
Science of Computer Programming 66 (2007) 44–59
www.elsevier.com/locate/scico

An architecture for access control management in collaborative
enterprise systems based on organization models

F.L. Gutiérrez Velaa,∗, J.L. Isla Montesb, P. Paderewski Rodrı́gueza, M. Sánchez Romána,
B. Jiménez Valverdea

a Department of Computer Languages and Systems, University of Granada, Spain
b Department of Computer Languages and Systems, University of Cádiz, Spain

Received 5 March 2006; received in revised form 31 August 2006; accepted 15 October 2006
Available online 19 December 2006

Abstract

One of the most important characteristics of current enterprise systems is the existence of collaborative processes where different
users/subsystems communicate and cooperate in order to carry out common activities. In these processes, shared resources are often
used and there are complex relationships between activities and users, so the definition and administration of different security
levels (tasks, users, resources, etc.) is necessary.

In this article, we shall focus on an important dimension related to the security aspect of collaborative systems: access control.
We shall use an organization model that considers the necessary elements to represent authorization and access control aspects
in enterprise systems. This model is used in a service-oriented architecture (SOA) in order to facilitate the implementation of a
service which is responsible for these important functions. Finally, we shall propose the use of a pattern definition language at a
conceptual level to facilitate the modelling of the organizational structures of an enterprise system. We shall specify organization
patterns that will help us define general models which can be applied in different situations.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Collaborative system; Software architecture; Enterprise architecture; Role-based access control; Organization patterns

1. Introduction

Collaborative processes enable user groups to communicate, coordinate and cooperate in order to perform common
activities. In this kind of system, there are a wide range of applications (e.g. applications for collaborative document
sharing/editing, electronic learning or workflow management systems). This type of application is broadly used in
enterprise systems [11]. Nowadays, companies build their services using the resources that are provided by new
technologies and more specifically by the Web. It is normal to find that company business increases or changes when
these technologies are incorporated.

∗ Corresponding author.
E-mail addresses: fgutierr@ugr.es (F.L. Gutiérrez Vela), joseluis.isla@uca.es (J.L. Isla Montes), patricia@ugr.es (P. Paderewski Rodrı́guez),

miguesr@ugr.es (M. Sánchez Román), beajv@ugr.es (B. Jiménez Valverde).

0167-6423/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2006.10.005

http://www.elsevier.com/locate/scico
mailto:fgutierr@ugr.es
mailto:joseluis.isla@uca.es
mailto:patricia@ugr.es
mailto:miguesr@ugr.es
mailto:beajv@ugr.es
http://dx.doi.org/10.1016/j.scico.2006.10.005


F.L. Gutiérrez Vela et al. / Science of Computer Programming 66 (2007) 44–59 45

When the applications are set up on the Web, it is necessary to pay special attention to security aspects and although
we normally only pay attention to security when transmitting information between servers and for user authentication,
access control to activities and shared resources is also very important. In modern enterprise systems, there are an
increasing number of collaborative processes and in such cases, it is necessary to include complex security policies
within the definition of the company organizational structure. The organizational structure and the control policy for
accessing resources and activities are two of the most dynamic elements in a company, and it is necessary to be able
to define non-rigid organizational structures that are capable of quickly adapting to changes.

Ellis [2] proposed four basic requirements that a system should have if an access control subsystem is to be
implemented:

• The mechanism should be simple.
• The mechanism must be unobtrusive to users. It should be naturally integrated with the rest of the system. The

system modelling should not increase the complexity of the modelling elements.
• At any moment in the system’s life, it should be easy to check authorization for any system resource access.
• The effects that access control causes on the rest of the system should be clear and easy to understand.

In our opinion, however, it is necessary to add a fifth requirement since the software systems implemented in current
companies require dynamic software that can be evolved. Changes take place in the business itself, in the organization
that supports it, in resource access policies, in the business rules which govern the processes and at any given moment,
these changes should be propagated to the software systems so that they may continue to be effective. It is necessary
to develop mechanisms for access control and security that may easily be adapted to the changes occurring both at the
business level and in the access policies implemented.

The cost of system development in terms of changes or new requirements is a considerable part of the total
cost. In many cases, security-related elements have been considered during the final development phases and this
greatly increases the final cost. Since security aspects are very important and complex, it is necessary to analyse
and model them from the first steps of development with models that facilitate their dynamism. In our opinion, one
important requirement is the integration of security elements in the initial models which we use to describe system
functionalities.

In this paper, we will show the integration of an access control model in a service-oriented architecture in order
to develop applications for complex organizations (enterprises systems) with collaborative activities; this model
facilitates dynamic aspect expression in a collaborative environment. In Section 2, we will analyse the necessary
elements for efficient access control, and will present a role-based model. In Section 3, we will propose the
implementation of an access control model as a set of Web services of a service-oriented architecture. In Section 4,
we will then describe how the model used to describe a collaborative system includes the necessary elements for
modelling system access control policies. In order to make modelling easier, in Section 5 we will propose a notation
that can be used to define and apply organization patterns. Finally, we will focus on future work and our conclusions.

2. Access control model

Controlling access to resources and activities is a key element in system security and an important complement
to the definition of the interaction between users and/or systems. The first work into access control modelling in
collaborative systems was carried out by Shen and Dewan [17]. Using this as a basis, different models have been
applied [20] and attempts have been made to adapt them to the characteristics of this kind of system.

The necessary requirements for collaborative systems access control models [20,2] may be summarized as follows:

• Access control models must be easy to use and transparent for end users.
• Access control-produced effects on the rest of the system must be clear and easy to understand.
• Access control models must allow us great expressiveness (taking into account aspects such as roles, execution

tasks, access request data, etc.) and these models should enable us to specify complex access policies at different
levels of detail.

• Models must be dynamic so as to enable specification, delegation, revocation and management of access policies
in runtime (Meta Access Control).



46 F.L. Gutiérrez Vela et al. / Science of Computer Programming 66 (2007) 44–59

Fig. 1. RBAC concepts.

• Models must allow us to protect different levels of granularity on any type of information and resources. In other
words, models must be able to provide a strong protection for shared environments.

• Context is an important element in collaborative work and something which access control models must have in
order to establish access permissions. Models may grant access by considering the current context user.

Most of the previously used models were designed to analyse security aspects and system functionalities separately.
One of the most used models is role-based access control (RBAC) by Sandhu et al. [18] which quickly emerged in
the 1990s as a technology for managing and enforcing security in large-scale corporate systems. This model uses the
concept of role instead of assigning privileges directly to the users. This facilitates the classification of privileges and
enables a finer access control to resources.

The RBAC model is based on the definition of a series of elements and the relationships between them (Fig. 1).
This model describes a user group that can play a series of roles and carry out operations. Users need to use objects
as resources in each operation.

The following relationships appear between these four elements:

• Relationships between users and roles: this relationship models the different roles a user can play.
• Operation set that can be performed on each object: the elements of this relationship are called permissions.
• Relationships between permissions and roles: these relations describe each user’s permissions to use specific

objects when they are playing a certain role.

The RBAC model includes a sessions set. Each session is a mapping between a user and any possible roles. When
users establish a session, they can activate roles that they have been assigned. Each session is associated with a single
user although each user can be involved in one or more sessions. The permissions available to the user are those
assigned to the roles that are activated for all the user’s sessions, independently of the sessions established by other
system users.

It is also possible to include a role hierarchy so that generalizations and specializations in access controls can be
modelled. This allows us to define two types of role hierarchies: general role hierarchies and limited role hierarchies.
General role hierarchies provide support for an arbitrary partial order role. This type can be used to include the concept
of multiple inheritance permissions and user membership between roles. Limited role hierarchies impose a restriction
set, resulting in a simpler tree structure (i.e. a role may have one or more ascendants, but it is restricted to a single
descendant). It should be noted that an inverted tree is also possible.

Another important aspect in the RBAC model is the possibility of specifying constraints on the relation between
users/roles and on the activation of role sets for users. These constraints are a strong mechanism for establishing high
level organizational policies. These restrictions can be of two types: static or dynamic. Static constraints allow us to
solve interest conflicts and role cardinality rules from a policy perspective. User association with a role can be subject
to the following constraints:



F.L. Gutiérrez Vela et al. / Science of Computer Programming 66 (2007) 44–59 47

• A user is authorized for a role only if that role is not mutually exclusive with any user’s authorized roles (Static
Separation of Duty).

• The number of users authorized for a role cannot exceed the role’s cardinality (Role Cardinality).

Dynamic constraints define rules to avoid a pair of roles being designated as mutually exclusive regarding role
activation (Dynamic Separation of Duty). In other words, a user may be active in only one of the two distinct roles
designed in this way.

We believe, however, that RBAC has a series of deficiencies for modelling access control for collaborative
processes:

• In RBAC, the roles can be said to be static because of the lack of flexibility and responsiveness to the environment.
• RBAC supports the notion of user active roles with the concept of session, it obtains available permissions set

from theses active roles, but it does not take into account the sessions that are open by other users. Consequently,
the model does not include the full context associated with the system. By way of example, in an educational
environment, RBAC does not allow us to model how temporary permissions normally corresponding to the
Headteacher may be granted to the Deputy Headteacher in the Headteacher’s absence.

• RBAC lacks the ability to specify a fine-grained control on individual users in certain roles. One example might
be in a hospital situation where a group of health workers are attending to a patient. Members of this group would
therefore have access to the patient’s medical record, although if one of the members of this group were to play the
role of hospital porter, there is no reason for that member to have access to this record.

• In the previously described situation, we can observe the need to establish common permissions for the user group.
RBAC can resolve this problem by adding a specific role and assigning it to every user in the group that needs it.
The problem is that in collaborative systems there may be a very large number of user groups and the majority of
these groups will require the allocation of temporary access permissions making access control more difficult to
understand and control.

We therefore propose an extension of the RBAC model in order to integrate these elements into system functionality
and structure. When we are describing the organizational structure of a system, we include a series of similar elements
to those proposed by this model, so that starting with these we can derive the necessary information to manage access
control.

3. Web service role-based access control architecture

In recent years, there has been a change in the majority of business processes and this is mainly due to market
changes and to the integration of new technologies. These changes have provided new forms of client services
and inter-operating businesses. As a result, information systems have been developed which use the infrastructure
provided by Internet. On an architectural level, there are different interconnected subsystems which collaborate in
many cases in order to carry out activities that were previously performed in a centralized way. Again on the same
level, there has also been a sharp increase in the use of Web service architectures (WSA) to integrate business located
in different companies or to describe collaborative processes carried out by different company users/subsystems. From
an architectural point of view, it is important to separate the security aspects from other application characteristics and
the Web service architectures are a good platform for performing this separation.

In the case of functions related with security and more precisely with task authorization and the control of access
to activities and resources, we propose that a subsystem be included specifically for these functions. In many cases,
this subsystem must interact with different systems. We think that it is better to use a Web service that can be used by
the other systems without knowing its internal process.

It is, however, necessary to know the business process definition and the organizational work flow as well as the
execution context of these business processes (users/active roles, tasks or activities in execution, etc.) so that access
control can be improved to allow adaptation at any given moment to the current state of the organization. This can
result in the implementation of two Web services: one for process management and another to know and manage the
execution context of the business process.

Thanks to our previous work in software architectures [14,15] and more precisely in architectures for collaborative
systems [7], in Fig. 2 we present a diagram of a partial system architecture which reflects three security-related



48 F.L. Gutiérrez Vela et al. / Science of Computer Programming 66 (2007) 44–59

Fig. 2. Architecture diagram.

services: Authorization Web Service, Task Manager Web Service, and Session Web Service. In order to observe the
operation of this architecture, we will describe how communication and coordination are necessary between these
three services in an enterprise system of a bank administration. We will focus on the bank loan process.

The bank administration application is part of our system and when we designed it, a part of its functionality was
moved to the services that provide the access control management in the system. When a client needs a loan, the
application must communicate with the Task Manager Web Service to know what initial activity must be performed
(in this example, this might be “Check data of client requesting the loan”). Previously, at the beginning of the process,
a bank user was connected to the application and the application generated a request to the Authorization Web Service.
This determined whether the user could initiate a new loan with his/her current role.

In order to carry out this action, Authorization Web Service will use the Session Web Service to discover the current
context of the system since it is necessary to know which tasks have already been completed. The application will
then continue with the remaining processes, which are received by the Task Manager Web Service, and activity and
resource access control will be derived on the Web Services offered by the architecture.

The proposed architecture is based on a set of models, which describes the system. The access control service
is driven by a system organization model, which contains all the information that the authorization service needs in
order to carry out its operations. One of the advantages of this approach is that changes in the model can be carried
out dynamically and the general functionality of the system can be modified at runtime.

There are two levels of changes:

• System evolutionary changes: changes in the model that are dynamically recalculated in the system. For example,
we can change the permission assignment policies for a certain resource by adding a new role within the
organization and distributing functions between the new role and pre-existing ones.

• Model adaptive changes: changes in the organizational structure that are predetermined in the model. For example,
we can describe the policy of delegating existing authorizations in a bank for the granting of a loan: i.e. an assistant
bank manager is authorized to play a bank manager’s role in his/her absence.

In the following sections, we will describe each of these services in more detail, including the main operations that
they offer to the rest of the system.

3.1. Authorization Web Service

Authorization Web Service stores information about system authorization policies. Other subsystems and
applications in the enterprise will use this service to know if they have access to resources according to activities
currently executed and to the users and their roles. Due to the dynamic characteristics of enterprise system processes
and their adaptation to the current context (lack of personal, organizational structural changes, etc.), a wide range of
information (roles, tasks in execution, moment when the access is requested, etc.) is necessary to determine access to
the tasks and resources by means of the Web Service. This service uses RBAC as a model and adds new characteristics
to allow the elements which are necessary for dynamic enterprise systems. The service offers the following operations:



F.L. Gutiérrez Vela et al. / Science of Computer Programming 66 (2007) 44–59 49

• Register users and roles — This operation stores information about the users belonging to the enterprise and the
responsibilities that can be carried out by these users (roles).

• Link users and permissions to roles — This is used to model part of the organizational system structure and to
associate users with their responsibilities (roles). We also use this operation to indicate resource and task access
permissions for each role.

• Modify roles currently played by a user — This allows the structure of responsibilities in the organization to be
modified, i.e. establish or remove user/role assignment.

• Verify access to resources according to the user’s active permissions — This is used to indicate whether a user who
carries out responsibilities (roles) within the system has permission to access a specific resource.

• Check access to activities according to the user’s active permissions — This is used to indicate whether a user
playing a specific role has permission to carry out a task or activity.

Two types of access are used to facilitate service management: “user mode access” used by applications to control
access to shared resources, and “administrator mode access” with which modifications in the authorization models
can be performed.

3.2. Task Manager Web Service

Since we think that it is important to control the logic of communication and coordination in business processes, it
is therefore necessary for the Task Manager Web Service to coordinate the tasks (activities and aims that are defined
by business processes) which are performed by the elements within the system (either individually or collaboratively)
and to store a task model with information about tasks, activities and subactivities comprising them.

In order to manage a business is necessary to consider the following two groups of aspects [19]:

• Declarative aspects: these relate to ‘what’ needs to be done. These aspects include the input/output specification
for each activity and the relationships between activities and actions for each task. In addition, these aspects can
include the description of aims that should be reached in collaborative processes which cannot be described using
a task sequence.

• Operational aspects: these relate to ‘how’ processes must be done. These aspects represent the detailed
specification of every step in the sequence of subactivities. For collaborative tasks, we have a detailed specification
of how the aim may be reached.

Since this service attempts to cover certain aspects related with the task flow in an application, part of the logic
for coordinating the subsystems can be sent to the service, and with the incorporation of this service, application
development and adaptation to the corporate business model is facilitated. According to this service, we can
differentiate two types of operations: registry operations, which are used to store information about the task model,
and query operations, which are used to obtain information about the model and therefore to coordinate the activities
with this information.

Registry operations are:

• Register a task — This is used to incorporate a new functionality into the system.
• Link activities to tasks and roles — This is used to associate activities to a task and the set of permissions which

are necessary for their execution.
• Register interruption events — This operation registers the tasks and/or roles that can be interrupted in other tasks.

In our opinion, a task can be interrupted during its execution by a condition related with the task.
• Link resources to a task — This is used to associate resources needed to execute an activity, resources which must

be available at the beginning of an activity.
• Register final states for activities — This is used to obtain final states for an activity which will determine the

sequence of activities and therefore the associated work flow.
• Register initial states for activities — This is used to obtain possible initial states for an activity.
• Register an aim — This is used to obtain the specification of an aim as a series of individual sub-aims.
• Register the aim associated with a task — This is used to associate the necessary aims with the task for task

completion.



50 F.L. Gutiérrez Vela et al. / Science of Computer Programming 66 (2007) 44–59

• Register transaction rules — This is used to register the rules which determine navigation between activities
based on temporary expressions. In a first approximation, we use the temporary operators defined in the
CONCURTASKTREE [16] model.

Associated with each of these operations are another two operations which can be used to modify and delete the
model information. One of the most important requirements of these operations will be to constantly leave the system
workflow in a consistent state. Changes that are performed in the context of the system can quickly be applied to the
model and indirectly to the task services so this allows the system to be rapidly adapted to the new changes.

Query operations are:

• Query the initial activity for a task — This operation is used to obtain the initial task activity.
• Query the following activity in the work flow for a task — Given a previous activity and its final state, we can use

this operation to obtain the following activity to carry out according to the work flow. This service is one of the
most important because it is used to control the sequence of activities that must be executed by different subsystems
involved in a cooperative task

• Query interruption events — either implicitly or explicitly.
• Query partial aims for an aim — This is used to obtain the list of partial aims that once completed enable the global

aim to be reached.
• Query the task associated with an aim — Given an aim, we can obtain the task which is necessary to reach it.

3.3. Session Web Service

In previous sections we have described the importance of knowing the current context of the enterprise system
(roles, active users, tasks or activities in execution, etc.). This information is necessary for managing user and task
access control. In our architecture, we include a Session Web Service in order to prevent this functionality. The Session
Web Service maintains a representation of the dynamic use of the system (current context and record of the finishing
process). Its main objectives are to register finished and active tasks performed by each user playing a specific role in
the system. The services register a set of elements in relation to the context in which the activities are carried out. We
can therefore control the state of each user/subsystem using the information stored during a session.

This service offers the following registry operations:

• Register the finish of an activity within a task — so as to register the final state of an activity. This information
allows us to evolve the work flow and to make organizational changes in the roles.

• Register active activities in a task — This operation is used to register the activation of one activity in a task.
• Register roles linked to users — Registering these links allows us to monitor and control activities in the system
• Register connected users in the system showing their active roles in the current session — so as to register connected

users and their linking roles to enable us to control the interaction between users and activities in the system.

And query operations:

• Query finishing activities in a task — This is used to obtain the point reached in the work flow sequence given a
task.

• Query partial aims reached up to a link to a global aim — so as to obtain the partial aims reached and the link with
the global aim given a task.

• Query active activities in a task — These operations can be used to obtain how many activities are active in a task.
• Query resources which are being accessed for an active activity — so as to obtain resources which are being used

by an active activity to enable us to control and monitor the relation of other activities in the system.
• Query the active role or roles for a user performing an activity — so as to obtain user roles in an activity. This

information is used to allow us to make decisions that will determine whether other activities are carried out by
one role or another.

• Query final state of an activity in a task — in order to obtain the final state of an activity, it will be necessary to
determine the work flow to be followed which will be determined in many situations by the result of each activity.

• Query active activities in a task, users executing the task and the group to which the users belong — This enables
us to determine the access control for a user on a task, if a series of activities have been completed.



F.L. Gutiérrez Vela et al. / Science of Computer Programming 66 (2007) 44–59 51

Fig. 3. Conceptual organization model.

• Query active roles for group users — obtaining this relation determines the functional dynamism in relation to
making decisions about changes in roles in the organization.

• Query resources which are being used by a user, user role and user group — Obtaining this relation will determine
both decision-making about role changes and also the availability of shared resources.

4. Organization model

In order to define the access authorization model, we use an organization model of the system actors (users,
agents, subsystems, etc.) and consider static and dynamic aspects. While static issues are related with the organization
structure, dynamic aspects should cover temporal changes in responsibilities, organization laws, capabilities, etc.
Fig. 3 shows a conceptual model (using a UML class diagram) which allows the social organization of a system to be
described. This model reflects the most important elements that appear in any organization, such as those which have
traditionally been used in collaborative system modelling [21].

This conceptual model defines an organization (for example a company, a department, a group of users who
temporarily take part in common tasks, etc.) as a set of roles and functional dependencies between them. In this
way, we can model associations of a different nature, e.g. the possibility of a user passing from one role to another.
From a structural point of view (structural dependencies), one organization can be included in other organizations (for
example, a department can be part of a company).

The actor concept includes both individuals (a user, a software agent, a robot, etc.) and organizations. An individual
actor is at least part of one organization, and at any time, an actor (organization or individual) plays at least one role
in an organization. Playing a role implies that the actor is responsible for performing activities associated with such
a role. We can implicitly assume that an actor must have the necessary capability and permission to carry out the
corresponding activities and to use its associate resources.

Unlike the RBAC model, functional dependencies in this model enable us to specify and control the role changes
that an actor can undergo in a system. For this reason, we can say that this model allows dynamic role-based access
control. In addition, our model allows the assignment of permissions to groups of users working on a common activity
since an organization can play a role.

4.1. Notation

In order to define an organization model, we use COMO-UML [6] (a UML-based notation) and add several
notational elements in order to capture concepts of a higher level, e.g. group, role, actor, organization, etc. This
notation is integrated in AMENITIES [5,6], a methodology developed in our research group to analyse and design



52 F.L. Gutiérrez Vela et al. / Science of Computer Programming 66 (2007) 44–59

Table 1
Notation for organization modelling

Symbol Semantic

Role — R is a role that a number of actors (limited by Multiplicity) can play at a given moment in
an organization. It is a state belonging to a state machine which represents the dynamism of roles in an
organization.

Role Addition Transition — An actor who is playing an Initial role may also carry out the Final role. If this
transition is labelled with a constraint (law or capability) it must be fulfilled.

Role Change Transition — An actor who is playing an Initial role abandons it to adopt a Final role. If this
transition is labelled with a constraint (law or capability) it must be fulfilled. In this case the actor has lost the
responsibilities over the activities of Initial role.

Decision Box.— Conditions labelling the outgoing transitions determine the different alternatives with respect
to the roles to be played. When various alternatives become true, the system or the actor is responsible for
choosing the alternative.

cooperative systems, based on user behaviour and task models. This methodology provides different system views
(organization, cognition, interaction and information) to describe a system independently of its implementation,
providing a better understanding of the problem domain.

The group structure and behaviour is modelled in the organization view. This view uses an extension of UML
state machine diagrams to represent the organization according to the different roles that the actors can perform in
the system and the role changes that can take place. Each state is a role in the organization and the transitions can be
labelled with constraints.

AMENITIES introduce two kinds of constraints that allow us to model the dynamic aspects of the organizational
structure: laws imposed by the organization and capabilities that an actor may acquire in the organization. In this way,
participants could acquire new capabilities, apply new work strategies, etc. In all cases, it is necessary to satisfy the
laws which govern the general behaviour of the organization. The activities related with each role are described in the
cognitive view. In this case, we use activity diagrams to represent the workflow, participants, resources and interaction
protocols of the cooperative scenario.

Table 1 briefly describes some of the COMO-UML notation elements for modelling an organization.

5. Organizational patterns

Patterns have become a valuable instrument for describing and reusing useful models in software engineering [1,
4]. In this respect, the modelling of the organizational structure and behaviour can benefit from the systematic use of
specific conceptual patterns (organizational patterns).

Different studies [3,13] have proposed general organizational structures which often govern complex systems. For
example, organization styles such as structure-in-5, joint venture, vertical integration, pyramid, etc. These structures
are suitable for modelling the entire organization focusing on the distribution of its components (organizational units
or individuals) in order to obtain common goals. Nevertheless, other (fine-grained) social structures, such as broker,
mediator, embassy, etc., can often appear within organizations.

We have encapsulated common organizational structures as organizational patterns which can be reused in different
modelling situations [8,10]. They provide a common vocabulary that improves the communication and discussion of
the organization models. In addition, the final models are easier to understand and maintain. We have also defined a
complete UML profile [9] to model software patterns in general. We therefore use this profile (together with COMO-
UML notation) to model organizational patterns. In order to understand the case study in the following section, Table 2
details some of the notation elements of this profile that we shall use later:



F.L. Gutiérrez Vela et al. / Science of Computer Programming 66 (2007) 44–59 53

Table 2
Some notation elements for patterns

Symbol Stereotype description

<<Pattern>> — A parameterized package which defines a reusable generic model. The
definition of this model allows us to use it as an expandable and adaptive template for the
construction and/or description of similar concrete models (the instances of the pattern).
The models that represent the pattern can either be presented within the package or not.
The name of the pattern and its classification is indicated.

<<PatternElement>> — Each element that defines the model of a pattern. These are
abstractions that represent concrete model elements of its instances. When a PatternElement
belongs to the group of parameters of the pattern, it can be bound to particular elements
(arguments) of an instance. The binding will be valid when the conditions that the pattern
imposes are completed, i.e. the type of each parameter coincides with the type of its
arguments, the number of bound arguments matches the multiplicity of the corresponding
parameter, and each argument and its parameter maintains the relationship with the other
elements in the same way.

<<MultiplicityBind>> — Constraint of a PatternElement that defines the number of
model elements (arguments) that can be bound by means of a PatternBind dependence.

<<UncertainElement>> — Part of a diagram can be ignored. These unknown model
elements can be represented with a dotted hexagon. It allows us to specify the context of
the elements that define the pattern.

<<PatternBind>> — The tail element of the dependence (argument) is represented
(within the pattern) by the PatternElement (parameter) of the head. When the symbol of
the PatternElement is not visible, the dependence can point directly to the symbol of the
pattern that contains it, but this dependence will have to be labelled with the corresponding
parameter. An alternative representation consists in connecting the elements by means of a
dotted line.



54 F.L. Gutiérrez Vela et al. / Science of Computer Programming 66 (2007) 44–59

Table 3
Pattern description template

Name It should be significant, brief and to the point.
Alias Another name by which this pattern is known
Classification According to some previously established taxonomy
View AMENITIES Cooperative Model view where the pattern can be used
Problem What is the scenario that we need to describe?
Context In what situations can it be applied? How can these situations be recognized? This shows the preconditions under which the

problem and its solution can occur.
Participants Description of the elements that take part and their responsibilities
Solution A model which describes the participants, structure and behaviour, using the pattern profile and COMO-UML notation. It

can include variants.
Explanation Description of the proposed solution
Example Application to a real case
Related Patterns Other related patterns belonging to the same catalogue. For example, patterns that can be applied (before or later),

alternatives, etc.

5.1. Pattern description template

We shall use a structured template divided into sections in order to show the different aspects and requirements for
a pattern (Table 3). This also facilitates learnability, comparison and use.

5.2. Case study

According to the above template, we will describe the Production Line pattern. This defines a typical organizational
structure that appears in many contexts (e.g. an assembly line, the sequence of treatments that a raw material requires
to render it useful, etc.). We shall apply the Production Line pattern to guide the organizational modelling of a garage.
The main goal in this kind of organization is car repair and normally, this process is divided into several sequential
tasks assigned to different roles. This pattern guides role modelling (static and dynamic), facilitates the assignment of
responsibilities, and consequently access control to activities and resources (see “Example” section).
Name: Production Line Pattern
Alias: Unknown
Classification: Organizational
View: Organization
Problem: To describe an organization where various actors collaborate in order to achieve a common goal in several
sequential stages. Each step is viewed as a partial elaboration of a product or service (for example, an assembly line).
Context:

The common goal is achieved in several sequential stages.
In order to achieve the objective of one stage, it is necessary to have achieved the objectives of the previous stages.
There is at least one actor who is responsible for coordinating the actors through the different stages.
Actors are assigned to the stages according to their capabilities.
The results of a stage are sent to the following stage.

Participants:
Link (role)

Responsible for performing the tasks associated to some of the stages in the chain (ExecuteStage task).

Coordinator (role)

Responsible for coordinating the actors who play the link roles (CoordinateLinks task).

Link::InitialLink (role)

This is the role of an actor who participates in the first stage in the chain. They must send the resulting product to
the next link (SendResultToNext task).



F.L. Gutiérrez Vela et al. / Science of Computer Programming 66 (2007) 44–59 55

Fig. 4. Production line pattern.

Link::IntermediateLink (role)

This is the role of an actor who participates in some of the intermediate stages in the chain. They are responsible
for the SendResultToNext and ReceiveResultFromPrevious tasks.

Link::FinalLink (role)

This is the role of an actor who participates in the last stage of the chain. They are responsible for the
ReceiveResultFromPrevious task.

Solution: (See Fig. 4)
Explanation:



56 F.L. Gutiérrez Vela et al. / Science of Computer Programming 66 (2007) 44–59

Fig. 5. Garage organization.

The actors in this kind of organization can basically play the link role or the coordinator role in the chain. It is
necessary for at least two actors (2..*) to carry out the link role (an initial link and a final link). There should also be
at least one actor (1..*) for link coordination (Coordinator role).

The role-pattern tasks section in the model indicates the responsibilities of each role. These tasks have been
explained in “Participants” section.

Some transitions have conditions. These restrictions indicate organization laws or capabilities that an actor should
complete in order to play the final role of the transition. The model illustrates a work chain which allows changes in
the actors’ roles when certain events happen. For example, a coordinator can also play the link role when an actor of
the work chain is not available (LinkNotAvailable), an actor performing an intermediateLink role can play the initial
role if the actor is capable of doing the necessary task (InitialTask?) and has received an order from the coordinator
(CoordinatorOrder), etc.

IntermediateLink role is constrained (the role symbol contains a MultiplicityBind = {*}). It indicates that zero or
more concrete roles can be bound to intermediateLink role (multiple binding). In this case, the parameter identifier
appends a variable, or index, in parentheses (IntermediateLink(i)). In this way, each parameter in a multiple binding
will be distinguished by means of serial numbers (IntermediateLink(1), IntermediateLink(2), ..., IntermediateLink(n)).
This is especially necessary when there is an order relation between the elements as there is in this case (the order of
the stages is very important).
Example:

The organizational requirements of a garage can be modelled (Fig. 5) using this pattern as a template. In
this case, the organization model is constructed by binding the pattern parameters (Coordinator, Link, InitialLink,
IntermediateLink and FinalLink roles) to specific model elements (arguments) in the garage organization context
(GarageManager, GarageEmployee, Receptionist, Mechanic and Billing role, respectively).

Each role is responsible for carrying out different activities:

• The GarageManager role is responsible for coordinating the garage employees (CoordinateEmployees task). We
can observe that an actor in this role can also play a role in the work chain when an employee is not available
(WorkerNotAvailable condition in the role addition transition).

• The GarageEmployee role is responsible for carrying out certain stages of the repair service (ExecuteStageService
task).

• The GarageEmployee::Receptionist role makes a note of the car, client and problem (GetInformation task) and
creates a repair report (CreateRepairReport task) which is then sent to the mechanic in charge of the repair
(SendRepairReport task).



F.L. Gutiérrez Vela et al. / Science of Computer Programming 66 (2007) 44–59 57

Fig. 6. RepairService cooperative task.

• On receiving the repair report from the receptionist (ReceiveRepairReport task), the GarageEmployee::Mechanic
role evaluates the car (EvaluateCar task) and repairs it (RepairCar task) if there is a problem. Having finished, the
report is updated (UpdateRepairReport task) and sent to the billing role (SendRepairReport task).

• The GarageEmployee::Billing role participates in the final stage in the chain and receives the repair report from the
mechanic (ReceiveRepairReport task), makes out the bill (MakeBill task), charges the client (ChargeClient task)
and keeps the repair report (SaveRepairReport task).



58 F.L. Gutiérrez Vela et al. / Science of Computer Programming 66 (2007) 44–59

Related patterns:
Circular Production Line pattern
Fig. 6 shows a piece of the cognitive view representing the RepairService cooperative task by means of a COMO-

UML activity diagram. It represents the previously mentioned sequence of activities, the responsible roles and the
resources used in this cooperative task.

The Authorization server can use the activity diagram information to determine access control to activities and
resources: e.g. the Receptionist role uses the Report resource once it has been created (CreateRepairReport activity)
and subsequently when it is sent to the mechanic (SendRepairReport activity); the mechanic role updates the Report
resource when the problem is resolved (or does not exist) and having received it (UpdateRepairReport task), etc.

6. Conclusions and future work

This paper outlines an automatic, portable and dynamic Web service for enforcing control access policies on
collaborative systems. Having presented RBAC (an access control model based on role concept), we then presented
a Web service role-based access control. This service uses part of a system model to control access to resources
and activities by users and the subsystem. One of the main characteristics of our service is the possibility of making
changes at different levels (evolutionary changes, adaptive changes, etc.).

We have presented a company organization model in order to define the access authorization model by considering
static and dynamic aspect of systems.

Our future work will focus on the extended organization model in order to describe more aspects of system security.
Security management in current enterprise systems is a complex process and it must be analysed like other

important aspects during development.
In this article, we have focused on the problem of the management of resource and activity access control within

an enterprise system. In this kind of system, one of the greatest difficulties appears when managing collaborative
processes since access control is much more difficult to model and implement because different users/applications
take part in the processes and it is necessary to coordinate more complex concurrent activities.

Commercial software systems are currently available which automate and control part of the security needs in
an enterprise system and the “Microsoft Active Directory” [12] is one example of such systems. This service stores
information about the existing resources in the enterprise network infrastructure and about the access policies that are
defined on these resources. One problem of such systems is that they consider security at a high level of granularity
and this means that they are useless when security affects shared tasks and resources used by the different users and
applications.

In this article, we have proposed a WEB service-based architecture that provides the necessary services for access
control management. It is necessary to define complex models for the system’s organizational structure and the
workflows represented by the enterprise process so that the proposed architecture works correctly. For this reason,
we have extended the RBAC model with the elements that we think are necessary to define collaborative systems and
dynamic access policies that can be adapted to the changes occurring in the context of the company.

In the final stage of this work, we have presented a pattern language used to define enterprise organizations at
a conceptual level. We think that the use of patterns facilitates and accelerates the complex process related to the
model construction of the organizational structures of an enterprise. These patterns allow us to define structures and
situations that are repeated within different companies.

Our future work will focus on the extension of the organizational model in order to describe further aspects of
system security.

We are also working on a general collaborative system architecture in which we will integrate the services defined
in this article.

Acknowledgements

This research has been funded by the Comisión Interministerial para la Ciencia y la Tecnologı́a (CICYT) (Spain),
project AMENITIES, grant number TIN2004-08000- C03-02.



F.L. Gutiérrez Vela et al. / Science of Computer Programming 66 (2007) 44–59 59

References

[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented Software Architecture: A System of Patterns, John Wiley
and Sons Ltd, Chichester, UK, 1996.

[2] C.A. Ellis, S.J. Gibbs, G.L. Rein, Groupware: Some issues and experiences, Communications of the ACM 34 (1) (1991) 38–58.
[3] A. Fuxman, P. Giorgini, M. Kolp, J. Mylopoulos, Information systems as social estructures, in: Proceedings of the 2nd International

Conference on Formal Ontology in Information Systems, FOIS’01, Ogunquit, USA, October, 2001, pp. 10–21.
[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley Professional

Computing Series, Reading, MA, 1995.
[5] J.L. Garrido, M. Gea, Modelling dynamic group behaviours, in: C. Johnson (Ed.), Interactive System-Design Specification and Verification,

in: LNCS, vol. 2220, Springer, 2001.
[6] J.L. Garrido, AMENITIES: Una metodologı́a para el desarrollo de sistemas cooperativos basada en modelos de comportamiento y tareas,

Ph.D. Thesis, University of Granada, 2003.
[7] J.L. Garrido, P. Paderewski, M.L. Rodrı́guez, M. Hornos, M. Noguera, A software architecture intended to design high quality groupware

applications, in: Proceedings of the ICSE Research and Practice, 2005, pp. 59–65.
[8] J.L. Isla, F.L. Gutiérrez, M. Gea, Supporting social organization modelling in cooperative work using patterns, in: W. Shen, et al. (Eds.),

Computer Supported Cooperative Work in Design II, in: LNCS, vol. 3865, Springer, 2006, pp. 112–121.
[9] J.L. Isla, F.L. Gutiérrez, P. Paderewski, Un profile para el modelado de patrones de software, in: A. Toval, J. Hernández (Eds.), Actas de las X

JISBD05, Thomson Paraninfo, Granada, 2005, pp. 265–270.
[10] J.L. Isla, F.L. Gutiérrez, J.L. Garrido, M.V. Hurtado, M.J. Hornos, Integration of organisational patterns into a group-centred methodology,

in: R. Navarro, J. Lorés (Eds.), HCI Related Papers of Interaction 2004, Springer, 2006.
[11] M. Goodyear, Enterprise System Architectures: Building Client/Server and Web-Based Systems, CRC Press, 1999.
[12] Microsoft, introduction to active directory application mode, Microsoft Technical Report, 2003.
[13] H. Mintzberg, Structure in Fives: Designing Effective Organizations, Prentice-Hall, Englewood Cliffs, N.J., 1992.
[14] P. Paderewski, M.J. Rodrı́guez, J. Parets, An Architecture for Dynamic and Evolving Cooperative Software Agents, in: Computer Standards

& Interfaces, vol. 25, Elsevier Science, 2003, pp. 261–269.
[15] P. Paderewski, J.J. Torres, M.J. Rodrı́guez, N. Medina, F. Molina, A software system evolutionary and adaptive framework: Application to

agent-based systems, Journal of Systems Architecture 50 (2004) 407–416.
[16] F. Paternò, ConcurTaskTrees: An engineered notation for task models, in: D. Diaper, N. Stanton (Eds.), The Handbook of Task Analysis for

Human–Computer Interaction, Lawrence Erlbaum Associates, Mahwah, 2003, pp. 483–503 (Chapter 24).
[17] H. Shen, P. Dewan, Access control for collaborative environments, in: ACM Conference on Computer-Supported Cooperative Work, 1992.
[18] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman, Role-based access control models, IEEE Computer 29 (2) (2006) 38–47.
[19] K. Terai, N. Izumi, T. Yamaguchi, Coordinating Web services based on business models, in: Proceedings of the 5th international Conference

on Electronic Commerce, vol. 50, ICEC’03, Pittsburgh, Pennsylvania, ACM Press, New York, NY, 2003, pp. 473–478.
[20] W. Tolone, G. Ahn, T. Pai, S. Hong, Access control in collaborative systems, ACM Computing Surveys 37 (1) (2004) 29–41.
[21] M. Van Welie, G.C. van der Veer, An ontology for task world models, in: Design, Specification and Verification of Interactive System’98,

Springer Computer Science, 1998.


	An architecture for access control management in collaborative enterprise systems based on organization models
	Introduction
	Access control model
	Web service role-based access control architecture
	Authorization Web Service
	Task Manager Web Service
	Session Web Service

	Organization model
	Notation

	Organizational patterns
	Pattern description template
	Case study

	Conclusions and future work
	Acknowledgements
	References


