (MT2). Suppose that
there exist v,w ∈ M such that no y ∈ M satisfies:

(∗) v � y and w � y.

Fix such v,w. We will prove that {v}∩{w}∩M = ∅. Suppose that this is false. Let m be the
smallest number such that Λm(T (v)) ∩ {w} ∩ M �= ∅ and take y ∈ Λm(T (v)) ∩ {w} ∩ M .
If m > 0, then s−1(y) �= ∅ and ∅ �= r(s−1(y)) ⊆ Λm−1(T (v)) ∩ {w} because {w} is hered-
itary. By the minimality of m, Λm−1(T (v)) ∩ {w} ∩ M = ∅, hence r(s−1(y)) ⊆ M . Since
M is saturated, this implies y ∈ M , a contradiction. Similarly it can be proved that 0 is the
smallest number n such that T (v) ∩ Λn(T (w)) ∩ M �= ∅, that is, T (v) ∩ T (w) ∩ M �= ∅,
but this is a contradiction by (∗). Now, I (v)I (w) = (by Lemma 2.1)I ({v})I ({w}) = (by
Remark 5.5)I ({v}∩ {w}) ⊆ (as we have just proved) I (H). By (1), and taking into account
Lemma 2.1, this implies v ∈ I (H) or w ∈ I (H), a contradiction.

(2) ⇒ (1). Consider two ideals J1 and J2 in L(E) such that J1J2 ⊆ I (H). By Re-
mark 2.2 there exist H1,H2 ∈ HE such that J1 = I (H1) and J2 = I (H2). By Remark 5.5,
H1 ∩ H2 ⊆ H . If Hi � H for i = 1,2, then there exist vi ∈ Hi \ H (i = 1,2). In particular,
v1, v2 ∈ M , so that there exists x ∈ M such that vi � x (i = 1,2). Hence, x ∈ H1 ∩H2 ⊆ H ,
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which contradicts x ∈ M . Thus, either H1 ⊆ H or H2 ⊆ H , and thus either I (H1) ⊆ I (H)

or I (H2) ⊆ I (H), as desired. �
Corollary 5.7. If E is a graph satisfying Condition (K), then there is a bijection between
maximal tails and prime ideals. In particular, if E has no proper maximal tails, then L(E)

is simple.

Proof. The first statement is a consequence of Proposition 5.6 and Proposition 3.3. This
implies the second statement because the absence of proper maximal tails is equivalent to
the absence of nonzero prime ideals. �

6. Stable rank for quasi stable rings

Let S be any unital ring containing an associative ring R as a two-sided ideal.
The following definitions can be found in [20]. A column vector b = (bi)

n
i=1 is called

R-unimodular if b1 − 1, bi ∈ R for i > 1 and there exist a1 − 1, ai ∈ R (i > 1) such that∑n
i=1 aibi = 1. The stable rank of R (denoted by sr(R)) is the least natural number m for

which for any R-unimodular vector b = (bi)
m+1
i=1 there exist vi ∈ R such that the vector

(bi + vibm+1)
m
i=1 is R-unimodular. If such a natural m does not exist we say that the stable

rank of R is infinite.
Recall that a ring R is said to be stable if R ∼= M∞(R). In this section, we cover the final

step of the proof of Lemma 7.4. To this end, we need to compute the stable rank of some
rings with local units whose behavior is similar to that of stable rings with local units. It is
not known whether the property we consider is equivalent to stability of the ring.

Lemma 6.1. Let R be a ring with ascending local unit {pn}n�1. If for every n � 1 there
exists m > n such that pn � pm − pn, then sr(R) � 2.

Proof. Fix S a unital ring containing R as two-sided ideal. Let a1, a2, a3, b1, b2, b3 ∈ S

such that a1 − 1, a2, a3, b1 − 1, b2, b3 ∈ R, while a1b1 + a2b2 + a3b3 = 1. By hypothesis,
there exists n ∈ N such that a1 − 1, a2, a3, b1 − 1, b2, b3 ∈ pnRpn. Let m > n such that
pn � pm − pn. Then, there exists qn ∼ pn, qn � pm − pn. In particular, qnpn = pnqn = 0.
Now, there exist u ∈ pnRqn, v ∈ qnRpn such that uv = pn, vu = qn, u = pnu = uqn and
v = qnv = vpn.

Fix v1 = 0, v2 = u, c1 = b1, and c2 = b2 + vb3. Notice that (a1 + a3v1) − 1,

c1 − 1, (a2 + a3v2), c2 ∈ R. Also, a3uvb3 = a3pnb3 = a3b3, a3ub2 = a3uqnpnb2 = 0,
and a2vb3 = a2pnqnvb3 = 0. Hence,

(a1 + a3v1)c1 + (a2 + a3v2)c2 = a1b1 + a2b2 + a3b3 = 1.

Thus, any unimodular 3-row is reducible, whence the result holds. �
A monoid M is cancellative if whenever x + z = y + z, for x, y, z ∈ M , then x = y.

And M is said to be unperforated in case for all elements x, y ∈ M and all positive inte-
gers n, we have nx � ny implies x � y. A monoid M is conical if for every x, y ∈ M such
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that x + y = 0, we have x = 0 = y. In what follows, all the considered monoids will be
conical.

Given an abelian monoid M , and an element x ∈ M , we define

S(M,x) = {
f :M → [0,∞] | f is a monoid morphism such that f (x) = 1

}
.

Standard arguments show that, when M is a cancellative monoid, then S(M,x) is non-
empty for every nonzero element x ∈ M .

Lemma 6.2. Let R be a nonunital ring with ascending local unit {pn}n�1 such that V (R)

is cancellative and unperforated, and let SR = {s :V (R) → R+ | s is a morphism of
monoids}. If for every s ∈ SR , supn�1{s([pn])} = ∞, then for every n � 1 there exists
m > n such that pn � pm − pn.

Proof. Fix n ∈ N, and consider Sn = S(V (R),2[pn]). For every t ∈ Sn, supm�1 t ([pm]) =
∞. Otherwise, there exists t ∈ Sn such that supm�1 t ([pm]) = α ∈ R+. Since {pn}n�1 is
a local unit, we conclude that t (x) < ∞ for every x ∈ V (R), so that t ∈ SR , contradicting
the hypothesis. Thus, the maps p̂k :Sn → [0,∞], defined by evaluation, satisfy that the
(pointwise) supremum supk�1 p̂k = ∞. Since Sn is compact, there exists m > n such that
1 < p̂m, i.e., for every s ∈ Sn, s(2[pn]) < s([pm]).

Now, take t ∈ S(V (R), [pm]). Since pn < pm, 0 � t (2[pn]) = a � 2. If a = 0, then
clearly 0 = t (2[pn]) < t([pm]) = 1. If a �= 0, then t ′(−) := a−1 · t (−) belongs to Sn,
whence 1 = t ′(2[pn]) < t ′([pm]) by the argument above. So, t (2[pn]) < t([pm]) = 1.
Thus, for every t ∈ S(V (R), [pm]), we have t (2[pn]) < t([pm]) = 1. By [18, Propo-
sition 3.2], 2pn � pm = pn + (pm − pn). Then, since V (R) is cancellative, we get
pn � pm − pn, as desired. �
Definition 6.3. Let E be a graph. For every v ∈ E0, we define L(v) = {w ∈ E0 | w � v}.
We say that v ∈ E0 is left infinite if card(L(v)) = ∞.

Definition 6.4. Let E be a graph. A graph trace on E is a function g :E0 → R+ such that,
for every v ∈ E0 with s−1(v) �= ∅, g(v) = ∑

s(e)=v g(r(e)). We define the norm of g to be
the (possibly infinite) value ‖g‖ = ∑

v∈E0 g(v). We say that g is bounded if ‖g‖ < ∞.

Remark 6.5. Let E be a graph, let E0 = {vi | i � 1}, let pn = ∑n
i=1 vi , and let

SE = {
s :V

(
L(E)

) → R+ | s is a morphism of monoids
}
.

By [7, Theorem 2.5], any element s ∈ SE induces a graph trace by the rule gs(v) = s([v]).
Moreover, gs is bounded if and only if supn∈N{s([pn])} < ∞.

Conversely, by [7, Theorem 2.5] and [7, Lemma 3.3], if g is a graph trace on E,
and v,w ∈ E0 with [v] = [w] ∈ V (L(E)), then g(v) = g(w). So, the rule sg([v]) = g(v)

is well defined and extends by additivity to an element sg ∈ SE . Certainly, g is bounded if
and only if supn∈N{sg([pn])} < ∞.
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The next result in the context of C∗-algebras is [19, Lemma 3.8]. Here, we follow a
different approach to prove it.

Lemma 6.6. Let E be a graph, let H ∈ HE , and let π :L(E) → L(E)/I (H) be the
natural projection map. If e ∈ L(E) is an idempotent, W ⊆ E0 \ H is a finite set,
and π(e) �

∑
w∈W π(w) in L(E)/I (H), then there exists a finite set X ⊆ H such that

e �
∑

w∈W w + ∑
x∈X x.

Proof. By [7, Theorem 2.5 and Lemma 5.6], V (L(E))/V (I (H)) ∼= V (L(E/H)). Thus,
[π(e)] �

∑
w∈W [π(w)] ∈ V (L(E/H)) implies that there exist a, b ∈ V (I (H)) such that

[e] + a �
∑

w∈W [w] + b ∈ V (L(E)). Since V (I (H)) = 〈[v] | v ∈ H 〉, there exists a finite
set X ⊆ H such that b = ∑

x∈X x. Then, [e] �
∑

w∈W [w] + ∑
x∈X[x], as desired. �

Proposition 6.7. (Cf. [19, Theorem 3.2].) Let E be a graph. If every vertex of E lying on
a closed simple path is left infinite and E has no nonzero bounded graph traces, then for
every finite set V ⊆ E0 there exists a finite set W ⊆ E0 with V ∩ W = ∅ and

∑
v∈V v �∑

w∈W w.

Proof. The proof of this result corresponds to (d) ⇒ (e) ⇒ (f) of [19, Theorem 3.2], with
suitable adaptation of the arguments except for the Case 2 in (d) ⇒ (e), in which the way
to prove the following statement is different: If F ⊆ E0 is a finite set, and n = max{i ∈ N |
wi ∈ F }, there exists m > n such that pn � pm − pn.

Suppose then v /∈ H̄ . List the vertices of E/H̄ = {wi | i � 1} in such a way that
w1 = v. Let π :L(E) → L(E)/I (H) be the natural projection map. For every n � 1, set
pn = ∑n

i=1 π(wi). Clearly, {pn}n�1 is an ascending local unit for L(E/H̄ ). Since every
vertex on a closed simple path is left infinite, no vertex on E/H̄ lies on a closed sim-
ple path. Thus, E/H̄ is acyclic, whence L(E/H̄ ) is locally matricial by Corollary 3.6.
In particular, V (L(E/H̄ )) is cancellative and unperforated. Moreover, since E has no
nonzero bounded graph traces, neither does E/H̄ . Otherwise, by Remark 6.5, there ex-
ists a monoid morphism s :V (L(E/H̄ )) → R+ with supn∈N{s([pn])} < ∞. Hence, s

induces a monoid morphism s ◦ π :V (L(E)) → R+ such that
∑

v∈E0(s ◦ π)([v]) =∑
v∈E0\H̄ s([v]) < ∞, consequently there exists a bounded graph trace on E, contradicting

the assumption. By Remark 6.5 and Lemma 6.2, for every n � 1 there exists m > n such
that pn � pm − pn. �
Corollary 6.8. Let E be a graph. If every vertex of E lying on a closed simple path is left
infinite and E has no nonzero bounded graph traces, then sr(L(E)) � 2.

Proof. Let E0 = {vi | i � 1}, and for each n ∈ N consider pn = ∑n
i=1 vi . Then, {pn}n�1 is

an ascending local unit for L(E). Fix n � 1 and set V = {v1, . . . , vn}. By Proposition 6.7,
there exists a finite subset W ⊆ E0 such that V ∩ W = ∅ and pn = ∑

v∈V v �
∑

w∈W w.
If m is the largest subindex of w ∈ W , notice that m > n and that

∑
w∈W w � pm − pn.

Hence, the result holds because L(E) satisfies the hypotheses of Lemma 6.1. �



G. Aranda Pino et al. / Journal of Algebra 305 (2006) 912–936 933
7. Stable rank for exchange Leavitt path algebras

In this section, we characterize the stable rank of exchange Leavitt path algebras in
terms of intrinsic properties of the graph.

Lemma 7.1. Let E be an acyclic graph. Then the stable rank of L(E) is 1.

Proof. If E is finite, then L(E) is a K-matricial algebra by Corollary 3.5, whence
sr(L(E)) = 1. Now suppose that E is infinite. By Corollary 3.6, there exists a family
{Xn}n�0 of finite subgraphs of E such that L(E) ∼= lim−→ L(Xn). By the definitions of direct
limit and stable rank,

sr
(
L(E)

)
� lim inf

n→∞ sr
(
L(Xn)

)
. (∗)

If E is acyclic, then so are the Xn’s, whence sr(L(E)) = 1 by the result above
and (∗). �
Lemma 7.2. Let E be a graph satisfying Condition (K). Then, L(E) has a unital purely
infinite simple quotient if and only if there exists H ∈ HE such that the quotient graph
E/H is nonempty, finite, cofinal and contains no sinks.

Proof. First, suppose that J is an ideal of L(E) such that L(E)/J is a unital purely
infinite simple ring. By Proposition 3.3, there exists H ∈ HE such that J = I (H). By Lem-
ma 2.3(1), L(E)/J ∼= L(E/H). Moreover, E/H satisfies Condition (K) by Lemma 3.2.
Hence, since L(E/H) is unital, E/H is finite. Since L(E)/J is purely infinite simple,
E/H is cofinal and every vertex connects to a closed simple path by [2, Theorem 11] and
Lemma 28, whence E/H has no sinks.

Conversely, suppose that there exists H ∈ HE such that the quotient graph E/H is
nonempty, finite, cofinal and contains no sinks. Thus, it contains a closed simple path and
every vertex connects to a closed simple path. Then, since E/H satisfies Condition (K)
by Lemma 3.2, L(E/H) is unital, purely infinite and simple by [2, Theorem 11] and
Lemma 2.8. By Lemma 2.3(1), L(E)/M ∼= L(E/H) and the proof is complete. �
Corollary 7.3. Let E be a graph satisfying Condition (K). If there exists H ∈ HE such that
the quotient graph E/H is nonempty, finite, cofinal and contains no sinks, then the stable
rank of L(E) is ∞.

Proof. By Lemma 7.2, there exists a maximal ideal M � L(E) such that L(E)/M is a
unital purely infinite simple ring. Thus, sr(L(E)/M) = ∞ (see [8]). Since sr(L(E)/M) �
sr(L(E)) (see [20, Theorem 4]), we conclude that sr(L(E)) = ∞. �

The proof of the following result closely follows that of [11, Lemma 3.2].

Lemma 7.4. Let E be a nonacyclic graph satisfying Condition (K). If L(E) does not have
any unital purely infinite simple quotient, then there exists a graded ideal J � L(E) with
sr(J ) = 2 such that L(E)/J is a locally matricial K-algebra.
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Proof. Let

X0 = {
v ∈ E0 | ∃e �= f ∈ E1 with s(e) = s(f ) = v, r(e) � v, r(f ) � v

}
,

and let X be the hereditary saturated closure of X0. Consider J = I (X), and notice that
L(E)/J ∼= L(E/X) by Lemma 2.3(1). Moreover, since E satisfies Condition (K), then so
does E/X by Lemma 3.2. If there is a closed simple path α in E/X, then every v ∈ α0

satisfies card(CSPE/X(v)) � 2, therefore, there exists a vertex v0 ∈ α0 ∩ X0 ⊆ X, contra-
dicting the assumption. So, E/X contains no closed simple paths, whence it is an acyclic
graph and thus L(E)/J is locally matricial by Corollary 3.6.

Now, by Remark 3.1(1), Lemma 3.2 and Lemma 5.2, J ∼= L(XE). We will show that
every vertex lying in a closed simple path of XE is left infinite, and that XE has no nonzero
bounded graph traces, as a way of contradiction.

Suppose that there exists a closed simple path α in XE such that the set Y of vertices
of XE connecting to the vertices of α0 is finite. It is not difficult to see that α0 ∪ Y is a
maximal tail in XE. Let M be a maximal tail of the smallest cardinal contained in α0 ∪
Y . Observe that M ∩ X0 �= ∅; otherwise X \ M , which is a hereditary saturated proper
subset of X, would contain X0, which is impossible. Denote by M̃ the quotient graph of
XE by the hereditary saturated set H =X E0 \ M , i.e., M̃ =X E/H . Then, since M is
finite, L(M̃) is a unital ring. As E satisfies Condition (K), so does XE (by Lemmas 3.2
and 5.1(2)) and thus so does M̃ (by Lemma 3.2 again). Then, since M does not contain
smaller maximal tails, L(M̃) is simple by Corollary 5.7. As M ∩X0 �= ∅, M̃ is nonacyclic.
Thus, L(M̃) ∼= L(XE)/I (H) (by Lemma 2.3(1)) is a unital purely infinite simple ring by
[1, Theorem 3.11], Lemma 2.8 and [2, Theorem 11]. By Proposition 5.4 L(E) has a unital
purely infinite simple quotient, contradicting the hypothesis. Hence, every vertex lying in
a closed simple path in XE is left infinite.

Now, suppose that there exists a nonzero bounded graph trace g on XE. By Remark 6.5,
sg :V (L(XE)) → R+ is a nonzero morphism such that

∑
v∈XE0 sg([v]) < ∞. But for any

v ∈ X0 we have 2sg([v]) � sg([v]), so that g(v) = 0. Hence, X0 ⊆ {w ∈X E0 | g(w) = 0},
which is a hereditary saturated subset of XE by [19, Lemma 3.7]. Thus, since XE =
X0

(XE), we conclude that g ≡ 0, contradicting the assumption. Hence, there exist no
nonzero bounded graph traces on XE.

Thus, sr(J ) = sr(L(XE)) � 2 by Corollary 6.8. Since every vertex in X0 is properly
infinite as an idempotent of L(XE), sr(L(XE)) �= 1, so that sr(J ) = 2, as desired. �
Corollary 7.5. Let E be a nonacyclic graph satisfying Condition (K). If L(E) does not
have any unital purely infinite simple quotient, then sr(L(E)) = 2.

Proof. Consider J the graded ideal obtained in the previous lemma. By [20, Theorem 4],

2 = max
{
sr(J ), sr

(
L(E)/J

)}
� sr

(
L(E)

)
� max

{
sr(J ), sr

(
L(E)/J

) + 1
} = 2.

Then, sr(L(E)) = 2, as desired. �
Theorem 7.6. Let E be a graph satisfying Condition (K). Then the values of the stable
rank of L(E) are:



G. Aranda Pino et al. / Journal of Algebra 305 (2006) 912–936 935
(1) sr(L(E)) = 1 if E is acyclic.
(2) sr(L(E)) = ∞ if there exists H ∈ HE such that the quotient graph E/H is nonempty,

finite, cofinal and contains no sinks.
(3) sr(L(E)) = 2 otherwise.

Proof. Statement (1) holds by Lemma 7.1, and statement (2) by Corollary 7.3. If E is
nonacyclic and there does not exist H ∈HE such that the quotient graph E/H is nonempty,
finite, cofinal and contains no sinks, then L(E) does not have any unital purely infinite
simple quotient by Lemma 7.2. Hence, statement (3) holds by Corollary 7.5. �
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