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Abstract  

Neuroendocrine secretory products and their interactions with epithelial prostate cells are currently 
under investigation in order to understand their significance in the pathogenesis, prognosis, and 
therapy of prostate carcinoma. These neuropeptides have the potential to disrupt the balance between 
cell death and cell growth in the tumor. Our research was based on the role of bombesin in 
modulating the mitochondrial membrane potential ( m) in cell death induced by etoposide on PC-3 

cells. Cells were cultured and stained with 5,5',6,6'-tetrachloro-1,1',3,3'-
tetraethylbenzimidazolylcarbocyanine iodide (JC-1). At low membrane potentials, JC-1 produces a 
green fluorescence, and at high membrane potentials, it forms "J aggregates" with red fluorescence. 
Cells were examined in a confocal microscope. For quantitative analyses, regions of interest were 
selected. The size, number of pixels, and ratios between fluorescence intensity in the red and green 
channels in each region of interest were calculated. The loss of m in etoposide-treated PC-3 cells 

was prevented by bombesin. The quantitative analysis of JC-1–stained cells revealed a significant 
decrease in the red (high m) to green (low m) ratio in etoposide-treated cells when compared 

with control cells, which was restored in the presence of bombesin (P < 0.00001). The interaction 
between treatments and area (P = 0.0002) was highly significant, and confirms that PC-3 cells keep 
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their apoptosis machinery, showing an apoptotic volume decrease in response to etoposide. The 
protection by bombesin occurs by inhibition of apoptosis and maintenance of mitochondrial integrity. 
New therapeutic protocols and trials need to be developed to test drugs acting through the 
neutralization of antiapoptotic intracellular pathways mediated by neuroendocrine hormones. [Mol 
Cancer Ther 2007;6(4):1292–9]  

Introduction  

Neuroendocrine differentiation in prostatic adenocarcinomas has received increasing attention in 
recent years as a result of possible implications in prognosis and therapy (1–4). Neuroendocrine 
secretory products and their interactions with epithelial prostate cells are currently under 
investigation in order to understand their significance in the pathogenesis, prognosis, and therapy of 
prostate gland carcinoma (5–8). Recently, we showed that bombesin inhibits etoposide-induced 

apoptosis in human androgen-independent prostatic cancer cell lines (9); thus, these neuropeptides 
could disrupt the balance between cell death and cell growth in the tumor.  

The most relevant biological interest in apoptosis is the possibility of its modulation, hence, the 
identification of inductive and protective factors and their mechanisms of action seem to be the most 
relevant challenges in apoptosis research. The increasing number of studies enforcing the importance 
of mitochondria in apoptosis signaling, with an increase in complexity, has resulted in a strong 
debate concerning the exact sequence of mitochondrial events. Mitochondrial dysfunction in 
apoptosis is related with specific permeabilization of the outer mitochondrial membrane to large 
molecules including ions that are relevant in the apoptotic process (10). The detection of the 
mitochondrial permeability transition event provides an early indication of the initiation of cellular 
apoptosis. This process is typically defined as a collapse in the electrochemical gradient across the 
mitochondrial membrane, as measured by the change in the mitochondrial membrane potential ( ). 
Loss of mitochondrial , indicative of apoptosis, can be detected by a unique fluorescent cationic 
dye, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide, commonly known as 
JC-1. JC-1 is a cationic dye that exhibits potential-dependent accumulation in mitochondria, 
indicated by a fluorescence emission shift from green ( 525 nm) to red ( 590 nm). Consequently, 
mitochondrial depolarization is indicated by a decrease in the red/green fluorescence intensity ratio. 

The potential-sensitive color shift is due to the concentration-dependent formation of red fluorescent 
"J aggregates" (11). Therefore, a careful analysis of the fluorescence ratio detected will allow 

researchers to make comparative measurements of membrane potential and determine the percentage 
of mitochondria within a population that responds to an applied stimulus (12–15).  

A recent study from our laboratory showed the ability of etoposide to induce alterations in the m, 

with the subsequent release of intermembrane space proteins (16, 17). The development of in vitro 
models for an adequate approach to neuroendocrine differentiation of prostatic carcinoma, and its 
implications in this disease, is imperative. In the present article, our research was based on the role of 
a representative neuropeptide, bombesin, in modulating the mitochondrial permeability transition 
alterations of cell death induced by etoposide on PC-3 cells, thus enforcing that the presence of the 
secretory products from neuroendocrine cells confers antiapoptotic capabilities on 
nonneuroendocrine cells in the androgen-insensitive prostatic PC-3 cancer cell line. On the other 
hand, the interaction between neuroendocrine cells and prostatic carcinoma cells is a novel model for 
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the study of basic mechanisms of apoptosis. In this sense, new therapeutic protocols and trials need 
to be developed to test drugs acting through the neutralization of antiapoptotic intracellular pathways 

mediated by neuroendocrine hormones.  

Materials and Methods  

Cell Culture 
Androgen-independent PC-3 cells (American Type Culture Collection, Manassas, VA) were grown 
in Ham's F12 (Cambrex, Verviers, Belgium) supplemented with 10% fetal bovine serum 
(Biowhittaker, Verviers, Belgium) and 4% penicillin-streptomycin (Cambrex) in a water-saturated 

atmosphere of 5% CO2 until the beginning of the experiments.  

Treatment Administration 
All experiments were started with unsynchronized exponentially growing cells. Treatment protocols 
for etoposide-induced apoptosis and inhibition of apoptosis by bombesin have been previously 

described by us (9, 18–22). Briefly, cells were seeded in glass-bottomed microplates (Willco wells; 
Amsterdam, the Netherlands) at a density of 200,000 cells per well and the culture medium was 
changed to 5% fetal bovine serum–supplemented medium, and was exposed to different treatments 
48 h later.  

Etoposide-Induced Apoptosis. Cells were exposed to 150 µmol/L of etoposide (Sigma, Steinheim, 
Germany), added from a 2 mmol/L stock solution in DMSO.  

Neuropeptide Exposure Inhibited Etoposide-Induced Apoptosis. Cells were exposed to 
combined treatments with etoposide (as described above) and bombesin (Sigma; 1 nmol/L).  

Control Groups. A control group cultured in the standard medium was used in all experiments; 
positive controls were treated with bombesin (1 nmol/L). Cells were examined after 48 h of exposure 
to different treatments; at least five experiments were done. Direct examination by phase contrast 
microscopy was done at the beginning of the experiments.  

Growth Kinetics and Cell Viability. Using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-
tetrazolium-5-carboxanilide inner salt viability assay and trypan blue exclusion, with trypan blue in 
culture media (0.5%), the growth kinetics and cell viabilities were determined. After incubation of 
cells with trypan blue, nonstained cells were regarded as viable cells, and blue cells were considered 
nonviable when observed in a hematocytometer. The percentage of viable cells was defined as the 
number of nonstained cells / total cell number x 100.  

2,3-Bis(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide Inner Salt Assay. 
Briefly, cells were grown in a 96-well flat-bottomed microtiter plate at a final volume of 100 µL 
culture medium per well, in a humidified atmosphere (37°C and 5% CO2). After 24 and 48 h, 50 µL 

of the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt labeling 
mixture (Boehringer-Mannheim, Mannheim, Germany) was added to each well. Cells were 
incubated for 4 h in a humidified atmosphere, and the absorbance of cells was measured using an 
ELISA reader at a wavelength of 450 to 500 nm.  
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Characterization of Apoptosis with Light Microscopy and Fluorescence Microscopy 
For microscopic quantification of apoptotic cells, cytospin preparations obtained from in vitro cell 
cultures were used. The sample was taken by collecting the supernatant (containing the floating 
apoptotic cells) followed by trypsinization of the rest of the monolayer (containing healthy cells). 
Both fractions were combined to reconstitute the total population and then centrifuged at 1,000 rpm 
for 5 min to get the pellet. Cells were then washed twice in PBS and cytospun by means of 
cytobuckets at 1,500 rpm for 5 min. Air-dried samples were stained for light microscopy (H&E) and 
fluorescence microscopy (fluorescent 4',6-diamidino-2-phenylindole).  

Cell Staining. For H&E staining, air-dried slides were fixed in 10% formaldehyde and stained in 
hematoxylin and counterstained with eosin. For fluorescent 4',6-diamidino-2-phenylindole staining, 

air-dried slides were fixed in methanol at –20°C for 20 min, air-dried, and stained with 4',6-
diamidino-2-phenylindole (Serva, Boehringer-Ingelheim, Heidelberg, Germany) at room temperature 

for 20 min in the dark, and mounted with an antifading medium (O-phenylenediamine; Sigma) in 
glycerol (Merck, Darmstadt, Germany), and preserved at –20°C in the dark until examination, at a 
fluorescence range between 300 and 400 nm. The percentage of apoptotic cells was defined as the 
number of apoptotic cells / total cell number x 100. At least 200 cells should be counted for each 
experiment.  

Assessment of Apoptosis by Annexin V 
Cells were stained with Annexin V as recommended by the suppliers (Molecular Probes, Leiden, the 
Netherlands), conjugated with Alexa Fluor 594 for the evaluation of translocation of 
phosphatidylserine to the outer leaflet of the plasma membrane, and SYTOX Green (Molecular 
Probes) for nuclear staining, to a final concentration of 1 µmol/L. The SYTOX Green nucleic acid 
stain is a high-affinity nucleic acid stain that easily penetrates cells with compromised plasma 
membranes, and yet, will not cross the membranes of live cells. The SYTOX Green/DNA complex 
has excitation and emission maxima of 504 and 523 nm, respectively. Annexin V conjugated with 
Alexa Fluor 594 shows excitation and emission maxima of 590 and 617 nm, respectively. Briefly, 
after discarding the culture medium, cells were washed with cold PBS, and a staining solution with 
80 µL of SYTOX Green solution in Annexin binding buffer and 20 µL of Annexin solution were 
added to a final volume of 100 µL of staining solution per well. Cells were incubated at 18°C to 24°
C in the dark for 15 min, and then washed twice with Annexin binding buffer (supplied) prior to 
fixation for 10 min in 70% methanol and mounting with Vectashield (Vector Laboratories, 
Burlingame, CA). Cells were examined in an inverted confocal microscope Leica TCS-SL (Leica 

Microsystems, Barcelona, Spain).  

Mitochondrial Permeability Potential 
Cells were stained with the cationic dye JC-1 (MitoPT, Immunohistochemistry Technologies, 
Bloomington, MN), which exhibits potential-dependent accumulation in mitochondria. At low 
membrane potentials, JC-1 continues to exist as a monomer and produces a green fluorescence 

(emission at 527 nm). At high membrane potentials or concentrations, JC-1 forms J aggregates 
(emission at 590 nm) and produces a red fluorescence.  

Staining Procedure. Cells were stained as recommended by the suppliers. Briefly, cells were 
cultured in glass-bottomed Willco wells for the assay, not exceeding a final amount of 106 cells/mL, 

and after discarding the culture medium, 1x MitoPT staining solutions obtained from a 100x stock 
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was added to the wells (0.5 mL/well). Cells were then incubated at 37°C for 15 min in a CO2 

incubator and, after discarding the medium, was washed twice with 1 to 2 mL of assay buffer 
warmed to 37°C. The wash was discarded and a drop of assay buffer was added to the wells prior to 
immediate examination in the inverted confocal microscope (Leica TCS SL), equipped with an HCX 
PL APO CS 40.0 x 1.25 oil immersion objective, with an incubation system consisting of a cube that 
completely covers the microscope and allows us to keep cells at 37°C in a controlled atmosphere 

with a mixed air/CO2 flow of 4 L/h and 5% CO2 during image collection and analysis.  

Image Collection and Analysis 
Images were collected and processed using the imaging software provided by the Leica TCS SL 
system. All samples were exposed to the laser for a time interval not more than 5 min to avoid 

photobleaching. JC-1 was excited at 490 nm. The excitation beam splitter selected was a DD 
488/543. Emission fluorescence was collected in TRITC (590 nm) and FITC (530 nm) channels 
simultaneously. The laser was set to the lowest power that was able to produce a fluorescent signal. 
The maximum voltage of photomultipliers was used to decrease the required laser power as much as 
possible, 440.1 V being the lowest and 499 V the highest voltage. A pinhole of 1 Airy unit was used. 
Images were acquired at a resolution of 1,024 x 1,024, with a voxel size of 247.66 nm.  

For quantitative analysis, at least 120 regions of interest were selected in each group (control, 
etoposide-treated cells, etoposide plus bombesin–treated cells, and bombesin-treated cells) to 
quantify changes in m. All of the regions of interest were cells selected under the following 

criteria: well-defined limits, clear identification of nucleus, and absence of intersection with 
neighboring cells. The size, number of pixels, and ratios between fluorescence intensity in the red 
(high membrane potential) and green (low membrane potential) channels in each region of interest 
were calculated. An increase in the ratio was interpreted as an increase in m.  

Statistical Analysis 
The statistical analysis was done with the SPSS program. A two-way ANOVA analysis was used to 
compare the mean values of the red/green ratios, also introducing the cell size factor of four size 
groups defined by the quartiles of the distribution of areas. The normality of the groups was 
contrasted with Kolmogorov-Smirnov test and homogeneity of variances with Cochran's C test. Post 
hoc contrasts were carried out to detect the differences between groups.  

Results  

Characterization of the Apoptotic Process 
Percentages of Apoptotic Cells. After 48 h of treatment with 100 µg/mL of etoposide, the 
percentage of apoptotic cells determined according to the examination of H&E, Annexin V, and 4',6-
diamidino-2-phenylindole–stained cells was 61.7% in exposed cells and 7.1% in nontreated control 
cells. In PC-3 cells, the addition of bombesin resulted in a marked decrease of apoptosis (20.43% of 
apoptotic cells), whereas in the bombesin-treated group, 5.4% of the cells were apoptotic. Annexin V 
was used to confirm the induction of apoptosis using a confocal microscope.  

Growth Kinetics and Cell Viability. All etoposide-treated groups presented worse viability than the 
control groups. The addition of neuropeptides resulted, as expected, in an increase in cell viability.  
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m Assessment by Confocal Microscopy. Control cells showed heterogeneous staining of the 

cytoplasm with both red and green fluorescence coexisting in the same cell (Fig. 1A ). Consistent 
with a mitochondrial localization, the red fluorescence was mostly found in rod-shaped and granular 
structures distributed throughout the cytoplasm. Although a minority of the mitochondria exhibited 
only green fluorescence; these were most conspicuous in areas of cytoplasm surrounding the nucleus. 
Treatment of PC-3 cells with bombesin increased the red fluorescence and frequent clusters of 
mitochondria were seen (Fig. 1B). Exposure of PC-3 cells to etoposide induced marked changes in 

m as evident from the disappearance of red fluorescence or the increase of green fluorescence in 

most cells, with a predominantly peripheral distribution. Some cells were devoid of red fluorescence, 
which is an indication of the loss of m and the severity of cell damage (Fig. 1C). Cell treatment 

with etoposide plus bombesin increased the red fluorescence in most cells, and protected cells which 
presented a similar distribution pattern to that observed in the control group, from the loss of m 

(Fig. 1D).  

 

  
Statistical Analysis 
Descriptive Analysis. For the variable ratio, which is equivalent to the quotient between the mean 
values of red and green pixels in each region of interest that corresponds to the variable cell area, 
significant differences (P < 0.00001) between the four groups were found (Fig. 2 ). 

 

 
View larger version (57K): 
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Figure 1. JC-1 fluorescence imaging of mitochondria in 
the selected regions of interest. Insets, a higher 
magnification of cells (left). Cells were stained with JC-1 
for 15 min. Green fluorescence, depolarized (monomer) 
mitochondria; red fluorescence, hyperpolarized (J 
aggregates) mitochondria. A, control; B, bombesin-treated 
cells; C, etoposide-treated cells; D, etoposide plus 
bombesin–treated cells. 

Figure 2. Quantification of m (box-whisker plot) 

expressed as a ratio (J aggregates/monomer) in the different 
treatment groups. Descriptive variables: X-axis, N for each 
treatment group; Y-axis, red to green ratio. 
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Two-Way ANOVA. Using the quartiles of the variable area, four groups were established in the 
selected cells as a second factor was added which could affect the treatment, with a total of 16 
groups, four defined by treatment and four defined by the areas, with four levels per group. Area 
influence on the red/green ratio between the four treatment groups, treatment influence on the 
red/green ratio related to area, and the red/green ratio differences depending on the cell area were 
assessed by means of a two-way ANOVA. 

The ANOVA revealed a highly significant difference between the means of ratios between 
treatments (P = 0.000), and the means of ratio for the area sizes (P = 0.000), and the interaction 

between treatments and area (P = 0.0002) was also highly significant, indicating that the differences 
between ratios of the area depend on the treatment. The assumptions of normality of the distribution 

in the 16 groups were satisfied (except for one group) and the Cochran's C test for homogeneity of 
variance reported a significance level of >0.05 (P = 0.12), that is, we accept that the variances were 
not significantly different (Fig. 3 ). This is a strong interaction effect and is unlikely to be due to 
chance, as shown by ANOVA analysis. Post hoc contrasts were done for confirmation of the 
significance.  

 

  
Post hoc Comparisons. The post hoc comparisons show the differences in model-predicted means 
for each pair of factor levels. In this case, because the interaction effect was significant, the 
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Figure 3. Profiles of the ratio for marginal means of size 
for treatment factor (A), treatment groups in the X-axis and 
red to green ratio in the Y-axis; and for marginal means for 
size factor (B), data for size in the X-axis and for red to 
green ratio in the Y-axis. 
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differences between the different levels of treatment factor for each of the levels of the factor size 
were examined to contrast and estimate significant differences between the different treatments 

conditioned by the factor size. Due to the existence of a control group, the Dunnett test was used 
(Table 1 ). Furthermore, the HSD test of Tukey was used to contrast the pairwise differences 

between treatments (Table 2 ). 

 

  
 

  
Discussion 

The presence of neuroendocrine differentiation—understood as an exaggerated ratio of 
neuroendocrine cells to neoplastic epithelial cells in the prostate carcinoma—is associated with 
worse prognosis, higher tumor progression, and the androgen-independent status of the tumor, which 
becomes unresponsive to hormonal therapy, and has received increasing attention in recent years as a 
possible result of implications of therapy (1–4).  

The putative function of neuroendocrine cells in stimulating proliferation and/or inhibiting the 
apoptotic process, worsening the prostate cancer outcome through a paracrine hormonal mechanism, 

provides a rationale for the experimental use of drugs which could inhibit the secretion of 
neuroendocrine products, the aim of which is to counteract tumor progression (6–8, 23–25). In the 
present article, our research was based on the role of bombesin in modulating the induction of 
mitochondrial membrane potential alterations in etoposide-induced cell death in an androgen-
independent PC-3 prostate cancer cell line.  

In apoptosis, mitochondria have two essential functions. First, to provide energy in the form of ATP, 
which is required for cells to die by the apoptotic pathway. Second, to release proapoptotic proteins 
normally sequestered in the intermembrane space into the cytosol, in which they trigger downstream 
apoptotic signaling pathways (26–30).  

Detection of the mitochondrial permeability transition event provides an early indication of the 
initiation of cellular apoptosis. This process is typically defined as a collapse in the electrochemical 

gradient across the mitochondrial membrane, as measured by the change in the mitochondrial . 
Changes in the mitochondrial  lead to the insertion of proapoptotic proteins into the membrane 

and possible oligomerization of Bid, Bak, Bax, or Bad. This could create pores, which dissipate the 
transmembrane potential, thereby releasing cytochrome c into the cytoplasm (31–34).  

View this table: 
[in this window] 

[in a new window] 
 
  

Table 1. Differences between each treatment group and control group 
with 95% confidence interval showing the influence of size 

View this table: 
[in this window] 

[in a new window] 
 
  

Table 2. Pairwise differences between the four groups with 95% 
confidence interval 
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Loss of mitochondrial , indicative of apoptosis, can be detected with JC-1. JC-1 was incorporated 
(for easy penetration) into cells and healthy mitochondria, in which it aggregates and fluoresces red 
(590 nm). When the mitochondrial  collapses in apoptotic cells, the reagent no longer accumulates 
inside the mitochondria, and instead, it is distributed throughout the cell. When dispersed in this 
manner, it assumes a monomeric form which fluoresces green (527 nm; refs. 11, 35–37).  

A loss of m leads to the induction of apoptosis in etoposide-treated PC-3 cells and this damage is 

prevented by bombesin. The quantitative analysis of JC-1–stained cells revealed a significant 

decrease in the red (high m) to green (low m) ratio in etoposide-treated cells compared with 

control cells, which was restored in the presence of bombesin. In bombesin-treated cells, an increase 

in the ratio was observed. Signal transduction molecules activated by bombesin include 
phosphoinositide-3-kinase/Akt, with subsequent activation of transcription factors (38, 39), whereas 
the Akt pathway has been involved in the regulation of m as well as of cell size (40).  

The interaction between treatments and area (P = 0.0002), indicating that the difference between 
ratios of area depends on treatment, is highly significant. Data obtained for etoposide-treated cells 

confirm that PC-3 cells keep their apoptotic machinery, showing an apoptotic volume decrease in 
response to etoposide (41). The channel activation leads to a significant decrease in potassium 

content, and a significant increase in sodium (42–44). The variation in cellular volume was evaluated 
using the sum of the sodium and potassium contents (45). In previous studies, we have shown that 
etoposide-treated cells passed through a series of morphologically identifiable stages in their 
pathway to death. A progressive decrease of intracellular potassium, as cells progress through the 
different stages, with a dramatic lowering in the final stage (20, 22).  

Combined treatment with etoposide and bombesin resulted in a modulation of the apoptotic response 
with a decrease in apoptosis, and an increase in cell viability even with respect to control cells. The 
differences in treatment factors vary for each size group. Clear differences were found for size 1 cells 
between bombesin-treated cells, etoposide plus bombesin–treated cells, and control cells with respect 
to etoposide-treated cells. For size 2 cells, differences were found between bombesin- and etoposide 
plus bombesin–treated cells with respect to control and etoposide-treated cells. For sizes 3 and 4, 
bombesin-treated cells showed a higher ratio than cells in the other three groups. The differences 
between treatments were remarkable in the control and etoposide plus bombesin–treated cells, but 
not in etoposide-treated cells and cells exposed to bombesin alone. If there were no interaction 
effects, the lines in the figures would be parallel. This is a positive fact which confirms the 

experimental design, and that these data support the role of bombesin as a growing factor (46, 47). 
The protection by bombesin against etoposide-induced loss of m, as shown in this study, occurs by 

the inhibition of apoptosis and maintenance of mitochondrial integrity.  

Our evidence shows that the presence of neuroendocrine cells and their secretory products confers 
antiapoptotic capabilities on nonneuroendocrine cells in androgen-insensitive prostatic cancer cells. 
New therapeutic protocols and trials need to be developed to test drugs acting through the 
neutralization of antiapoptotic intracellular pathways mediated by neuroendocrine hormones. 
Hopefully, this will lead to the development of entirely new therapeutic approaches in hormone 
refractory prostate cancer.  
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