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Abstract

The extremal number ex(n; MKp) denotes the maximum number of edges of a graph of order n containing no complete graph Kp

as a minor. In this paper we give the exact value of the extremal number ex(n; MKp) for �(5n + 9)/8��p��(2n − 1)/3� provided
that n − p�24. Indeed we show that this number is the size of the Turán Graph T2p−n−1(n) and this graph is the only extremal
graph.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider the extremal problem of determining the maximum number of edges ex(n; MKp) of a graph
with n vertices that it does not contain the complete graph Kp as a minor, where n and p are two positive integers, with
n�p.

As Thomason says in [13], there is some interest in knowing the maximum size of a graph not containing the complete
graph Kp as a minor, not least because of the relationship between this extremal problem and Hadwiger’s Conjecture
[6], asserting that if the chromatic number of a graph is �(G)�p, then G contains Kp as a minor.

There are many works devoted to study the extremal function asymptotically, finding the minimum number c(p) such
that every graph G of order n and size, at least, c(p)n contains Kp as a minor. Mader [11] proved that c(p)�8p log2 p.

Kostochka [9,10] and also Fernandez de la Vega [5], based on Bollobás et al. [2] noticed that c(p) is not just a
linear function of p, by considering random graphs with average degree of order p

√
log p. Kostochka [9,10] and

Thomason [12] independently showed that p
√

log p is the correct order of c(p). Finally, Thomason [13] proved that
c(p) = (� + o(1))p

√
log p, where � = 0.319 . . . is an explicit constant. But exact values for the function ex(n; MKp)

are only known for small values of p. By taking the graph Kp−2 + Kn−p+2 it is easy to check that

ex(n; MKp)�(p − 2)n −
(

p−1

2

)
.
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Dirac [4] proved that inequality holds for p�5 and Mader [11] showed it for p�7 and noticed that it does not hold
for p = 8 and n = 10. The case p = 8 was solved by Jorgensen [8], showing that

ex(n; MK8) =
{

6n − 20 if 5 divides n,

6n − 21 otherwise.

In a recent work, the authors [3] have solved this extremal problem finding the exact value for that function and
characterizing the corresponding family of extremal graphs for every pair of n and p satisfying �(2n + 3)/3��p < n.

Our aim in this paper is to compute the exact value for the function ex(n; MKp) when �(5n+9)/8��p��(2n−1)/3�
and n − p�24. In fact, we show that in the aforementioned sector of pairs (n, p), the solution is given by the size of
the Turán graph T2p−n−1(n). Further, we show that this graph is the only extremal graph for this problem.

2. Definitions and notations

As usual, we say that a graph G contains Kp as a minor or is contractible to Kp if the complete graph Kp may be
obtained from G by a sequence of vertex and edge deletions and edge contractions.

We denote by Tr(n) the Turán graph of order n (see [14]), that is, the complete r-partite graph of order n whose vertex
classes are as equal as possible. The number of edges of Tr(n) is known by the Turán number and denoted by tr (n).

For a graph G, V = V (G) and E = E(G) stand, respectively, for its sets of vertices and edges, v(G) being the order
of G and e(G) being the size of G. For any vertex v belonging to V (G), we denote by NG(v) the set of neighbors of v

in G, being �G(v) = |NG(v)| the degree of v.
A subset W of vertices of G is a vertex cover of G if every edge of G is incident with at least one vertex of W. We

denote by vc(G) the minimum cardinality of a vertex cover of G.

Given a graph H, we say that {v1, . . . , vr} is a decreasing sequence of vertices in H if

�Hj−1(vj ) = max
v∈V (Hj−1)

{�Hj−1(v)} for each j = 1, . . . , r ,

where H0 = H and Hj is the resultant graph from H by removing the set {v1, . . . , vj }. Furthermore, we denote by Vt
r

the family of graphs H for which there exists a decreasing sequence of vertices {v1, . . . , vr} in H such that the minimum
cardinality of a vertex cover in the resultant graph Hr by removing these vertices of H is at most t, i.e., vc(Hr)� t.

Notations and terminologies not explicitly given here can be found in [1].

3. Exact values for the function ex(n; MKp)

In this section we compute the exact value of the extremal function ex(n; MKp) for �(5n+9)/8��p��(2n−1)/3�
provided that n−p�24. In fact, we prove that this exact value is the Turán number t2p−n−1(n). First, we need to state
various prior results.

3.1. Preliminaries

Let G be a graph of order n whose complement graph is formed by 4n−6p+3 disjoint copies of K4 and 8p−5n−4
disjoint copies of K3. It is not difficult to check that G is the Turán graph T2p−n−1(n) and does not contain Kp as a
minor, hence the Turán number t2p−n−1(n) is a lowerbound for the extremal function ex(n; MKp), that is,

ex(n; MKp)� t2p−n−1(n).

So, in order to prove that t2p−n−1(n) is the exact value we only must show the other inequality. Observe that the size
of the Turán graph Tr(n) may be expressed as follows:

tr (n) =
(

n

2

)
−

⎛
⎝r

�n/r�−1∑
i=0

i +
(
n − r

⌊n

r

⌋) ⌊n

r

⌋⎞
⎠

=
(

n

2

)
−

((
n − r

2

) ⌊n

r

⌋
− r

2

⌊n

r

⌋2
)

.
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Since �(5n + 9)/8��p��(2n − 1)/3�, we have �n/(2p − n − 1)� = 3 and therefore

t2p−n−1(n) =
(

n

2

)
− (9n − 12p + 6).

So, taking q = n − p, to show that ex(n; MKp)� t2p−n−1(n) is equivalent to guarantee the inequality

ex(n; MKn−q)�
(

n

2

)
− (3q + 3k + 6),

for n = 3q − k, with q �24 and 1�k��(q − 9)/3�.
To do that, we must prove that every graph G with 3q − k vertices and (

n
2 ) − (3q + 3k + 5) edges, being q �24 and

1�k��(q − 9)/3�, is contractible to Kp.

Before that, we need to state some prior results. We will use Hall’s condition for complete matching in bipartite
graph.

Theorem 3.1 (See [7]). Given a bipartite graph B with classes X and Y, if |NB(A)|� |A| for all A ⊆ X, then there
exists a complete matching in B, where NB(A) = ⋃

v∈ANB(v).

In the next result we compute the minimum cardinality of a vertex cover of a graph with maximum degree 2.

Lemma 3.2. Let H be a graph with maximum degree 2 and let us denote by r the maximum number of independent
vertices with degree 2 in H. Then

vc(H) = e(H) − r .

Proof. By definition, we have vc(H)�r + e(Hr) = e(H) − r . So, it is sufficient to prove the other inequality. For
that, let U = {w1, . . . , ws} be a vertex cover of H with minimum cardinality and let us denote by n2 the number of
independent vertices of U with degree 2 in H. Then

vc(H) = n2 + (|U | − n2) = n2 + (e(H) − 2n2)

�e(H) − r ,

so the result holds. �

In the next two lemmas, we give a sufficient condition under which a graph H belongs to the family V
q
q .

Lemma 3.3. Let k and q be two positive integers, with 1�k��(q − 9)/3�. Let H be a graph with 3q − k − i vertices
and at most 3q + 3k + 5 − 4i edges, with 0� i�q. If the maximum degree of H is at most 3, then H ∈ V

q
q−i .

Proof. Let m�0 be an integer such that e(H) = 3q + 3k + 5 − 4i − m and let us consider any decreasing sequence
of vertices {v1, . . . , vq−i} of H. If e(Hq−i )�q then we are done, hence assume that e(Hq−i )�q + 1. Observe that
�(Hq−i )�2, because otherwise

q + 1�e(Hq−i )�
1

2
v(Hq−i ) = q − k

2
< q + 1,

arriving to a contradiction. Indeed, �(Hq−i ) = 2, because if �(Hq−i )�3, then

e(H)�3(q − i) + e(Hq−i )�3q − 3i + q + 1 = 4q + 1 − 3i > 3q + 3k + 5 − 4i�e(H),

and this is impossible.
Let us denote by j the maximum number of independent vertices of degree 3 in H and by r the maximum number of

independent vertices of degree 2 in Hq−i .
Since �(Hj )�2, we have e(Hj )�v(Hj ), which implies that

j �2k + 5

2
− 3

2
i − m

2
. (1)
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Since �(Hq−i+r )�1, we have 2e(Hq−i+r )�v(Hq−i+r ) and consequently,

r � 7

3
k + 10

3
− 4

3
i − 2m

3
− 2

3
j . (2)

Finally, since �(Hq−i ) = 2, by applying Lemma 3.2, we have vc(Hq−i ) = e(Hq−i ) − r. But in this case, applying
first the inequality (2) and second the inequality (1), it is verified that

vc(Hq−i ) = e(Hq−i ) − r = 3q + 3k + 5 − 4i − m − 3j − 2(q − i − j) − r

�q + 2

3
k + 5

3
− 2

3
i − 1

3
j − m

3

�q + 5

6
− 1

6
i − m

6

< q + 1

and hence, H ∈ V
q
q−i . �

Lemma 3.4. Let k and q be two positive integers, with 1�k��(q −9)/3�. If H is a graph with v(H)=3q −k vertices
and e(H) = 3q + 5 + 3k edges, then H ∈ V

q
q .

Proof. If the maximum degree of H is at most 3, the result is immediate by applying Lemma 3.3 for i = 0. So, assume
that the maximum degree of H is at least 4. Let {v1, . . . , vq} be a decreasing sequence of vertices of H. We may suppose
that there exists i ∈ {1, . . . , q} such that �(Hi−1)�4 and �(Hi)�3, because on the contrary, e(Hq)�e(H) − 4q < 0
and this is a contradiction.

Thus, the graph Hi has order 3q −k− i and size at most 3q +5+3k−4i. Then, by applying Lemma 3.3, there exists
a decreasing sequence of vertices in Hi , {w1, . . . , wq−i}, such that vc((Hi)q−i )�q. Thus, {v1, . . . , vi, w1, . . . , wq−i}
is a decreasing sequence of vertices in H in such a way that vc(Hq)�q, which implies that H ∈ V

q
q . �

The next result provides a sufficient condition for a graph being contractible to a complete graph.

Lemma 3.5. Let n, q and k be three positive integers, with n = 3q − k, q �24 and 1�k��(q − 9)/3�. Let H be a
graph with n vertices and at most 3q + 3k + 6 edges. If H ∈ V

q
q then H is contractible to Kn−q .

Proof. Since H ∈ V
q
q , there exists a decreasing sequence of vertices {v1, . . . , vq} in H such that vc(Hq) = s�q. We

denote by {w1, . . . , ws}, with s�q, a vertex cover of Hq with minimum cardinality. We may suppose that {w1, . . . , ws}
is chosen in such a way that

∑s
i=1�Hq (wi)�

∑s
i=1�Hq (w̃i), for all {w̃1, . . . , w̃s} vertex cover of Hq with minimum

cardinality. Clearly, �(Hq)�3, because if not we have e(H)�4q+e(Hq) > 3q+3k+6�e(H) and this is not possible.
Let us see that we may contract some edges of H in such a way that the resultant graph contains the complete graph

Kn−q as a subgraph, whose vertices are the vertices of Hq.

For that, let us consider the bipartite graph B whose classes are X = {w1, . . . , ws} and Y = {v1, . . . , vq}, defined in
such a way that a vertex wi is adjacent to vj in B, iff

NHq (wi) ∪ {wi} ⊆ NH (vj ).

If we prove the existence of a complete matching in B, then we are done, since it would be sufficient to contract in
G the edges of the complete matching in order to obtain a complete graph Kp. We use Hall’s condition on complete
matching. So, we have to study |NB(A)| for each A ⊆ X. Given A ⊆ X, denoting by m = |A|, let us distinguish three
cases according to the maximum degree of Hq.

(a) Suppose that �(Hq) = 1.



1280 M. Cera et al. / Discrete Mathematics 307 (2007) 1276–1284

For 1�m�4, if |NB(A)| < m, then at least nine vertices of the set {vq−(m+8), . . . , vq} are nonadjacent in B to each
of the vertices of A. Since {v1, . . . , vq} is a decreasing sequence of vertices of H, we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩

�Hq−m(vq−(m−1))�2,

�Hq−(m+2)
(vq−(m+1))�3,

�Hq−(m+4)
(vq−(m+3))�4,

�Hq−(m+6)
(vq−(m+5))�5,

�Hq−(m+8)
(vq−(m+7))�6.

Hence,

e(H)�(q − m − 7)6 + 2 · 5 + 2 · 4 + 2 · 3 + 2 · 2 + m − 1 + m

= 6q − 4m − 15

�6q − 31

> 3q + 6 + 3k

and this is not possible because we suppose that e(H)�3q + 3k + 6.

For 5�m�q − 2, if |NB(A)| < m, then there exists at least one vertex nonadjacent in B to any vertex of A in the set
of vertices {vq−(m−1), . . . , vq}. Thus,

�Hq−m(vq−(m−1))�m

and hence,

e(H)�(q − m + 1)m + m − 1 + m�5q − 11 > 3q + 6 + 3k,

a contradiction.
For m = q − 1, if |NB(A)| < q − 1, then, on the one hand, for 1�k�2, reasoning as in the case 5�m�q − 2, we

have

�H1(v2)�q − 1

and hence, e(H)�2(q − 1) + (q − 2)1 + q − 1 = 4q − 5 > 3q + 6 + 3k for q �18. On the other hand, if k > 2, the
number of vertices of H is v(H)�q + 2(q − 1) = 3q − 2 > 3q − k and this is an absurdity.

For m = q, we deduce that the order of H is

v(H)�q + 2q = 3q > 3q − k

against our assumptions.
(b) Suppose that �(Hq) = 2.

For 1�m�7, if |NB(A)| < m, then at least 12 vertices of the set {vq−(m+11), . . . , vq} are nonadjacent in B to each
of the vertices of A. Thus,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

�Hq−1(vq)�2,

�Hq−(m+2)
(vq−(m+1))�3,

�Hq−(m+5)
(vq−(m+4))�4,

�Hq−(m+8)
(vq−(m+7))�5,

�Hq−(m+11)
(vq−(m+10))�6

which implies that

e(H)�(q − m − 10) · 6 + 3 · 5 + 3 · 4 + 3 · 3 + 2(m + 1) + m

= 6q − 3m − 22

�6q − 43

> 3q + 6 + 3k,

again a contradiction.
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For 8�m�q, denoting by r the number of vertices of degree 2 in the set A, if |NB(A)| < m, then there exists at
least one vertex nonadjacent to any vertex of A in the set of vertices {vq−(m−1), . . . , vq}. This implies,

�Hq−m(vq−(m−1))�m − r

2
and e(Hq)�m + r

2

and as a consequence,

e(H)�(q − m + 1)
(
m − r

2

)
+ (m − 1)2 + m + r

2

�(q − m)
m

2
+ m − r

2
+ 3m − 2 + r

2

= − m2

2
+ q + 8

2
m − 2

�4q − 2

> 3q + 6 + 3k

but this is not possible.
(c) Suppose that �(Hq) = 3.

For 1�m�11, if |NB(A)| < m, then at least 15 vertices of the set {vq−(m+14), . . . , vq} are nonadjacent in B to each
of the vertices of A. Then,⎧⎪⎨

⎪⎩
�Hq−1(vq)�3,

�Hq−(m+6)
(vq−(m+5))�4,

�Hq−(m+10)
(vq−(m+9))�5,

�Hq−(m+14)
(vq−(m+13))�6

and hence,

e(H)�(q − m − 13) · 6 + 20 + 16 + 3(m + 5) + m

= 6q − 2m − 27

�6q − 49

> 3q + 6 + 3k,

but this is an absurdity.
For 12�m�q, if |NB(A)| < m, then there exists at least one vertex nonadjacent to any vertex of A in the set of

vertices {vq−(m−1), . . . , vq}. This implies that

�Hq−m(vq−(m−1))�
m

3

and therefore,

e(H)�(q − m + 1)
m

3
+ 3(m − 1) + m

= − m2

3
+ q + 13

3
m − 3

�4q + 1

> 3q + 6 + 3k,

a contradiction.
Hence, |NB(A)|� |A|, for each A ⊆ X. So, by applying Hall’s condition, there exists a complete matching in the

bipartite graph B, and so the result follows. �

3.2. Main result

As we noted before, our aim is to find out the exact value of the function ex(n; MKp) for infinitely many related
values of n and p. In the following theorem we deduce that this extremal number is the Turán number t2p−n−1(n).
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Theorem 3.6. Let n and p be two positive integers, such that �(5n + 9)/8��p��(2n − 1)/3� and n − p�24. Then

ex(n; MKp) = t2p−n−1(n).

Proof. Observe that n < 2p − 3, so, as we commented in Section 3.1, in order to show the result we only must prove
that ex(n; MKn−q)�(

n
2 ) − (3q + 3k + 6), for q �24 and n = 3q − k, with 1�k��(q − 9)/3�.

Let G be a graph with n vertices and at least (
n
2 ) − (3q + 3k + 5) edges and let us denote by H = G the complement

graph of G. H has n vertices and at most 3q + 3k + 5 edges. So, by applying Lemma 3.4 we have that H ∈ V
q
q , and

by applying Lemma 3.5 we deduce that H = G is contractible to Kp. So the result holds. �

4. Characterization of the family EX(n; MKp)

In the previous section we have determined the exact value of the function ex(n; MKp), being the Turán number
t2p−n−1(n). Now we complete this study by showing that the only graph of order n and size t2p−n−1(n) not containing
Kp as a minor is the Turán graph T2p−n−1(n).

In order to prove the characterization theorem we will make use of some results. The first one relates the vertices of
maximum degree in a graph H with the number of them being independent.

Lemma 4.1. Let m be a positive integer and H a graph with maximum degree � and at least m vertices of maximum
degree. Then at least �(m + �)/(� + 1)� of them are independent.

Proof. Let k + 1 = �(m + �)/(� + 1)�. Then H has at least (� + 1)k + 1 vertices of degree �. We will show that at
least k + 1 of them are independent.

We apply induction on k. For k = 0 the result is clear because m�1. Hence, let us suppose that k�1 and that the
result holds for k − 1. Let w be a vertex of H with degree � and we consider the graph H ∗ = H − w. It is clear that
H ∗ has at least (� + 1)k + 1 − |NH (w) ∪ {w}| = (� + 1)k + 1 − (� + 1) = (� + 1)(k − 1) + 1 vertices of degree
�. So, by the induction hypothesis, at least k of these vertices, {w1, . . . , wk}, are independent. Thus, the k + 1 vertices
w, w1, . . . , wk have degree � and are independent. �

The following result relates the vertices of maximum degree � in a graph H with the number of disjoint copies of
K�+1 contained in H.

Lemma 4.2. Let r be a positive integer and H a graph with maximum degree �. If H has r(� + 1) vertices of degree
� and exactly r of them are independent, then H contains r disjoint copies of K�+1.

Proof. Let H be a graph and let �H be the subset of vertices of degree �. Let w1, . . . , wr be the r independent vertices
of degree � belonging to �H . Hence �H ⊆ ⋃r

i=1N(wi) ∪ {wi}. Since |�H | = r(� + 1) it follows:

r(� + 1) = |�H |�
∣∣∣∣∣

r⋃
i=1

NH (wi) ∪ {wi}
∣∣∣∣∣ �r(� + 1)

which implies that every vertex of NH (wi) has degree �, for any i ∈ 1, . . . , r and further, (NH (wi)∪{wi})∩(NH (wj )∪
{wj })=∅ for all i = j , i, j =1, . . . , r . So it is enough to show that for each i=1, . . . , r the subgraph H [{wi}∪NH (wi)]
is K�+1. Otherwise, there must exist two vertices a and b of H [{wi}∪NH (wi)] such that the edge ab does not belong to
this graph. Hence, {w1, . . . , wr, a, b}\{wi} is a set of r+1 independent vertices of degree � in H against the hypothesis.
Hence, H contains r disjoint copies of K�+1 and the result follows. �

Let us see that the family of graphs of order n and size ex(n; MKp) not containing Kp as a minor is only formed by
the Turán graph T2p−n−1(n), if �(5n + 9)/8��p��(2n − 1)/3� and n − p�24.

Theorem 4.3. Let n and p be two positive integers, such that �(5n + 9)/8��p��(2n − 1)/3�, with n − p�24. Then

EX(n; MKp) = {T2p−n−1(n)}
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Proof. We know by Theorem 3.6 that the exact value of the function ex(n; MKp) is the Turán number t2p−n−1(n).

Moreover, as we noted in Section 3.1, it is not difficult to check that the Turán graph T2p−n−1 is not contractible to
Kp. Hence, it is sufficient to show that this graph is the only extremal graph.

For that, we reason as in the previous section changing p by n − q. So, we will prove that if G is a graph belonging
to the family EX(n, MKp), then, its complement graph H is the graph formed by 2k + 3 disjoint copies of K4 and
q − 3k − 4 disjoint copies of K3.

Let us consider G ∈ EX(n; MKn−q) and denote by H its complement graph. By Theorem 3.6, we know that H has
v(H) = 3q − k vertices and e(H) = 3q + 3k + 6 edges. So, by applying Lemma 3.5, we deduce that H /∈V

q
q, i.e.,

for all decreasing sequence of vertices of H, {v1, . . . , vq}, the minimum cardinality of a vertex cover of Hq is at least
q + 1.

Let {v1, . . . , vq} be a decreasing sequence of vertices of H. First, let us see that �(Hq) = 2. On the one hand,
if �(Hq)�1, then vc(Hq)� 1

2v(Hq) = q − k/2 < q + 1, a contradiction. On the other hand, if �(Hq)�3, then
vc(Hq)�e(H) − 3q �q − 3 < q + 1, being also an absurd, hence �(Hq) = 2.

Now, let us see that �(H) = 3. Since e(H) > v(H), it is clear that �(H)�3. So, it is sufficient to prove the other
inequality. For that, assume that �(H)�4 and let us denote by i�1 the maximum number of independent vertices with
degree greater than or equal to 3 in H, and by r the maximum number of independent vertices with degree 2 in Hq.

On the one hand, since �(H)�4 and �(Hi) = 2, by applying Lemma 3.2, we have

2(q − i) + vc(Hq) + r �e(Hi)�e(H) − (3i + 1).

Further, since e(Hi)�v(Hi), we deduce that

i�r + k + 1. (3)

On the other hand, �(Hq+r )�1 and hence, 2e(Hq+r )�v(Hq+r ). Besides, by applying Lemma 3.2, we have

e(Hq+r ) = e(Hq) − 2r = vc(Hq) − r �q + 1 − r

which implies that

r �k + 2. (4)

So, if �(H)�4, taking into account (3) and (4), we have

e(H)�3i + 1 + 2(q − i) + vc(Hq) + r �3q + i + 2 + r

�3q + 2r + k + 3

�3q + 3k + 7,

but this is a contradiction. Then �(H) = 3.

Finally, let us see that H is the graph formed by (2k + 3) disjoint copies of K4 and q − 3k − 4 disjoint copies of K3.

Let us denote by ni the number of vertices of H with degree i. Since �(H)= 3 then n3 �2e(H)− 2v(H)= 8k + 12,

that is, H has at least 8k + 12 vertices of degree 3. So, by applying Lemma 4.1, at least �(8k + 12 + 3)/4� = 2k + 3 of
them are independent.

In fact, H has, exactly, 2k + 3 independent vertices of degree 3, because if not,

e(H)�3(2k + 4) + 2(q − 2k − 4) + e(Hq) = 2q + 2k + 4 + vc(Hq) + r

�2q + 2k + 4 + q + 1 + r

�3q + 3k + 7

against our assumptions.
Thus, H has 8k+12=4(2k+3) vertices of degree 3 and, exactly, 2k+3 of them are independent. Then, by applying

Lemma 4.2, we deduce that H is formed by 2k + 3 disjoint copies of K4 and a graph H ∗ with maximum degree 2.
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Finally, we only must show that H ∗ is formed by q − 3k − 4 disjoint copies of K3. The graph H satisfies that{
3n3 + 2n2 + n1 = 2(3q + 3k + 6),

n3 + n2 + n1 + n0 = 3q − k

and we have proved that n3 = 8k + 12.

Therefore,{
2n2 + n1 = 6q − 18k − 24,

n2 + n1 + n0 = 3q − 9k − 12

and hence, n0 = n1 = 0 and n2 = 3q − 9k − 12. So, H ∗ has maximum degree 2 and 3q − 9k − 12 vertices of degree 2
and then, by applying Lemma 4.1, at least⌊

3q − 9k − 12 + 2

3

⌋
= q − 3k − 4

of them are independent.
But indeed, this is the exact number of independent vertices of degree 2 in H ∗. If not, H2k+3 would have at least

2k +3+ (q −3k −3)=q − k independent vertices of degree 2, which implies that r �q − k − (q − (2k + 3))= k +3.

But then

e(H)�3(2k + 3) + 2(q − 2k − 3) + e(Hq) = 2q + 2k + 3 + vc(Hq) + r

�2q + 2k + 3 + q + 1 + k + 3

�3q + 3k + 7,

and this is a contradiction. Then, by applying Lemma 4.2 H ∗ is formed by q − 3k − 4 disjoint copies of K3, and the
result holds. �
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