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This work presents a contribution to solving the problem of identification of ship model
parameters using the experimental results from a particular trial test. The innovation
of this paper lies in the fact that for this identification purpose it is necessary to know
only the turning radius that describes the ship during the performance of the turning
test trial. A relatively complex nonlinear model of Norrbin has been chosen as a basis
because it represents the ship’s dynamics appropriately, as proven through experi-
mental measurements obtained during the course change test. The proposed algo-
rithm of identification of the four ship model parameters is based on an adaptive
procedure and the backstepping theory. Another additional coefficient can be deter-
mined by an alternative procedure. The knowledge of the true values that character-
ize the dynamic of a ship is fundamental in the ship steering control that is carried out
by autopilots. The simulation results show the suitability of the proposed procedure.

1. Introduction

THE LINEAR THEORY is useful for analyzing the influence of ship
features on control-fixed stability as well as on the turning ability
of stable ships in the linear range. However, it fails to predict
accurately the characteristics of the tight maneuvers that most
ships are capable of performing and cannot predict the maneuvers
of unstable ships. In a real sense, the presence of different kinds of
uncertainty in not precisely known models; the random processes
statistics, such as winds, waves, and currents; other exogenous
effects on different sailing conditions, such as speed, loading con-
ditions, trim, and so forth; and sailing routes in open sea (deep
water) and coastal (shallow) waters with a possible change in the
under-keel clearance make necessary the application of techniques
that take into account the nonlinear equations that describe the
ship’s motion, especially in course-keeping and course-changing
problems with the presence of unknown parameters which appear
linearly in this system of equations.

Unfortunately, there is no completely analytical procedure for
predicting the characteristics of these nonlinear maneuvers prior to

Manuscript received at SNAME headquaﬁers June 14, 2006.

174  JUNE 2007

0022-4502/07/5102-0174500.41/0

" the conduct of full-scale trials. In the absence of theoretical pro-

cedures, an experimental technique using free-running models has
been employed for many years. A semitheoretical technique uti-
lizes the experimental test results in conjunction with nonlinear
equations of motion expanded to include significant nonlinear
terms, as the ship’s model employed in this paper. In this sense, a
relatively novel identification procedure based on backstepping
(Krsti¢ et al. 1995) has been applied with considerable success in
axial compressors developed under backstepping designs for
throttle and bleed valves (Banaszuk & Krener 1997) and air in-
jection (Behnken & Murray 1997, Protz & Paduano 1997); ship
control (Fossen 1994, Ihle et al. 2003, Skjetne & Fossen 2004);
route planning (Haro Casado & Velasco 2003); electric machines
(induction motor) (Marino et al. 1999); and aircraft control
(Hirkegard 2001).

There are no definitive international standards for conducting
maneuvering trials with ships. Many shipyards have developed
their own procedures driven by their experience with consider-
ation of the efforts made by the International Towing Tank Con-
ference (ITTC, Proceedings 1963—1975) and other organizations
or institutes (Journée & Pinkster 2001)..The Society of Naval
Architects and Marine Engineers (SNAME) has produced three
guidelines: Code on Maneuvering and Special Trials and Tests
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(1950), Code for Sea Trials (1973), and Guide for Sea Trials
(1989). The Norwegian Standard Organization has produced Test-
ing of New Ships, Norsk Standard (1985). The Japan Ship Re-
search Association (JSRA) has produced Sea Trial Code for Giant
Ships (1972) for maneuvering trial procedure and analysis of mea-
surements.

The International Maritime Orgamzatlon (IMO) has been con-
cerned with the safety implications of ships with poor maneuver-
ing characteristics since the meeting of the subcommittee on Ship
Design and Equipment (DE) in 1968. The last resolution adopted
by the IMO and by its Maritime Safety Committee (MSF) at its
76th session was the MSC.137(16), which resolves that the
adopted provisions supersede the previous annexed to resolution
A.751(18) and its circular 644, the title of which is Explanatory
Notes to the Interim Standards for Ship Manoeuvrability, dated 6
June 1994. The resolution MSC.137(76) has provided circular
1053, Explanatory Notes to the Standards for Ship Manoeuvrabil-
ity, dated 16 December 2002. The Standards are based on the
premise that the maneuverability of ships can be adequately
judged from the results of typical ship trial maneuvers.

Between the 18 types of maneuvering tests, only the turning
test, mainly used to calculate the ship’s steady turning radius and
to check how well the steering gear performs under course-
changing maneuvers; the Z-maneuvering test, used to compare the
maneuvering properties and control characteristic of a ship with
those of other ships; and the stopping test (crash-stop and low-
speed), used to determine the ship’s head reach and maneuver-
ability during emergency situations, are recommended by all or-
ganizations. In this paper the maneuver of the turning circle test
has been chosen as a basis for the identification procedure.

The remainder of this paper is organized as follows: Section 2
deals with nomenclature, referential systems, the modeling prob-
lem, and the characterization of the circular movement. Section 3
describes a coarse identification procedure. Section 4 analyzes an
identification and control method based on backstepping. Section
5 discusses the simulation results, highlighting some concluding
remarks.

2. Ship model

2.1. Coordinate systems

In the process of analyzing the motion of a ship in 2 degrees of
freedom (DOF), it is convenient to define two coordinate systems,
as indicated in Fig. 1. The moving coordinate frame X, Y; is
conveniently fixed to the ship and is denoted as the body-fixed
frame. The origin of this body-fixed frame is usually chosen to
coincide with the center of gravity (CG) when CG is in the prin-
cipal plane of symmetry. The earth-fixed coordinate frame is de-
noted as X Y. The angle W is the difference between heading and
track course, V; is the forward velocity, V; is the velocity in
starboard direction, and & is the rudder angle. The coordinates (x,
y) denote the ship’s position along the track. ’

2.2. Ship model structure

The elimination of the speed of drift of the ship in the model of
Davidson and Schiff (1946) has led to the models of Nomotoet al.
(1957). Later, Norrbin (1970) and Bech and Wagner (1969) sub-~
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Fig.1 Variables used for the described ship movement

stituted the linear term of the angular acceleration of the ship for
a nonlinear term formed by a third-order polynomial the coeffi-
cients of which were determined by Bech’s reverse spiral maneu-
ver, in the first- and second-order models of Nomoto, respectively.
Based on the kinematic variables defined in Fig. 1, the motion
equations that can describe the ship movements are as follows:

(lay
- (1b)

where speed rate in the longitudinal direction or surge speed and
the transverse or sway one, V, and Vy, respectively, are

=V, -sing+ Vp-cos
y=Vp - cosy— Vp-sin

Vy=~d-V,—e V3 +S
VT=_f. V.’,_'g' V?JJ
V,, being the ship’s speed in the angular sense. Equation (2a)
indicates how the propeller’s thrust resulting in a forward accel-

eration S is counteracted by the ship’s speed as well as by the
turning rate. Using the conventional notation

(2a)
(2b)

Vy=1i= (3a)
the dynamics of the ship can be represented by
Fe—ay—Q r—ay P —ay r+ced (3b)

where 8 is the rudder angle. Equation (3b) represents the well-
known nonlinear model describing the steering dynamics pro-
posed by Norrbin, which is an extension of the first-order Nomoto
model that has been applied to include nonlinear effects by means
of the consideration function that describes the nonlinear nature of
ship dynamics and can be expressed in terms of a polynomial
expansion as Hy(r )= —ag — a; X r — ay X r* —a, X r°. In this paper,
the turning circle test is used instead of Bech’s reverse spiral
maneuver, being necessary only for identification purposes to de-
termine the turning radius that is described by the ship during the
turning test trial. Nevertheless, the following simplifications are
often taken into account:

* Hull symmetry (implies that @, = 0)

* The dynamic stability is known. This implies that a, is
known. For a course-stable ship, a, > 0, whereas for a course-
unstable ship, a; < 0.

» The bias term g, is frequently taken as null, bemg conve-
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niently treated as an additional rudder off-set that can be
made null by an adequate selection of the integral action in
the autopilot design.

In this paper the most general case is considered, that is, a, #
0,a, # 0,and a; > 0.

The procedure has been applied to a roll-on/roll-off ship (built -

in the Navantia shipyard in C4diz, Spain, construction code H81,
2001), the characteristics of which are listed in Table 1 (shown in
Fig. 2).

2.3. Description of the circular motion

Note that the transverse speed cannot be considered zero during
a circular movement because a nonzero transverse velocity is a
prerequisite for turning the ship along a circular path, such as the
turning circle, and this condition should be stayed during the entire
circular trajectory. However, it seems reasonable to suppose that
V=V.>V.
Under this assumption equations (1a) and (1b) are
’ X=V, -sini (4a)
(4b)
In a radial movement the dynamic equations are (see details in
Fig. 3)

y=V, cosy

(52)
(5b)
Resolving equations (4) and (5) in terms of R and ¥ can be easy
to prove that the temporal variations of the ship angular position
and the turning radius, after considering that in a radial motion
(#; = Yy = 0), are given by

. VL .
7=§'Sln(d/—v)

x=xy+R-siny
y=yp+R-cosy

(6a)

R=V, - cos(—%) (6b)
which are the fundamental cinematic equations for the description
of a ship’s radial movement.

3. Statement of the problem under space
state description

3.1. Space state equations

For this purpose, the following state variables are introduced:
x = R-R,; = R, where R, is the radius that is described by the

Table 1 General description of the ship tested

Length overall 1833 m
Length between perpendiculars 170.0 m
Deadweight 7,456 metric tons
Displacement 19,994 metric tons
Breadth (molded) 28.7m
Normal ballast draft (overall) 52m

Propellers 2

Type of rudder Becker (2 units)
Engine (number of units) 2 per shaft
Engine (power output) 4 x 6,000 kW
Maneuvering speed in ballast

condition (maximum ahead) 22.68 knots
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Fig. 2 The ship tested in this study
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Fig. 3 Turning circle test

ship during the realization of the turning circle test, R is the actual
one, and R represents the error between these two variables; x, =
Y (yaw angle); x, = r (yaw rate); x, = <y (angular position in the
circular motion). With those choices the state equations are as
follows:

¥ =V cos(xy—x,) (7a)

X2 =X, (7b)
3

x3=—2a,~x§+c -8 (7¢)
i=0 :

. v . &

X4 = X +R, sin (2, — x4) 7d

which are the basic equations for the description of ship dynamics
during the realization of the turning circle test for a constant
rudder angle 6.

3.2. Previous model parameters identification

To establish the adequacy of the proposed procedure of identi-
fication, it is necessary to know the true values of the parameters
(assumed constants) that appear in the dynamic equations. For this
purpose, the goal is to reduce the difference between the experi-
mental values obtained from the experimental course change

-speed (shown in Table 2) and the solutions of the nonlinear dif-
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Table 2 Course change test results in normal ballast condition,
maximum ahead speed and 10 deg of rudder

£(s) Vy (m/s) Vo (m/s) r (rad/s)
0 11.67 0 0.00143
19.67 10.15 5.76 0.01327
32.00 9.94 6.10 0.01438
44.38 9.74 6.43 0.01408
56.88 9.52 6.74 0.01370
69.67 9.33 7.01 0.01363
82.38 9.15 7.24 0.01373
95.25 9.00 743 0.01366
108.00 8.87 7.58 0.01342
121,00 8.75 172 0.01377

These experimental values were provided by Navantia (2001) from the sea

test trials of a ship of new construction (particulars listed in Table 1), in’

accordance with the maneuvering specifications of IMO Resolution A.601
(15). '

ferential equation (3b) by means of an appropriate selection of the
equation’s parameters. The procedure is based on the following
procedures and algorithms:

* A backward-Euler integration algorithm with a step size of 1
second.

* An optimization algorithm of Powell (Darnell & Margolis
1990) with an optimization criteria ITAE (assuming the ITAE
performance criterion as the integral of the square error of the
erTor)

* A trial-and-error procedure.

The resulting parameters are shown in Table 3, and in Fig, 4, the
experimental yaw rate is compared with the theoretical ones,
showing an excellent agreement between them. In Figs. 5 and 6,
the temporal variation of the transverse speed and the longitudinal
one are shown. The purpose of this paper is to design a systematic
depend, even partially, on a heuristic method, such as the one used
to know the true values of the ship’s model parameters, so that it
will be possible to confirm the usefulness of the proposed proce-
dure. The procedure described in this paper can be used as a new
and alternative estimation method to the traditional ones: continu-
ous least-squares, recursive least-squares, recursive maximum
likelihood, and state augmented Kalman filter.

Table 3 Values of parameters

Parameter Value Units
a, 3.10284 - 1073 rad/s®
ay 1.00982 - 1072 /s
a, 1 Vrad
a, 0.77 sfrad®
c 2.45483 - 1072 s?

d 9.93 1072 Vs
e -4.86 - 1072 m/rad?
S 0.87 m/s®
f -98.1 Jn/rad
g —4.23 1073 ms/rad®
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Fig.4 Comparison between the experimental results (+) (Table 1) and
the fit obtained (continuous line)

Fig. 5 Temporal variation on the surge speed during the turning circle
test

Fig. 6 Temporal variation on the sway speed during the tuming circle
test

4. Adaptive backstepping
The new recursive design known as adaptive backstepping

(Krstié et al. 1992) is based on three techniques that differ in the
construction of adaptation law:
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1. Adaptive backstepping with overparameterization, when at
each design step a new vector of adjustable parameters and the
corresponding adaptation law are introduced (Kanellakopoulos
et al. 1991). The controller is composed of a dynamic part,
which is designed as a parameter update law where the static

part of the controller is continuously adapted to new parameter.

estimates. This procedure has been chosen in the present paper.

2. Adaptive backstepping with modular identifiers, when a slight
modification of the adaptive control allows the construction of
estimation-based identifiers of unknown parameters (Kokoto-
vié 1992).

3. Adaptive backstepping with tuning functions, when at each
design step a virtual adaptation law known as a tuning function
is introduced, while the actual adaptation algorithm is defined
at the final step in terms of all the previous tuning functions
(Krstié et al. 1995).

Initially in the recursive procedure 1, the state x,,, is treated as

a virtual control for the subsystem consisting of the states

Xy, . .., %. At each subsequent step, the designed subsystem will
be increased by one equation. At the i- step, the ith-order sub-
system is stabilized with respect to a Liapunov function V, by the
design of a stabilizing function «,. The updating law of the adap-
tive control system that allows us to know the true values of the
dynamic model and the control signal is designed at the final step.
To implement the identification procedure based on backstepping,
the following steps should be carried out:

4.1. Step 1

The following variables are introduced:

(8a)
(8b)

417X

=V cos{xy—x,)— o

‘Where «; is used as a control to stabilize the z, subsystem, we
choose the following Liapunov function candidate:

1 2
V1=5’Zl ®

In view of (9), (18a), and (7a), the derivative of V; satisfies the
following:

Vi=zy 4=z, % =2, - [V cos(x, - x4)] (10)

after considering (8b):

11

and choosing the stabilizing function «, as a simple static linear
feedback law:

Vi=z, (zp+ ;)

ay=-K, 7=k, - x; ==K, - (R-R,) (12)
which leads to
Vi=—K "G+, (13)

Our purpose is to achieve a total Liapunov function for the
entire system the temporal variation of which will be positive
definite. The first term to verify this objective, the second term z;
X 7, in (13), will be cancelled at the next step.
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4.2. Step 2

It is necessary to consider that state x is the control variable in
the second equation (7b). The third backstepping variable z, is
defined by the following equation: '

=X -0y

(14)

where o, is a second stabilizing function used as a control to

- stabilize the (z;, z,) subsystem. In this step it is possible to meet

the variation of the second error variable z,, taking only its de-
rivative in (8b), after considering (7b) and (7d), meeting

v
22=—V'|:X3—M'Sln(xz~x4):!. sin(x, - x,) — @,
(15)
It is important to observe that the time derivative ¢, can be

implemented analytically without a differentiator in the following
manner: ‘

(16)

In this step the initial Liapunov function is amgmented with a
quadratic term:

]' 2
V2=V1+E'Z2 (].7)
its temporal variation after considering equations (13) and (15):

V2=(—K1 'Zf"'zx'zz)“zz"@' V- sin(x, - x,4)
Zz’Vz
x1+Rd

~2 0y Sin(xz —-—x4) + . sinz(xz - X4) —~Zy dl

(18)

If V, must be negative definite in terms of z;, and z,, for this
purpose the second stabilizing function «a, is chosen as

1 K V2 - 5in® (o, — xy) ]
az—V-sin(xz—L;) 7+ &t x + R, T4
(19)
In this way,
V2=_K1'zf—Kz-z%—z.‘,'z3‘V'Si11(x2"x4) 20)

4.3. Step 3

In this last step we can meet the variation of the third error
variable z; starting from equation (14).

3

Gy =iy~ Gy == Do, Xs+C " By @1
i=0
The last Liapunov function utilized is
1 1 [t
Vo 2o S 2
Vi=Vo+s B4y [;ﬁ a,} (22)

where @ ({ = O---3) represents the estimation errors, differ-
ences between the true values a; ¢ = 0 - - 3) and the estimation

cvalues &; (i = 0+ 3).
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. 5 )
V3=—K1'Zl“Kz‘Zg“Zz'Za‘V'Sln(xz—x4)+23‘
3 3
) 1 . .
[ %+ c 8=yl DG dy— G, % 25
i=0 =0 Yt
(23)

Using the control & and an updating law to stabilize the entire
system (z;, zo, 73), We choose the control as

1 3
=—C~~[—K3-z3+zz-V'sin(x2—x4)+ Ez‘zi-xg+d2]

=0
(24)

With this choice the temporal variation of the control Liapunov
function of the entire system is

3 3

. 1 . .

V3=—2Ki‘2i2+ E:di' [%'51‘_3“3'23:‘
i=1

=0

(25)

The terms that contain the parameter error are now eliminated with
the update laws:

%w’i‘i:xg-z;; (i=0---3) (26)
This equation can be developed in the following terms:
i=0 ay= Yo' 23 27a)
i=1 Gy=7, X3 23=7Y, ' F" 2 (270)
i=2 Gy Xrzz= vy iz (27¢c)
i=3 §3=y3'x§-z3=y3-r3'z3 (274d)
Previously described laws guarantee that
3
Vy= —21{,. 2=0 (28)

since V, is positive definite and radially unbounded and
¥3_K;- 72 is positive definite, it follows from the LaSalle-
Yoshizawa theorem (LLaSalle 1968, Yoshizawa 1966) that in the
(21, 22» 73) coordinates the equilibrium (0,0,0) is globally uniformly
asymptotically stable (GUAS) and d,(f), i = 0 - - - 3 are globally
uniformly bounded. In view of (8a), z; = x; go to zero asymp-
totically and R — R, as t — . From (8b) for a V bounded and
a; = =K - z;, this implies that x, also tends to zero in an asymp-
totic manner. From (14), x5 tends toward «, (the second stabilizing
function).

4.4. Error dynamics

For implementation purposes, it is convenient to obtain the error
dynamtics in the states previously introduced. The first dynamic is
obtained to depart from (8a), (8b), and (12):

f=k =V cos(ty—x) =zt ==K, " z,+2z,  (29)

The second equation can be obtained after considering equations
(15) and (19): E
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Z=—2, - K, 2,— V- 25" sin(x, — x) (30
The third equation is obtained from (21) and (24):
3
b= =Ky 24z Vesintn-x) (31

i=0

Finally, the resulting error dynamics are obtained from equations
(29), (30), and (31) and are written as:

b2 -K, 0 9 Zy
Zp | = 0 -k, 0 27
23 0 0 -K; Z3
0 1 0 z
+] -1 0 =V sin, —x,) || 2
0 V-sin(x, —x,) 0 Z3
- 0
+ 0 (32)
3
_.2 a;- xg
. =0

4.5, Implementation of the identification procedure

The identification objective is based on the performance of the
following tasks:

1. The performing of the turning circle test and the determination
of the effective turning radius for a particular rudder angle and
ship speed. In the ship that has been tested, the turning radius
was R, = 228 m, with a normal ballast condition and maxi-
mum speed of 22.68 knots. The initial value of the x, coordi-
nate (see Fig. 3) was 188 m. It is worth pointing out that other
important but nonfundamental features for this identification
purpose were a transfer of 243 m, advance of 334 m, and
tactical diameter of 416 m.

2. The application of the identification algorithm based on the
implementation of equations (29), (30), and (31) and the up-
dating laws (27a) to (27d) with a suitable simulation program,
jointly with the stabilizing functions (12) and (19). The initial
values of the estimated parameters d;, (i = 0-- - 3) are as-
sumed to be 25% of the true values.

3. The application of some optimization criteria that let us reduce
the z; (i = 0+-+3) variables to zero. The procedure is based on
the Powell optimization algorithm (Darnell & Margolis 1990),
a backward Euler integration method with a stepsize of 0.01 s.
The gains that were obtained are shown in Table 4.

The numerical values determined by this identification proce-
dure confirm the values previously determined by the alternative
and heuristic one. The maximum relative error committed was less
than 0.5%. '

The identification algorithm can be extended to the determina-
tion of the coefficient co. There is an alternative form of comput-
ing this coefficient. The procedure starts from the steady value in
the yaw rate temporal variation shown in Fig. 4. Under this con-
dition, equation (3b) yields
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Table 4 Gains obtained during the adaptation process

Gains (p.w)

K, 1.001

K, 0.818

K, 5.639

Yo -1

" -0.9986

Y2 -10.1722

Y3 -97,223.9

Ya —6.2783 x 10°

Fig. 8 Temporal variation of the Z, variable
(Bo+ 8y T+ by Frdy P
c=-— (33)
)
where 7 = 2.93902 - 1072 rad/s, & = 0.1745 rad, and g,
(i = 0---3), are obtained after the identification process. Its

value coincides with the one indicated in Table 3.

Figures 7, 8, and 9 showed that state error variables z,, z,, and
73 converge quickly toward the null values according to imposed
requirements for the gain values Ky, K,, Ks, K37, (( = 0+ -+ 3)
shown in Table 4.
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Fig. 9 Temporal variation

of the Z; variable
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Fig. 10 Variation of estimation of the parameter a, (in percent of its
true value) in the identification process
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5. Conclusions

The adaptive, identification, and tracking processes have been
carried out. The procedure based on the backstepping design can
perform this task starting from initial estimation values in a non-
linear ship characterized by a relatively complex nonlinear model
capable of adjusting the ship’s dynamics. The identification pro-
cedure needs only the value of the radius in the turning test trials.
The identification procedure can be extended to the determination
of the term ¢ that multiplies to the rudder angle in the Norrbin
equation that describes the ship motion.

Figures 10 and 11 show the temporal variations of the estima-
tion of the parameters involved in equation (3b) produced by the
estimation algorithms and the adaptation gains y,(i = 0...4)
shown in Table 4. The initial estimations of the parameters in the
dynamic equation (3b) account for 25% of the uncertainties in
these parameters.
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