

Available online at www.sciencedirect.com

Journal of Marine Systems 66 (2007) 244-257

JOURNAL OF MARINE SYSTEMS

www.elsevier.com/locate/jmarsys

Seasonal study of dissolved CH₄, CO₂ and N₂O in a shallow tidal system of the bay of Cádiz (SW Spain)

S. Ferrón *, T. Ortega, A. Gómez-Parra, J.M. Forja

Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Río San Pedro, s/n. 11510, Puerto Real, Cádiz, Spain

> Received 25 October 2005; accepted 6 March 2006 Available online 1 September 2006

Abstract

During 2004, 10 samplings were performed in order to measure dissolved methane (CH_4), carbon dioxide (CO_2) and nitrous oxide (N_2O) in the surface waters of Río San Pedro, a tidal creek in the salt marsh area of the Bay of Cádiz (SW Spain). The inner partys of the creek is affected by the inputs coming from an intensive fish farm and the drainage of an extensive salt marsh area.

Dissolved CH₄, CO₂ and N₂O concentrations ranged from 11 to 88 nM, 36 to 108 μ M and 14 to 50 nM, respectively. Surface waters were in all cases oversaturated with respect to the atmosphere, reaching values of up to 5000% for CH₄, 1240% for CO₂ and 840% for N₂O. Dissolved CH₄, CO₂ and N₂O showed a significant tidal and seasonal variability. Over a tidal cycle, concentrations were always highest during low tide, which points to the influence of the inputs from the fish farm effluent and the drainage of the adjacent salt marsh area, as well as *in situ* production within the system. Dissolved CH₄, CO₂ and N₂O seasonal patterns were similar and showed maximum concentrations in summer conditions. Using four different parameterizations to calculate the gas transfer coefficients [Liss, P.S. and Merlivat, L., 1986. Air-sea exchange rates: introduction and synthesis. In P. Buat-Ménard (Ed.), The Role of Air-Sea Exchanges in Geochemical Cycling. Reidel, Dordrecht, The Netherlands, p. 113–127.; Clark, J.F., Schlosser, P., Simpson, H.J., Stute, M., Wanninkhof, R., and Ho, D.T., 1995. Relationship between gas transfer velocities and wind speeds in the tidal Hudson River determined by the dual tracer technique. In: B. Jähne and E. Monahan (Eds.), Air-Water Gas Transfer: AEON Verlag and Studio, Hanau, Germany, pp. 785–800.; Carini, S., Weston, N., Hopkinson, G., Tucker, J., Giblin, A. and Vallino, J., 1996. Gas exchanges rates in the Parker River estuary, Massachusetts. Biol. Bull., 191: 333–334.; Kremer, J.N., Reischauer, A. and D'Avanzo, C., 2003. Estuary-specific variation in the air-water gas exchange coefficient for oxygen. Estuaries, 26: 829–836.], the averaged air–water fluxes of CH₄, CO₂ and N₂O from the creek to the atmosphere ranged between 34 and 150 µmol CH₄ m⁻² day⁻¹, 73 and 177 mmol CO₂ m⁻² day⁻¹ and 24 and 62 µmol N₂O m⁻² day⁻¹, respectively.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Methane; Carbon dioxide; Nitrous oxide; Greenhouse gases; Coastal system; Air-water fluxes

1. Introduction

Methane (CH₄), nitrous oxide (N₂O) and carbon dioxide (CO₂) are important atmospheric gases that contribute to global warming. In the troposphere they act

as greenhouse gases (Rodhe, 1990). CO_2 accounts for approximately 55% of anthropogenic greenhouse warming (Mackenzie, 1998). Despite their lower concentrations in the atmosphere, CH_4 and N_2O absorb infrared radiation much more intensely than CO_2 (Lashof and Ahuja, 1990). They contribute, respectively, about 15% (Houghton et al., 1990) and 5–6% (Lashof and Ahuja, 1990; Rodhe, 1990) to the anthropogenic greenhouse effect.

^{*} Corresponding author. Tel.: +34 956 016164; fax: +34 956 016040. *E-mail address:* sara.ferron@uca.es (S. Ferrón).

Whereas CO_2 is practically inert in the atmosphere, CH₄ and N₂O are key compounds in chemical reaction cycles in the troposphere and stratosphere. CH₄ reacts photo-chemically in the troposphere affecting O₃ and OH radical concentrations, and it is also an important source of stratospheric H₂O (Crutzen, 1991). Stratospheric N₂O is the major source of NO radicals which are involved in the depletion of stratospheric ozone (Crutzen and Schmailzl, 1983).

Atmospheric concentrations of CH₄, CO₂ and N₂O have been increasing significantly since pre-industrial times (Weiss, 1981a; Barnola et al., 1987; Blake and Rowland, 1988), which indicates that sources are larger than sinks. The role of the oceans, and particularly coastal regions, to the global budgets of CH₄, CO₂ and N₂O is still uncertain, in part due to the limited database available and the neglect of seasonal variability. The contribution of the oceans to global emissions of atmospheric N2O was estimated to be about 13% (Khalil and Rasmussen, 1992). In the case of CH₄, oceans play only a modest role in its global budget, accounting for 0.1% to 4% of the total atmospheric emissions (Crutzen, 1991). But these oceanic emissions of N₂O and CH₄ are not homogeneously distributed. Hence, biological productive regions, such as estuaries and coastal areas contribute about 75% to the global oceanic CH₄ production (Bange et al., 1994) and 35-60% of oceanic N₂O emissions (Bange et al., 1996a; Seitzinger et al., 2000).

On a global scale, the oceans are a net atmospheric sink for CO₂. The global ocean's net annual uptake of anthropogenic CO₂ is calculated to be 1.9–2.2 Pg C year⁻¹ (Sarmiento and Gruber, 2002; Takahashi et al., 2002). The coastal ocean, although it plays a key role in the global carbon cycle (Gattuso et al., 1998; Wollast, 1998), has largely been ignored by modelers in global carbon budgets. Some recent studies have shown that temperate continental shelves behave as significant sinks for atmospheric CO₂ (Tsunongai et al., 1999; Frankignoulle and Borges, 2001; Chen et al., 2003; Thomas et al., 2004), whereas tropical and subtropical shelves can act as sources of CO₂ (Cai et al., 2003; Ito et al., 2005). Estuaries are considered to be strong sources of CO₂ to the atmosphere (Cai and Wang, 1998; Frankignoulle et al., 1998; Raymond et al., 2000; Abril and Borges, 2004). A very comprehensive compilation of pCO_2 and air-water CO_2 fluxes in different coastal ecosystems is reported in Borges (2005) and Borges et al. (2005).

In near-shore coastal ecosystems, the increased nutrient load due to human activities can enhance net ecosystem production. If light becomes limited, respiration becomes the main metabolic process and the system becomes more heterotrophic and can turn into a potential source of CO_2 to the atmosphere (Gattuso et al., 1998). Reducing conditions in bottom waters associated with inputs of inorganic and organic nitrogen can increase denitrification and nitrification rates, and thus N₂O production (Barnes and Owens, 1998). Due to the shallowness of these systems, a large fraction of labile organic matter can be deposited in the sediments (Wollast, 1998), which generate favorable conditions for the microbial production of methane (Bange et al., 1998). Biogenic methane is produced exclusively by a group of strict anaerobes (methanogens) during methanogenesis. This process occurs in the sediments, in the interior of suspended particles and in the guts of marine organisms (Wolfe, 1971).

In this paper, we present for the first time the seasonal and tidal variations of dissolved CH_4 , CO_2 and N_2O concentrations in Río San Pedro, a tidal creek of the salt marsh area of the Bay of Cadiz (SW Spain). We also estimate the fluxes of these gases to the atmosphere.

2. Study area

The area of study is Río San Pedro, a shallow tidal creek located within the salt marsh area of the Bay of Cádiz (SW Spain) $(36^{\circ}23'-37'N, 6^{\circ}8'-15'W)$ (Fig. 1). It is characterized by semi-diurnal mesotides (average tidal range 0.98–3.20 m). The tidal current flows from the bay along the creek where the freshwater inflow is not significant, except during heavy rains. The creek is 12 km long, its width ranges from 15 to 30 m and it has a maximum depth of 5–6 m. The water column is well mixed with no significant salinity differences between the surface and the bottom (González-Gordillo et al., 2003).

The system receives the inputs of organic matter and nutrients coming from the wastewater discharges of a fish farm located in the upper part of the creek. This farm, with an extension of about $5.7 \cdot 10^6$ m² (Tovar et al., 2000b), cultures in an intensive regime around 10^6 kg year⁻¹ of Sparus aurata. Approximately 80% of its extension is occupied by ponds of about 1 m deep, which are dug directly into the ground. Thus, the inundated extension of the fish farm ($\sim 4.5 \text{ km}^2$) is about 10 times bigger than the total surface of the creek ($\sim 0.36 \text{ km}^2$). The total volume of water introduced daily by the fish farm ranges from 181,151 m³ to 287,795 m³ (Tovar et al., 2000b). Tovar et al. (2000b) estimated the total amount of dissolved nutrients, total suspended solids (TSS), particulate organic matter (POM) and biochemical oxygen demand (BOD₅) that the fish farm discharged into the receiving waters for each tonne of cultured fish. According to this, approximately 9.1 \cdot 10⁶ kg TSS year⁻¹, 8.4 \cdot 10⁵ kg POM year⁻¹, 2.4 \cdot 10⁵ kg BOD year⁻¹, 3.6 \cdot 10³ kg N-NH⁴ year⁻¹,

Fig. 1. Map of the Bay of Cádiz and the Río San Pedro creek, showing the location of the sampling station.

 $5.0 \cdot 10^3$ kg N-NO₂⁻ year⁻¹, $6.7 \cdot 10^3$ kg N-NO₃⁻ year⁻¹ and $2.6 \cdot 10^3$ kg P-PO₄³⁻ year⁻¹ are discharged annually into the environment.

Furthermore, the upper part of Río San Pedro also receives the drainage of an extensive but very shallow salt marsh area.

3. Materials and methods

Between February and October 2004, 10 samplings were performed at a fixed station in Río San Pedro, comprising different tidal conditions. Sampling dates and physicochemical parameters are detailed in Table 1. In each sampling, water samples were taken every hour at 1 m depth covering one tidal cycle (approximately 13 h). Samples were drawn in 100 ml air-tight glass bottles, preserved with saturated mercuric chloride to inhibit microbial activity and sealed with Apiezon[®] grease to prevent gas exchange. They were stored in the dark until analysis in the laboratory within a week of collection. All samples were collected and analyzed in duplicate.

Temperature and salinity were continuously recorded at the station by a thermosalinometer (MicroTSG-SBD 45).

Dissolved gases concentrations were determined by gas chromatography. A head space technique was used to extract the dissolved gases from the water sample. A predetermined volume (approximately 20 ml) was equilibrated with a helium atmosphere in a 50 ml air-tight glass syringe. Equilibration was achieved by vigorously shaking the syringe at room temperature. This technique of compensation inside syringes has been used before by several authors (e.g., Jayakumar et al., 2001; Xie et al., 2002). The temperature of equilibration (± 0.1 °C) was registered by a thermometer (P500 Dostman Electronic).

After equilibrium, a sample of the head space was injected into a gas chromatograph (Varian CX 3600). The configuration of the instrument, similar to the one described by Weiss (1981b), permits the simultaneous analysis of CH_4 , CO_2 and N_2O . An electric valve allows the injection, with the same sample flow, into two different loops connected to different chromatographic columns and detectors. For CH_4 and CO_2 , helium is used

Table 1 Sampling dates, number of samples (*N*), temperature, salinity, monthly averaged wind speed at 10 m height (U_{10}), daily averaged current velocity module (*W*), tidal coefficient (*m*), precipitation (mm month⁻¹) and evaporation (mm month⁻¹)

			-		-			
Date	N	Temperature (°C)	Salinity	$U_{10} ({\rm m \ s}^{-1})$	W^{a} (cm s ⁻¹)	Tidal coefficient	Precipitación ^b (mm)	Evaporation ^c (mm)
19/02/2004	13	10.0-16.4	31.75-32.45	4.8 ± 3.0	16.06	0.94	2.4	62.6
01/03/2004	14	8.8-14.0	25.85-26.03	3.3 ± 1.5	16.28	0.37	76.3	75.6
27/04/2004	13	16.4-22.0	34.30-34.57	4.1 ± 1.8	15.89	0.32	39.0	86.4
04/05/2004	13	14.0-18.2	32.52-32.64	4.5 ± 3.0	15.87	1.05	76.9	95.6
19/05/2004	13	16.4-22.0	31.18-33.87	4.5 ± 3.0	15.87	0.76	68.6	95.6
01/07/2004	13	22.6-27.4	42.61-42.62	3.7 ± 2.3	16.30	0.89	0	158.3
12/07/2004	13	19.7-27.0	43.32-43.35	3.7 ± 2.3	16.25	0.49	0	158.3
26/07/2004	13	28.8-34.8	39.45-39.60	3.7 ± 2.3	16.05	0.56	0	158.3
07/09/2004	13	20.0-23.6	37.90-38.40	2.4 ± 1.4	15.83	0.28	0.4	107.2
15/09/2004	13	18.4-21.2	38.40-38.80	2.4 ± 1.4	15.89	0.97	0.4	107.2

^a Provided by the Spanish Marine Hydrographic Institute.

^b Precipitation accumulated 1 month before the sampling. Provided by the Spanish Meteorological Institute (INM).

^c Monthly averaged evaporation. Provided by the Spanish Meteorological Institute (INM).

as the carrier gas (30 ml min⁻¹). The gases were separated on a 4.5 m \times 1/8 in. stainless steel column packed with 80/100 Porapack N and a 1.5 m \times 1/8 in. Molecular Sieve 5A column. A flame ionization detector (FID), operated at 300 °C, is used to measure CH₄ and CO₂. The CO₂ is detected after conversion to CH₄ by a nickel catalyst column (380 °C). For N₂O, a mixture of Ar/CH₄ (95%/5%) is used as carrier gas (30 ml min^{-1}) , gases were separated by a $2.5 \times 1/8$ in. stainless steel Porapack N column (80/10), and N_2O is detected by a ⁶³Ni electron capture detector (ECD), operated at 300 °C. The detectors were calibrated daily using two standard gas mixtures which were made and certified by Air Liquide (France). Certified concentrations for CH₄, CO₂ and N₂O were, respectively, 489 ppbv, 244.7 ppmv and 264 ppbv in the first gas mixture, and 2.53 ppmv, 998 ppmv and 1.55 ppmv in the second. The precision of the method, including the equilibration step, expressed as the coefficient of variation based on replicate analysis (n=25) of a seawater sample saturated with CH₄, CO₂ and N₂O, was 4.8%, 6.5% and 6.6%, respectively.

The concentrations of the gases in the water samples were calculated from the concentrations measured in the head space, using the functions for the Bunsen solubilities given by Wiesenburg and Guinasso (1979) for CH₄, and Weiss and Price (1980) for CO₂ and N₂O. The partial pressure of CO₂ (pCO₂) was determined from the concentration of dissolved CO₂, using the formulation given by Weiss (1974) to calculate the solubility coefficients.

Saturation values, expressed in %, were calculated as the ratio of the concentration of dissolved gas and the expected equilibrium water concentration.

Fluxes of CO_2 , CH_4 and N_2O across the air-water interface were estimated from:

$$F = k(C_{\rm w} - \alpha C_{\rm a}) \tag{1}$$

where $k \pmod{h^{-1}}$ is the gas transfer velocity (or piston velocity), C_w is the concentration of dissolved gas in the water (mol l⁻¹), α is the Bunsen solubility and C_a is the atmospheric gas concentration. A positive flux indicates a transfer of gas from the water to the atmosphere. The atmospheric concentrations of the gases were assumed

Table 2

Range of dissolved CH_4 , CO_2 and I	N ₂ O concentrations and	saturation values f	for each sampling
--	-------------------------------------	---------------------	-------------------

U	47 2	2	1 0					
	CH ₄		CO ₂		N ₂ O			
	Concentration (nM)	Saturation percent	Concentration (µM)	Saturation percent	Concentration (nM)	Saturation percent		
19/02/2004	12.7-45.4	514-1780	46.4-85.0	322-562	20.1-38.4	226-414		
01/03/2004	23.2-56.8	886-2110	57.7-70.0	377-465	24.4-37.9	261-405		
27/04/2004	13.3-30.4	583-1320	48.7-62.1	381-477	19.6-30.1	249-376		
04/05/2004	13.3-33.1	574-1400	38.4-78.8	295-586	16.5-31.9	206-385		
19/05/2004	13.0-29.3	586-1305	40.1-71.5	327-565	16.3-28.5	217-374		
01/07/2004	17.3-50.0	894-2625	36.3-93.0	350-910	14.1-38.6	225-626		
12/07/2004	33.9-61.8	1790-3210	57.4-115	566-1130	23.7-50.1	388-812		
26/07/2004	47.0-87.5	2643-5000	61.8-114	660-1270	25.2-45.1	449-843		
07/09/2004	35.2-57.6	1782-3010	59.4-108	562-1070	19.4-37.4	305-611		
15/09/2004	22.5-75.0	1105-3780	28.8-102	264-955	12.7-35.4	191-546		

to correspond to the annual average global concentration at Terceira Inland station (Azores, Portugal), taken from the National Oceanic and Atmospheric Administration/ Climate Monitoring and Diagnostics Laboratory/Carbon Cycle Greenhouse Gases Group (NOAA/CMDL/ CCGG) air sampling network (available at http://www. cmdl.noaa.gov/). The differences between these values and the local atmospheric concentrations are assumed to be small compared with the high dissolved concentrations in the surface waters of our study site.

Monthly mean wind speed data, measured at 10 m height in a meteorological station located about 15 km from the study site, were provided by the Spanish Meteorological Institute (INM) and used to calculate the transfer coefficients of the gases.

4. Results and discussion

4.1. Tidal variation

Concentrations of dissolved CH_4 , CO_2 and N_2O in the creek under study ranged from 12.6 to 87.5 nM, 28.8 to 114.6 μ M and 12.7 to 50.1 nM, respectively. The range

of dissolved CH_4 , CO_2 and N_2O for each sampling is given in Table 2. Concentration values for the three gases were always above atmospheric equilibrium, indicating that the system behaves as a source of these gases to the atmosphere.

All data sets indicate a strong variability of the concentration of dissolved gases with tides. Fig. 2 shows the typical evolutions of dissolved CH₄, CO₂ and N₂O over a tidal cycle, in two situations with two different tidal coefficients. In every case, dissolved gas concentrations increased when tidal elevation decreased, with maximum values during low tide. This pattern indicates that Río San Pedro water contains higher concentrations of dissolved CH₄, CO₂ and N₂O than water from the Bay of Cádiz. We suggest that the major sources of these gases within the system are the inputs of from the fish farm effluent and the drainage of the adjacent salt marsh area, as well as in situ production, which may be enhanced by the high loading of organic matter and nutrient. Benthic metabolism in the fish farm ponds and the salt marsh might be very intense due to the broadness and shallowness of these zones and the high loading of organic matter that they support.

Fig. 2. Typical variations over a tidal cycle of dissolved CH_4 , CO_2 and N_2O concentrations and tidal elevation (solid line, referenced to the mean sea level). The three plots on the left correspond to the September 7th sampling (tidal coefficient=0.28), whereas the plots on the right correspond to September 15th (tidal coefficient=0.97).

Fig. 3. Two examples of the variations of dissolved CH_4 , CO_2 and N_2O concentrations vs. salinity. The plots on the left correspond to the February 19th sampling (winter and spring pattern), whereas the plot on the right corresponds to July 1st.

Tovar et al. (2000a) evaluated the effects of intensive marine aquaculture on the water quality of Río San Pedro and observed a significant increase of the concentration of nutrients and suspended solids in the upper part of the creek, as well as a decrease of dissolved oxygen, which was attributed to the effluents from aquaculture activities together with a poor renovation of the water by the tides. These authors reported high values of NH_4^+ (up to 210 µM), NO_2^- (up to 26 µM) and NO_3^- (up to 35 µM). During the samplings, dissolved oxygen saturation varied from 69% in the summer to 87% in the winter. This variation is related to the higher concentrations of dissolved and particulate organic matter during the summer in comparison to the winter. These parameters ranged, respectively, from 4.0 to 16.4 mg I^{-1} and from 50 to 240 mg I^{-1} . The high loading of organic matter and nutrients from the effluent, together with the tidal regime that increases the residence time of the water inside the creek, may provide favorable conditions for

Fig. 4. Two examples of the variation of dissolved CO_2 concentration with tidal elevation. The plot on the left corresponds to the February 19th sampling whereas the plot on the right corresponds to July 1st. The similar linear pattern (r^2 =0.85 and 0.81, respectively) was observed in both cases.

the production of CH_4 , CO_2 and N_2O within the creek and their emission to the atmosphere.

The plots of dissolved CH₄, CO₂ and N₂O vs. salinity, shown in Fig. 3, present two different patterns. In winter and spring, concentrations decreased with increasing salinity. During this period, the minimum salinity corresponds to low tide, due to the freshwater inputs from rains in the system (Table 1). In the summer, we observed the opposite trend, the maximum salinity corresponded to low tide, due to evaporation processes inside the creek (Table 1). We can conclude that the dynamics of dissolved CH₄, CO₂ and N₂O in the system is not controlled by salinity. Indeed, the tidal cycle has a major impact due to the displacement of different water masses. Fig. 4 plots the variations of dissolved CO₂ concentrations with tidal elevation for the two examples shown in Fig. 3. A linear diminution of CO_2 concentration with tidal elevation was observed in both situations. During low tide, there is no dilution with waters from the bay and the water column is shallower, so the influence of the inputs in the upper part of the creek (fish farm and salt marshes) and the in situ production of biogases become more evident.

Several authors have concluded that benthic mineralization processes can be a major source of CH_4 (e.g., Kelley et al., 1995; Bange et al., 1998; Abril and Iversen, 2002), CO_2 (e.g., Forja et al., 1994; Hammond et al., 1999; Cai et al., 2000; Forja et al., 2004) and N₂O (e.g., Barnes and Owens, 1998; Dong et al., 2002) to the water column in different coastal systems. Another possible source of CH_4 , CO_2 and N₂O is the lateral transport from intertidal sediments during low tide (e.g., Kelley et al., 1995; Cai et al., 2000; Wang and Cai, 2004).

The range of variation of dissolved gases seems to be a function of the amplitude of the tides. For each season, higher variability was found when tidal ranges were higher. For example, on September 7th (tidal range=0.28), the amplitudes of dissolved gas variations over the tidal cycle were 22.4 nM for CH₄, 49.0 μ M for CO₂ and 24.5 nM for N₂O. On the other hand, on September 15th (tidal range=0.97), the amplitudes observed were 52.5 nM for CH₄, 73.4 μ M for CO₂ and 26.4 nM for N₂O. Thus, the variability of dissolved gases was higher with elevated tidal ranges for this summer period (average temperature=26.2 °C). If we compare this to other seasons, this assumption might not be as evident. Over the tidal cycle on

Table 3

Range of CH ₄	concentrations.	saturations and air-	-water fluxes	(parameterization	used to deriv	e the fluxes)	reported in different	coastal ecosystems
0 0 0 0 0 0				Q			T T T T T T T T T T T T	

Site	Concentration	Saturation	Air–water flux $(1 - 2)^{-2}$	Date	Reference
	(nmol 1 ⁻¹)	percent	(µmol m ² day ¹)	
Estuaries					
Humber and Tyne estuaries	3.8-670	238-21,000	-	November 1995; January, March, April,	Upstill-Goddard et al.
		a h	h	June, October, December 1996	(2000)
Randers Fjord estuary (Denmark)	28-4201	400–14,000 ^{a,b}	40–355 [°] (CC98)	February–December 2000	Abril and Iversen (2002)
European tidal estuaries	2.1 - 1440	700–158,000	130 ^b (k ₈)	June, October, December 1996; April,	Middelburg et al.
(Elbe, Ems, Thames,				July, September, November 1997;	(2002)
Rhine, Scheldt, Loire,				February, April, May, September,	
Gironde, Douro, Sado)				October 1998; February 1999	
Coastal waters and margina	ıl seas				
Aegean Sea	2.9-11 ^b	118-231 ^b	3–167 ^b (LM86)	July 1993	Bange et al. (1996b)
Coastal waters of the	_	105-15,500	31–210 ^b (LM86)	June 1994–April 1997	Bange et al. (1998)
southern Baltic Sea			51-343 ^b (W92)	*	
North Sea	2.0 - 67	74-2245	-	August 1993, May 1995,	Upstill-Goddard et al.
				October 1996, April 1998, March 1999	(2000)
Arabian Sea	2.6-48	140-2520	_	April–May 1996	Jayakumar et al. (2001)
				August–September 1997	•
Gulf of Lions	$8 - 1360^{b}$	_	_	March, June,	Marty et al. (2001)
(Mediterranean Sea)				September–November 1997; June 1998	
NW Black Sea	4-255	173-10,500	32-260 (LM86)	July 1995	Amoroux et al. (2002)
			53-470 (W92)		
Salt marshes					
Río San Pedro creek	13-88	514-5000	34-150	February-May, July, September 2004	This study

Abbreviations are as follows: LM86, Liss and Merlivat (1986); W92, Wanninkhof (1992); CC98, Cole and Caraco (1998); k_8 , using $k=8 \text{ cm h}^{-1}$. ^a Estimated if a saturation value was not explicitly given.

^b Averaged values.

April 5th (tidal range=1.05), the amplitudes of the variability of dissolved gases were 19.9 nM for CH₄, 40.4 μ M for CO₂ and 18.3 nM for N₂O. On May 19th (tidal range=0.76), the amplitudes of dissolved gas variations were 16.4 nM for CH₄, 31.4 µM for CO₂ and 13.5 nM for N₂O. Again we observe that, for this spring period (average temperature=18.6 °C), the variation of dissolved gases with tide is greater if the tidal range is higher. But if we compare both periods this assumption does not hold. On comparing the September 7th and April 5th samplings, with tidal ranges of 0.28 and 1.05, respectively, the amplitudes of the variations of dissolved CH₄, CO₂ and N₂O over a tidal cycle are higher on September 7th, even though the tidal range is significantly smaller. Therefore, the effect of tidal cycles on CH₄, CO₂ and N2O concentrations in Río San Pedro showed a seasonal variability. The influence of temperature on organic matter mineralization processes and biogas production appears to be stronger than the physical effects of tides.

4.2. Seasonal variations

The ranges of CH₄, CO₂ and N₂O concentration and saturation values for each sampling are listed in Table 2.

Concentrations of dissolved CH₄ in the surface waters ranged from 13 to 88 nM, corresponding to saturations of 514-5000%. These values are within the range reported by other authors in different coastal environments (Table 3). Dissolved CH₄ concentrations in rivers, estuaries and coastal environments generally show a strong spatial and temporal variability (e.g., Bange et al., 1998; Upstill-Goddard et al., 2000; Jayakumar et al., 2001; Middelburg et al., 2002). Bange et al. (1998) reported CH₄ saturation values in the southern Baltic Sea and Bodden waters ranging from 105% to 15,500%. CH₄ measurements performed by Upstill-Goddard et al. (2000) in the coastal waters of the North Sea and the Humber and Tyne estuaries showed saturations in the range of 74-21,048%. A series of CH₄ measurements performed in nine tidal European estuaries (Elbe, Ems, Thames, Rhine, Sheldt, Loire, Gironde, Douro and Sado) by Middelburg et al. (2002) yielded saturation values of up to 158,000%.

Dissolved N_2O concentrations in Río San Pedro varied from 13 to 50 nM, corresponding to saturations of 191% to 843%. These values are in good agreement with those reported by other authors in other coastal ecosystems (Table 4). For example, Bange et al. (1998) reported N_2O saturation values in the southern Baltic Sea and Bodden

Table 4

Range of N2O concentrations, saturations and air-water fluxes (parameterization used to derive the fluxes) reported in different coastal ecosystems

Site	Concentration (nmol l^{-1})	Saturation percent	Air-water flux $(\mu mol m^{-2} day^{-1})$	Date	Reference
Estuaries					
Gironde estuary	10-19	105-165	_	November 1991	Bange et al. (1996a)
Humber estuary	_	$\sim 200 - 4000$	43,200 (LM86)	January, February 1995; April, August 1996	Barnes and Owens (1998)
Scheldt estuary	10-338	~100-3100	~10–530 (C95)	October 1993, March 1994, July 1996	De Wilde and de Bie (2000)
Colne estuary	20-140	100-450	-	February 1998	Dong et al. (2002)
Coastal Waters and Mar	ginal Seas				
Aegean Sea	7.02-7.27	103-107	1.20-21.0 (LM86)	July 1993	Bange et al. (1996b)
Central North Sea, and German Bight	8.4–9.2	99–104	-	September 1991, September 1992	Bange et al. (1996a)
Southern Baltic Sea	-	91-312	0.35–3.97 (LM86) 0.60–7.08 (W92))	June 1994–April 1997	Bange et al. (1998)
Tokyo Bay	9–139	116-1630	1.5–153 (LM86)	May-October 1994	Hashimoto et al. (1999)
Gulf of Lions (Mediterranean Sea)	1.9–41	27–570 ^a	_	March, June, September–November 1997; June 1998	Marty et al. (2001)
NW Black Sea	7.9-8.0	96–149	1.6–2.7 (LM86) 2.8–4.4 (W92)	July 1995	Amoroux et al. (2002)
Salt marshes					
Río San Pedro creek	13-50	191-843	24-62	February-May, July, September 2004	This study

Abbreviations are as follows: LM86, Liss and Merlivat (1986); W92, Wanninkhof (1992); C95, Clark et al. (1995).

^a Estimated if a saturation value was not explicitly given.

waters ranging from 91% to 312%, with a maximum in March. N₂O saturations of up to 4000% were found in the Humber estuary, whereas in the pristine waters of the Tweed estuary they were close to atmospheric equilibrium (Barnes and Owens, 1998). In the Scheldt estuary and the Dutch coast, saturations ranged from 100% to 3100% (De Wilde and de Bie, 2000).

 pCO_2 values in the creek ranged from 981 to 4680 µatm, corresponding to saturations of 264–1270%. These values are within the ranges reported in other coastal systems (Table 5). Particularly, the range of pCO_2 found in our system is very similar to the values reported by Wang and Cai (2004) in surface waters of the Duplin River (500–3000 µatm), a marsh-dominated estuary surrounded by intertidal salt marshes. Fran-

kignoulle et al. (1998) and Ortega et al. (2005) reported pCO_2 values in different European estuaries, which were as high as 9728 µatm for the Scheldt estuary and up to 9425 µatm in the Cantabrian estuaries.

The concentration of dissolved CH₄, CO₂ and N₂O in surface waters showed a strong seasonal variability. During winter, the highest observed values of dissolved CH₄, CO₂ and N₂O were 56.8 nM, 85.0 μ M and 38.4 nM, respectively. These values correspond to an oversaturation of 2110%, 562% and 414%, respectively. During summer, the maximum dissolved CH₄, CO₂ and N₂O values increased to 87.5 nM, 115 μ M and 50.7 nM, corresponding to oversaturation values of 5000%, 1270% and 840%, respectively. This shift in the oversaturation of CH₄, CO₂ and N₂O from winter to

Table 5

Range of pCO_2 and air-water fluxes (parameterization used to derive the fluxes) reported in different coastal ecosystems

Site	pCO ₂ (µatm/ppm)	Air-water flux (mmol $m^{-2} day^{-1}$)	Date	Reference
Estuaries				
Altamaha and Satilla Rivers	$\sim 4 \ 0 \ 0 - 8200$	~41–700 (EM83)	October 1995	Cai and Wang (1998)
European estuaries (Elbe, Ems , Rhine, Scheldt, Tamar, Thames, Gironde, Douro, Sado)	125–9425	50-660 ^a	March, July 1992; March, June 1993; March, April, November 1994; January, August, November 1995; September, October, December 1996; April, July, September, November 1997; February 1998	Frankignoulle et al. (1998)
York River estuary	113-3467	-2.1-107 (R00)	April 1997, July 1996	Raymond et al. (2000)
Cantabrian estuaries	256-9728		June 1998	Ortega et al. (2005)
Coastal waters and marginal see	as			
Gulf of Biscay and North Sea	195–367	-36.2-1.64 (LM86) -71.2-384 (T90) -58.4-2.43 (W92)	May, September 1993; May, April, November 1994; March, May, July 1995; April 1996; May, June 1997; January, July–August 1998: September 1999	Frankignoulle and Borges (2001)
Galician Upwelling system (NW Spain)	265-415	0.0 to -6.9 (LM86) 0.0 to -13.9(T90) 0.0 to -12.0 (W92)	June 1997, January 2000	Borges and Frankignoulle (2002)
US Middle Atlantic Bight	$\sim 2 \ 0 \ 0 - 650$	-2.47 to -1.10 (LM86) -1.92 to -4.38 (W92)	1994–2000	DeGrandpre et al. (2002)
North Sea	-	-2.60 (LM86) -4.60 (W92)	August–September, November 2001; February–March, May 2002	Thomas et al. (2004)
South Brazil Bight	_	0.3–9.8 (W92)	November 1997; January–February, June 1998	Ito et al. (2005)
Gulf of Cádiz (SW Spain)	$152 - 340^{b}$	-0.41 (WT91)	March 2004	Huertas et al. (2005)
Salt marshes				
Duplin River	500-3000	6.1–134 (W92) 9.4–158 (R00)	September 2000-April 2002	Wang and Cai (2004)
Río San Pedro creek	981-4680	073–177	February-May, July, September 2004	This study

Abbreviations are as follows: EM83, Elsinger and Moore, 1983; LM86, Liss and Merlivat (1986); T90, Tans et al., 1990; WT91, Woolf and Thorpe (1991); W92, Wanninkhof (1992); C95, Clark et al. (1995); R00, Raymond et al. (2000).

^a Fluxes measured on field by floating dome measurements or calculated using a k=8 cm h⁻¹.

^b Values in ppm.

summer conditions indicates that these gases are closely linked to the seasonal temperature cycle.

Fig. 5 plots CH_4 , CO_2 and N_2O average saturation values for each sampling vs. temperature. It can be observed that the three gases follow a similar pattern. Below a temperature of approximately 20 °C, which corresponds to winter and spring conditions, there is no significant relation between dissolved gases concentrations and temperature. Above 20 °C, corresponding to July and September, saturation values for CH_4 , CO_2 and N_2O show a linear increase with temperature ($r^2=0.89$, 0.89 and 0.82, respectively).

Organic matter mineralization processes in the sediments, which constitute one of the main sources of trace gases in the system, show a high dependence on temperature (e.g., Aller, 1980; Aller and Benninger, 1981). Observations made in marine coastal areas with large variations in the temperature of the bottom water have revealed that low temperatures tend to reduce microbial activity (Shiah, 1994; Ortega et al., 2002) and

12 16 20 24 28 32 Temperature (°C)
Fig. 5. Mean CH₄, CO₂ and N₂O saturation values for each sampling vs. temperature. Above 20 °C, corresponding to July and September samplings, saturation values show a linear increase with temperature (r²=0.89 for CH₄, r²=0.89 for CO₂, r²=0.82 for N₂O). The dashed line indicates equilibrium saturation (i.e. 100%).

hence the exchanges between sediments and the water column. Sediments of the Bay of Cadiz are basically clayey and their organic matter content is 2-3%. Benthic fluxes of inorganic carbon and nutrients are high in comparison to other littoral systems, owing to intensive bacterial colonization and a high density of benthic macro-fauna that significantly triggers diffusive fluxes (Forja et al., 1994; Forja and Gómez-Parra, 1998). A significant seasonal variation of benthic fluxes has been detected in the sediments of the interior part of the Bay of Cádiz (Forja et al., 1994, 2004), as well as an increase with temperature of the contribution of anaerobic routes of organic matter degradation (Foria et al., 2004). Thus, a rise in temperature implies a greater release of metabolic products to interstitial waters, including CH₄, CO₂ and N₂O, and consequently a higher rate of transfer of these gases to the water column.

4.3. Air-water exchange

The gas exchange between the surface waters and the atmosphere depends mainly on the concentration gradient and the gas transfer velocity, k. For sparingly soluble gases, such as CH₄, CO₂ and N₂O, k mainly depends on turbulence in the water phase (Liss and Slater, 1974). In open oceans and lakes, wind stress appears to be the main source of water surface turbulence and k is usually parameterized as a function of wind speed (e.g., Liss and Merlivat, 1986; Wanninkhof, 1992). In the case of shallow coastal sites, there are other important sources of turbulence (e.g., bottom friction, current velocity), and there is a lack of agreement on the relationships proposed in literature. Depending on the coastal system and the environmental conditions, one or more of these processes may control the air-water exchange. In macrotidal estuaries, tidal currents were found to significantly contribute k, in addition to wind stress (Zappa et al., 2003; Borges et al., 2004a,b). This can explain the high variability in the k-wind speed parameterizations found in estuaries of differing scale and hydraulic conditions. However, another source of uncertainty can be the inherent differences in the various measurement techniques. Zappa et al. (2003) and Borges et al. (2004a) showed that the contribution of water currents to the gas transfer velocity can be estimated by O'Connor and Dobbins (1958) relationship, which is based on fluid turbulence theory and where k is parameterized as a function of water current and depth. Using this relation, Borges et al. (2004b) proposed an empirical equation that parameterizes the

cumulative effects of wind speed and current velocity to calculate k_{600} in the Scheldt estuary:

$$k_{600} = 1.0 + 1.719w^{-0.5}h^{-0.5} + 2.58u_{10} \tag{1}$$

where k_{600} is the gas transfer velocity of CO₂ normalized to 20 °C (cm h⁻¹), w is the water current (cm s⁻¹), h is the depth (m) and u_{10} is the wind speed at 10 m height (m s⁻¹).

To bracket the most likely value for k, we chose several parameterizations proposed by different authors in estuaries and coastal systems: (1) Clark et al. (1995) relationship (hereinafter referred to as C95), based on SF₆ release experiments in the Hudson River estuary and ²²²Rn mass balance in San Francisco Bay, (2) Carini et al. (1996) relationship (hereinafter referred to as C96), based on SF₆ release experiments in the Parker River estuary, (3)Kremer et al. (2003) relationship (hereinafter referred to as K03), based on floating dome O2 measurements in Childs River and Sage Lot Pond estuaries, and (4) Borges et al. (2004b) relationship (hereinafter referred to as B04), based on floating dome CO₂ measurements in the Scheldt estuary, taking into account the contribution of the water current from the conceptual relationship of O'Connor and Dobbins (1958) (Eq. (1)). The choice of these formulations was motivated by the relative similarity of these systems to Río San Pedro from the point of view of physical characteristics (e.g., shallow, well-mixed, influenced by tides).

Gas transfer velocity depends on temperature and it is different for each gas. From the k estimated using the different algorithms, we calculated the k for our gas of interest at a given temperature using the following expression:

 $k_1/k_2 = \left(Sc_1/Sc_2\right)^n$

The Schmidt numbers (Sc_i) were calculated for the respective gases evaluated from the formulations given by Wanninkhof (1992) for salinity 0 and 35, assuming that Sc_i varies linearly with salinity. We assumed a dependency of k proportional to $Sc^{-0.5}$.

The averaged air–water fluxes of CH_4 , CO_2 and N_2O for each sampling, calculated with the different relationships, are presented in Fig. 6. The magnitudes of these fluxes differ significantly depending on the gas transfer velocity used, and these differences are greater with increasing wind speed. However, no matter what parameterization is used, fluxes show in all cases a similar seasonal pattern. In general, fluxes estimated with the B04 relationship are as much as a factor of 5 higher than those with K03. The fluxes estimated from

Fig. 6. Average CH₄, CO₂ and N₂O air–water fluxes for each sampling: C95: air–water fluxes calculated according to Clark et al. (1995); C96: air–water fluxes calculated according to Carini et al. (1996); K03: air–water fluxes calculated according to Kremer et al. (2003); B04: air–sea fluxes calculated according to Borges et al. (2004b). The diamonds correspond to the averaged air–water fluxes for the four parameterizations.

the C95 and C96 parameterizations fall between the latter two. But C96 fluxes are a factor of 2 higher than those estimated from the C95 relationship. Kremer et al. (2003) and Borges et al. (2004b) concluded that a simple parameterization of k as a function of wind speed is site specific in estuaries, and that the use of generic relationships to estimate the air–water flux can lead to

substantial errors. Hence, we need to be very cautious when using k parameterizations to calculate air-water fluxes in coastal environments. The averaged CH₄, CO₂ and N₂O air-water fluxes of all four parameterizations are also presented in Fig. 6, and ranged from 34 to 150 μ mol CH₄ m⁻² day⁻¹, 73 to 177 mmol CO₂ m⁻² day^{-1} and 24 to 62 μ mol N₂O m⁻² day^{-1} . These values are within the range reported by other authors in coastal environments (Tables 3, 4 and 5). For the three gases, maximum exchange values were registered in July, when the production of these gases within the system is more intense. Monthly mean wind speed varied slightly over the year and, therefore, differences in CH_4 , CO_2 and N₂O fluxes were mainly driven by the seasonal variability of dissolved CH₄, CO₂ and N₂O in surface waters. As discussed before, the seasonal variations of dissolved CH₄, CO₂ and N₂O are related to the temperature cycle, which affects the respiration processes and thus the production of biogases.

The system behaved throughout the year as a source of CH_4 , CO_2 and N_2O to the atmosphere, with annual averaged air–water fluxes of 66 μ mol CH_4 m⁻² day⁻¹, 108 mmol CO_2 m⁻² day⁻¹ and 39 μ mol N_2O m⁻² day⁻¹, respectively.

5. Summary and conclusions

Dissolved methane (CH₄), carbon dioxide (CO₂) and nitrous oxide (N₂O) concentrations were measured in the surface waters of Río San Pedro. Waters were oversaturated with respect to the atmosphere during the whole year, reaching values of up to 5000% for CH₄, 1240% for CO₂ and 840% for N₂O. This indicates that the area is a net source of these gases to the atmosphere.

All data sets showed a strong tidal variability with higher values during low tide, indicating that Río San Pedro is richer in dissolved CH_4 , CO_2 and N_2O than water from the Bay of Cádiz. This is due to the direct inputs from the fish farm effluent and the drainage of the salt marshes in the upper part of the creek, as well as the *in situ* production of biogases, which is enhanced by the high loading of organic matter and nutrients. The concentrations of dissolved CH_4 , CO_2 and N_2O also showed a great seasonal variability, with maximum saturations in July, which is presumably due to the dependence of biological activity on temperature.

Annual averaged CH₄, CO₂ and N₂O air–water fluxes, calculated using four different parameterizations, were 66 μ mol CH₄ m⁻² day⁻¹, 108 mmol CO₂ m⁻² day⁻¹ and 39 μ mol N₂O m⁻² day⁻¹, respectively, which indicates that the system acts annually as a net source of these biogases to the atmosphere.

Acknowledgments

This work was supported by the Spanish CICYT (Comisión Interministerial de Ciencias y Tecnología) of the Ministerio de Educación y Ciencia under contracts REN2001-3577/MAR and CTM2005-01364/MAR. Thanks to C.Y.C.E.M. El Toruño for the use of their infrastructure. Thanks to M. de la Paz and M.D. Gabriel for their assistance during sampling and to J. Vidal for the water current data provided.

References

- Abril, G., Borges, A.V., 2004. Carbon dioxide and methane emissions from estuaries. In: Tremblay, A., Varfalvy, L., Roehm, C., Garneau, M. (Eds.), Greenhouse Gases Emissions from Natural Environments and Hydroelectric Reservoirs: Fluxes and Processes. Springer-Verlag, pp. 187–207.
- Abril, G., Iversen, N., 2002. Methane dynamics in a shallow non-tidal estuary (Randers Fjord, Denmark). Mar. Ecol., Prog. Ser. 230, 171–181.
- Aller, R.C., 1980. Diagenetic processes near the sediment–water interface of Long Island Sound: I. Decomposition and nutrient element geochemistry (S, N, P). Adv. Geophys. 22, 237–350.
- Aller, R.C., Benninger, L.K., 1981. Spatial and temporal patterns of dissolved ammonium, manganese, and silica fluxes from bottom sediments of Long Island Sound, USA. J. Mar. Res. 39, 295–314.
- Amoroux, D., Roberts, G., Rapsomanikis, S., Adreae, M.O., 2002. Biogenic gas (CH₄, N₂O, DMS) emission to the atmosphere from near-shore and shelf waters of the north-western Black Sea. Estuar. Coast. Shelf Sci. 54, 575–587.
- Bange, H.W., Bartel, U.H., Rapsomanikis, S., Andreae, M.O., 1994. Methane in the Baltic and North Seas and reassessment of the marine emissions of methane. Glob. Biogeochem. Cycles 8, 465–480.
- Bange, H.W., Rapsomanikis, S., Andreae, M.O., 1996a. Nitrous oxide in coastal waters. Glob. Biogeochem. Cycles 10, 197–207.
- Bange, H.W., Rapsomanikis, S., Andreae, M.O., 1996b. The Aegean Sea as a source of atmospheric nitrous oxide and methane. Mar. Chem. 53, 41–49.
- Bange, H.W., Dahlke, S., Ramesh, R., Meyer-Reil, L.-A., Rapsomanikis, S., Andreae, 1998. Seasonal study of methane and nitrous oxide in the coastal waters of the southern Baltic Sea. Estuar. Coast. Shelf Sci. 47, 807–817.
- Barnes, J., Owens, N.J.P., 1998. Denitrification and nitrous oxide concentrations in the Humber estuary, UK, and adjacent coastal zones. Mar. Pollut. Bull. 37, 247–260.
- Barnola, J.M., Raynaud, D., Korotkevich, Y.S., Lorius, C., 1987. Vostok ice core provides 160000-year record of atmospheric CO₂. Nature 329, 408–414.
- Blake, R.B., Rowland, F.S., 1988. Continuing worldwide increase in tropospheric methane, 1978–1987. Science-New Series, vol. 239, pp. 1129–1131.
- Borges, A.V., 2005. Do we have enough pieces of the jigsaw to integrate CO₂ fluxes in the Coastal Ocean? Estuaries 28 (1), 3–27.
- Borges, A.V., Frankignoulle, M., 2002. Distribution of surface carbon dioxide and air–sea exchange in the upwelling system off the Galician coast. Glob. Biogeochem. Cycles 16, 1020.
- Borges, A.V., Delille, B., Schiettecatte, L.-S., Gazeau, F., Abril, G., Frankignoulle, M., 2004a. Gas transfer velocities of CO₂ in three

European estuaries (Randers Fjord, Scheldt, and Thames). Limnol. Oceanogr. 49, 1630–1641.

- Borges, A.V., Vanderborght, J.P., Schiettecatte, L.-S., Gazeau, F., Ferrón-Smith, S., Delille, B., Frankignoulle, M., 2004b. Variability of the gas transfer velocity of CO₂ in a macrotidal estuary (the Scheldt). Estuaries 27, 595–605.
- Borges, A.V., Delille, B., Frankignoulle, M., 2005. Budgeting sinks and sources of CO₂ in the coastal ocean: diversity of ecosystems counts. Geophys. Res. Lett. 32, L14601. doi: 10.1029/2005GL023053.
- Cai, W.-J., Wang, Y., 1998. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol. Oceanogr. 43, 657–668.
- Cai, W.-J., Zhao, P., Wang, Y., 2000. pH and pCO₂ microelectrode measurements and the diffusive behaviour of carbon dioxide species in coastal marine sediments. Mar. Chem. 70, 133–148.
- Cai, W.-J., Wang, Z., Wang, Y., 2003. The role of marsh-dominated heterotrophic continental margins in transport of CO₂ between the atmosphere, the land–sea interface and the ocean. Geophys. Res. Lett. 30 (16), 1849. doi: 10.1029/2003GL017633.
- Carini, S., Weston, N., Hopkinson, G., Tucker, J., Giblin, A., Vallino, J., 1996. Gas exchanges rates in the Parker River estuary, Massachusetts. Biol. Bull. 191, 333–334.
- Chen, C.T.A., Liu, K.K., Macdonald, R., 2003. Continental margin exchanges. In: Fasham, M.J.R. (Ed.), Ocean Biogeochemistry: a Synthesis of the Joint Global Ocean Flux Study (JGOFS). Springer-Verlag, Berlin, pp. 53–97.
- Clark, J.F., Schlosser, P., Simpson, H.J., Stute, M., Wanninkhof, R., Ho, D.T., 1995. Relationship between gas transfer velocities and wind speeds in the tidal Hudson River determined by the dual tracer technique. In: Jähne, B., Monahan, E. (Eds.), Air–Water Gas Transfer: AEON Verlag & Studio, Hanau, Germany. Hanau, Germany, pp. 785–800.
- Cole, J.J., Caraco, N.F., 1998. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF₆. Limnol. Oceanogr. 43, 647–656.
- Crutzen, P.J., 1991. Methane's sinks and sources. Nature 350, 380-381.
- Crutzen, P.J., Schmailzl, U., 1983. Chemical budgets of the stratosphere. Planet. Space Sci. 31, 1009–1032.
- DeGrandpre, M.D., Olbu, G.J., Beatty, C.M., Hammar, T.R., 2002. Air–sea CO₂ fluxes on the US Middle Atlantic Bight. Deep-Sea Res., II 49, 4355–4367.
- De Wilde, H.P.J., de Bie, M.J.M., 2000. Nitrous oxide in the Schelde estuary: production by nitrification and emission to the atmosphere. Mar. Chem. 69, 203–216.
- Dong, L.F., Nedwell, D.B., Underwood, G.J.C., Thornton, D.C.O., Rusmana, I., 2002. Nitrous oxide formation in the Colne estuary, England: the central role of nitrite. Appl. Environ. Microbiol. 68, 1240–1249.
- Elsinger, R.J., Moore, W.S., 1983. Gas exchange in the Pee Dee River based on ²²²Rn evasion. Geophys. Res. Lett. 10, 443–446.
- Forja, J.M., Gómez-Parra, A., 1998. Measuring nutrient fluxes across the sediment–water interface using benthic chambers. Mar. Ecol., Prog. Ser. 164, 95–105.
- Forja, J.M., Blasco, J., Gómez-Parra, A., 1994. Spatial and seasonal variation of "in situ" benthic fluxes in the Bay of Cádiz (SW Spain). Estuar. Coast. Shelf Sci. 39, 127–141.
- Forja, J.M., Ortega, T., DelValls, T.A., Gómez-Parra, A., 2004. Benthic fluxes of inorganic carbon in shallow coastal ecosystems of the Iberian Peninsula. Mar. Chem. 85, 141–156.
- Frankignoulle, M., Borges, A., 2001. European continental shelf as a significant sink for atmospheric CO₂. Glob. Biogeochem. Cycles 15, 569–576.

- Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille, B., Libert, E., Théate, J.-M., 1998. Carbon dioxide emission from European estuaries. Science 282, 434–436.
- Gattuso, J.P., Frankignoulle, M., Wollast, R., 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Ann. Rev. Ecolog. Syst. 29, 405–434.
- González-Gordillo, J.I., Arias, A.M., Rodríguez, A., Drake, P., 2003. Recruitment patterns of decapod crustacean megalopae in a shallow inlet (SW Spain) related to life history strategies. Estuar. Coast. Shelf Sci. 56, 593–607.
- Hammond, D.E., Giordani, P., Berelson, W.M., Poletti, R., 1999. Diagenesis of carbon and nutrients and benthic exchange in sediments of the northern Adriatic Sea. Mar. Chem. 66, 53–79.
- Hashimoto, S., Gojo, K., Hikota, S., Sendai, N., Otsuki, A., 1999. Nitrous oxide emissions from coastal waters in Tokyo Bay. Mar. Environ. Res. 47, 213–223.
- Houghton, J.T., Jenkins, G.J., Ephramus, J.J., 1990. Climate Change: the IPCC Scientific Assessment. Cambridge University Press, Cambridge. 365 pp.
- Huertas, E., Navarro, G., Rodríguez-Gálvez, S., Prieto, L., 2005. The influence of phytoplankton biomass on the spatial distribution of carbon dioxide in surface sea water of a coastal area of the Gulf of Cádiz (southwestern Spain). Can. J. Bot. 83, 929–940.
- Ito, R.G., Schneider, B., Thomas, H., 2005. Seasonal variations of fCO₂ in seawater of the southwestern subtropical Atlantic and adjacent continental shelf. J. Mar. Syst. 56, 227–242.
- Jayakumar, D.A., Naqvi, S.W.A., Narvekar, P.V., George, M.D., 2001. Methane in coastal and offshore waters of the Arabian Sea. Mar. Chem. 74, 1–13.
- Kelley, C.A., Martens, C.S., Ussler III, W., 1995. Methane dynamics across a tidally flooded riverbank margin. Limnol. Oceanogr. 40, 1112–1129.
- Khalil, M.A.K., Rasmussen, R.A., 1992. The global sources of nitrous oxide. J. Geophys. Res. 97, 14651–14660.
- Kremer, J.N., Reischauer, A., D'Avanzo, C., 2003. Estuary-specific variation in the air–water gas exchange coefficient for oxygen. Estuaries 26, 829–836.
- Lashof, D.A., Ahuja, D.R., 1990. Relative contributions of greenhouse gas emissions to global warming. Nature 346, 529–531.
- Liss, P.S., Merlivat, L., 1986. Air–sea exchange rates: introduction and synthesis. In: Buat-Ménard, P. (Ed.), The Role of Air–Sea Exchanges in Geochemical Cycling. Reidel, Dordrecht, The Netherlands, pp. 113–127.
- Liss, P.S., Slater, P.G., 1974. Flux of gases across the air-sea interface. Nature 247, 181–184.
- Mackenzie, F.T., 1998. In: Our Changing Planet (Ed.), 486 pp., Prentice Hall, Upper Saddle River.
- Marty, D., Bonin, P., Michotey, V., Bianchi, M., 2001. Bacterial biogas production in coastal system affected by freshwater inputs. Cont. Shelf Res. 21, 2105–2115.
- Middelburg, J.J., Nieuwenhuize, J., Iversen, N., Høgh, N., De Wilde, H., Helder, W., Seifert, R., Christof, O., 2002. Methane distribution in European tidal estuaries. Biogeochemistry 59, 95–119.
- O'Connor, D.J., Dobbins, W.E., 1958. Mechanism of reaeration in natural streams. Trans. Am. Soc. Civ. Eng. 123, 641–684.
- Ortega, T., Ponce, R., Forja, J.M., Gómez-Parra, A., 2002. Inorganic carbon fluxes at the water-sediment interface in five littoral systems in Spain (southern Europe). Hydrobiologia 469, 109–116.
- Ortega, T., Ponce, R., Forja, J., Gómez-Parra, A., 2005. Fluxes of dissolved inorganic carbon in three estuarine systems of the Cantabrian Sea (north of Spain). J. Mar. Syst. 53, 125–142.

- Raymond, P.A., Bauer, J.E., Cole, J.J., 2000. Atmospheric CO₂ evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnol. Oceanogr. 45, 1707–1717.
- Rodhe, H., 1990. A comparison of the contribution of various gases to the greenhouse effect. Science 248, 1217–1219.
- Sarmiento, J.L., Gruber, N., 2002. Sinks for anthropogenic carbon. Phys. Today 55, 30–36.
- Seitzinger, S.P., Kroeze, C., Styles, R.V., 2000. Global distribution of N₂O emissions from aquatic systems: natural emissions and anthropogenic effects. Chemosphere, Glob. Chang. Sci. 2, 267–279.
- Shiah, F.K., 1994. Temperature and substrate regulation of bacterial abundance, production and specific growth rate in Chesapeake Bay, USA. Mar. Ecol., Prog. Ser. 103, 297–308.
- Takahashi, T., Sutherland, S.C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R.A., Sabine, C., Olafsson, J., Nojiri, Y., 2002. Global sea–air CO₂ flux based on climatological surface ocean *p*CO₂, and seasonal biological and temperature effects. Deep-Sea Res., II 49, 1601–1622.
- Tans, P.P., Fung, I.Y., Takahashi, T., 1990. Observational constraints on the global atmospheric CO₂ budget. Science 247, 1431–1438.
- Thomas, H., Bozec, Y., Elkalay, K., De Baar, H.J.W., 2004. Enhanced open ocean storage of CO₂ from shelf sea pumping. Science 304, 1005–1008.
- Tovar, A., Moreno, C., Manuel-Vez, M.P., García-Vargas, M., 2000a. Environmental impacts of intensive aquaculture in marine waters. Water Res. 34, 334–342.
- Tovar, A., Moreno, C., Manuel-Vez, M.P., García-Vargas, M., 2000b. Environmental implications of intensive marine aquaculture in earthen ponds. Mar. Pollut. Bull. 40, 981–988.
- Tsunongai, S., Watanabe, S., Sato, T., 1999. Is there a "continental shelf pump" for the absorption of atmospheric CO₂? Tellus, Ser. B Chem. Phys. Meteorol. 51, 701–712.
- Upstill-Goddard, R.C., Barnes, J., Frost, T., Punshon, S., Owens, N.J.P., 2000. Methane in the southern North Sea: low-salinity inputs,

estuarine removal, and atmospheric flux. Glob. Biogeochem. Cycles 14, 1205–1217.

- Wang, Z.A., Cai, W.-J., 2004. Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary (the Duplin River): a marsh CO₂ pump. Limnol. Oceanogr. 49 (2), 341–354.
- Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97, 7373–7382.
- Weiss, R.F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2, 203–215.
- Weiss, R.F., 1981a. The temporal and spatial distribution of tropospheric nitrous oxide. J. Geophys. Res. 86 (C8), 7185–7195.
- Weiss, R.F., 1981b. Determinations of carbon dioxide and methane by dual catalyst flame ionisation chromatography and nitrous oxide by electron capture chromatography. J. Chromatogr. Sci. 19, 611–616.
- Weiss, R.F., Price, B.A., 1980. Nitrous oxide solubility in water and seawater. Mar. Chem. 8, 347–359.
- Wiesenburg, D.A., Guinasso, N.L., 1979. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and seawater. J. Chem. Eng. Data 24, 356–360.
- Wolfe, R.S., 1971. Microbial formation of methane. Adv. Microb. Physiol. 6, 107–146.
- Wollast, R., 1998. Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean. In: Brink y, K.H., Robinson, A.R. (Eds.), The Sea. Wiley & Sons, New York, pp. 213–252.
- Woolf, D.K., Thorpe, S.A., 1991. Bubbles and the air–sea exchange of gases in near saturation conditions. J. Mar. Res. 49, 435–466.
- Xie, H., Andrews, S.S., Martin, W.R., Miller, J., Ziolkowski, L., Taylor, C.D., Zafiriou, O.C., 2002. Validated methods for sampling and headspace analysis of carbon monoxide in seawater. Mar. Chem. 77, 93–108.
- Zappa, C.J., Raymond, P.A., Terray, E.A., McGillis, W.R., 2003. Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary. Estuaries 26, 1401–1415.