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NEW SOLUTIONS OF THE SCHWARZIAN KORTEWEG–DE VRIES

EQUATION IN 2+1 DIMENSIONS BASED ON WEAK SYMMETRIES

M. L. Gandarias∗ and M. S. Bruzón∗

We consider the (2+1)-dimensional integrable Schwarzian Korteweg–de Vries equation. Using weak sym-

metries, we obtain a system of partial differential equations in 1+1 dimensions. Further reductions lead

to second-order ordinary differential equations that provide new solutions expressible in terms of known

functions. These solutions depend on two arbitrary functions and one arbitrary solution of the Riemann

wave equation and cannot be obtained by classical or nonclassical symmetries. Some of the obtained

solutions of the Schwarzian Korteweg–de Vries equation exhibit a wide variety of qualitative behaviors;

traveling waves and soliton solutions are among the most interesting.
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1. Introduction

It is well known that the Schwarzian Korteweg–de Vries (SKdV) equation
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is the Schwarzian derivative [1], is of great interest both in physics and mathematics. This equation was
introduced by Krichever and Novikov [2] and Weiss [3] and is a specialization of the KdV equation that is
invariant under the Möbius transformations, i.e., under the group PSL(2).

In the context of integrable (2+1)-dimensional equations, i.e., integrable equations with two spatial
variables and one temporal variable, Kudryashov and Pickering [4] and also Toda and Yu [5] used the
Calogero method to develop the model
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where we set ∂−1
x f =

∫
f dx. Equation (1) is invariant under the Möbius transformation and reduces to the

SKdV equation for solutions of the form W (x, z, t) = W (x + z, t). In [5], the corresponding Lax pair was
presented, and it was proved that it passes the Painlevé test in the sense of the Weiss–Tabor–Carnevale
method [6].

In the last few years, there has been a continuous interest in the topic of nonclassical and weak
symmetries. Olver and Vorob’ev [7] and Clarkson [8] surveyed this research.
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Olver and Rosenau’s key question in [9] seems to be whether the reduction methods can be unified
by the concept of a differential equation with a side condition. They introduced what they called “weak
symmetry groups” in [10]. A weak symmetry group G for ∆ is a group that no longer transforms solutions
into solutions but instead has the property that G-invariant solutions of ∆ are found from a reduced
system of differential equations involving fewer independent variables than the original system ∆. Bluman
and Cole’s nonclassical method was found to be a special case of this notion of a weak symmetry group.
Surprisingly, at least at first glance, it turns out that every solution of ∆ can be obtained as a group-
invariant solution of some weak symmetry group and that all groups, more or less, are weak symmetry
groups.

Vorob’ev [11] analyzed partial symmetries that he introduced and the nonclassical infinitesimal weak
symmetries introduced by Olver and Rosenau. For a family of nonlinear heat equations of the form ut =
(
k(u)ux

)

x
+ q(u), he indicated pairs of functions

(
k(u), q(u)

)
such that the corresponding equations admit

nontrivial two-dimensional modules of partial symmetries that yield explicit solutions.
Dzhamay and Vorob’ev [12] analyzed the nonclassical infinitesimal weak symmetries of the partial

differential equations (PDEs) introduced by Olver and Rosenau. They demonstrated that in the case of a
PDE in two independent variables, obtaining such symmetries is equivalent to obtaining the two-dimensional
modules of nonclassical partial symmetries.

The central question in [13] was which side conditions are admissible for providing genuine solutions to
the given differential equations, and it was shown that weak symmetries are not only of academic interest
but also necessary for recovering all the solutions of the Navier–Stokes equations found by the semi-inverse
method.

Various generalizations of the classical Lie symmetry were reviewed in [14]: conditional symmetry,
partial symmetry, and λ-symmetry together with the corresponding criteria and procedures. “Weak”
and “strong” classical and conditional symmetries were considered, and partial and weak conditional λ-
symmetries were suggested. The author also discussed links between λ-symmetries and conditional and
classical symmetries. He gave simple examples of each type of symmetry. In particular, he gave an example
of a symmetry that can be regarded as both a weak conditional symmetry and a partial symmetry for the
same equations with different sets of solutions corresponding to each type of symmetry.

With the transformations

W = φx, φ = eψ, ψx = u, ψt = v, (2)

Eq. (1) can be transformed into the system

4u2vx − 4uuxv + u2uxxz − uuxxuz − 3uuxuxz + 3u2
xuz − u4uz = 0,

ut − vx = 0.
(3)

This system was studied by the classical Lie group method of infinitesimal transformations in [15] and by
the nonclassical method in [16].

Equation (1) arises in a nonlocal form, but it can also be written in a local form as
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In this paper, we focus on obtaining solutions of (1) that are obtainable by neither the classical Lie
method of group transformations [15] nor Bluman and Cole’s nonclassical method [17]. We use the method
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of weak symmetries introduced by Olver and Rosenau [9], [10]. This approach is to calculate the symmetries
of Eq. (4) supplemented by certain differential constraints chosen to weaken the invariance criterion of the
basic system and to provide larger Lie point symmetry groups for the augmented system.

2. Weak symmetries of the SKdV in 2+1 dimensions

To construct new solutions of Eq. (1), we obtain the weak symmetries of SKdV equation (4). The
procedure is as follows. We augment the PDE with a side condition. Requiring that both (4) and the
side condition be invariant under the one-parameter Lie group of infinitesimal transformations in (x, t, z, u)
given by

x∗ = x + εξ(x, z, t, u) + O(ε2),

z∗ = z + εη(x, z, t, u) + O(ε2),

t∗ = t + ετ(x, z, t, u) + O(ε2),

u∗ = u + εφ(x, z, t, u) + O(ε2),

(5)

where ε is the group parameter, we obtain an overdetermined nonlinear system of equations for the in-
finitesimals ξ(x, z, t, u), η(x, z, t, u), τ(x, z, t, u), and φ(x, z, t, u).

We use the MACSYMA package symmgrp.max [18] to apply the procedure in practice. We apply the
procedure with two different side conditions: we consider a first-order side condition in the first case and a
second-order side condition in the second case.

Reduction 1. Applying the classical method to (4) and the side condition

α(x, z, t, u)
∂u

∂x
+ β(x, z, t, u)

∂u

∂z
+

∂u

∂t
− Ψ(x, z, t, u) = 0 (6)

yields a system of 23 equations for the infinitesimals ξ(x, z, t, u), η(x, z, t, u), τ(x, z, t, u), and φ(x, z, t, u)
and the functions α(x, z, t, u), β(x, z, t, u), and Ψ(x, z, t, u). From this system, we obtain ξ = γ(t)x + ζ(t),
η = η(t, z), τ = τ(t), and φ = r(z, t)u and find that functions γ, η, τ , ζ, r, α, β, and Ψ satisfy the equations

βxγx + βuru + βxζ + 2βγ + βtτ + βzη = 0,

βxxγx + βuxru + βxxζ + 3βxγ + βtxτ + βzxη = 0,

βuxγx + βuuru + βur + βuxζ + 2βuγ + βtuτ + βuzη = 0,

αuxγx + αuuru + αur + αuxζ + αuγ + αtuτ + αuηz + αuzη = 0,

γΨxx − βrzu + Ψuru − ψr + ηΨz + ζΨx + τΨt + 2γψ + ηzψ = 0,

γΨxxx − βxrzu + Ψuxru − Ψxr + ζΨxx + ηΨxz + 3γΨx + ηzΨx + τΨtx = 0,

Ψuxxγ − αxxxγ + 2Ψuγ − 2αxγ + Ψuxζ − αxxζ + rΨuuu − βurzu − αuxru +

+ ηΨuz + ηzΨu + τΨtu − βrz − αtxτ − αxηz − αxzη = 0.

Solving such a system in general is very complicated. Nevertheless, if α = α(t) and ψ = 0, then one solution
of the determining equations is

ξ = ζ(t), η = η(z, t), τ = 1, φ = 0, (7)
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where ζ and η are arbitrary functions and β(z, t) must satisfy βt + ηβz = 0.
It is easy to verify from (7) that these infinitesimals do not satisfy the nonclassical determining equa-

tions. Solving the corresponding surface condition, we obtain the symmetry reductions

w1 = x −
∫

ζ(t) dt, w2 = w2(t, z), u = f(w1, w2), (8)

where η satisfies w2,t + ηw2,z = 0 and f satisfies the (1+1)-dimensional system of PDEs

− f2fw2fw1fw1w1w1 + f2fw2f
2
w1w1

+ 3ffw2f
2
w1

fw1w1 − f2fw2w1fw1fw1w1 −

− f3fw1w1fw1w1 − 3fw2f
4
w1

+ 3ffw2w1f
3
w1

− 2f2fw2w1w1f
2
w1

+ f3fw2w1w1w1fw1 = 0,

4f3fw2w1fw1 − 4f3fw2fw1w1 = 0.

(9)

Reduction 1.1. Reduced system of PDEs (9) in 1+1 variables is invariant under translations and
admits further reductions to a system of ODEs. As a result, we obtain the variables

ϑ = w1 + w2, f = g(ϑ) (10)

and the autonomous ODE

−g3g′g′′′′ + g3g′′g′′′ + 3g2g′
2
g′′′ − 6gg′

3
g′′ + 3g′

5 = 0. (11)

Dividing by g2g′
2, integrating once over ϑ, and then multiplying by g−2g′, we can reduce Eq. (11) to the

second-order ODE

g′′ =
3
2

g′
2

g
− k2g + k1, (12)

where k1 and k2 are arbitrary constants.
Multiplying (12) by g−3g′ and integrating once over ϑ, we obtain

g′
2 = −2k2g

2 + k1g + 2k3g
3. (13)

The integration can be completed in terms of elliptic functions.

Reduction 1.2. Reduced system of PDEs (9) in 1+1 variables is invariant under the scaling group
and admits further reductions to a system of ODEs. We obtain

ϑ = wn
2 w1, f = wm

2 g (14)

and the system of ODEs

g3g′g′′′′ϑ − g3g′′g′′′ϑ − 3g2g′
2
g′′′ϑ + 6gg′

3
g′′ϑ − 3g′

5
ϑ + 3g3g′g′′′ −

− 2g3g′′
2 − 5g2g′

2
g′′ + 3gg′

4 = 0,

mgg′′ − (m + n)g′2 = 0.

(15)
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Reduction 2. Applying the classical method to (4) and the side conditions

β
∂u

∂z
+

∂u

∂t
= 0,

∂u

∂x∂z
= 0

yields a system of ten equations for the infinitesimals ξ(x, z, t, u), η(x, z, t, u), τ(x, z, t, u), and φ(x, z, t, u)
and for the function β(x, z, t, u). From this system, we obtain

ξ = γ(z, t)x + ζ(z, t), η = η(z, t), τ = τ(x, z, t, u), φ = ρ(z, t)u3 + δ(z, t)u,

where β, γ, τ , ζ, ρ, δ, and η are functions that must satisfy the equations

− βxuxγ − 2βuγ − βxuζ − βuρu4 + 2βρu3 − βuδu2 − βtτu − βzηu = 0,

βuxuxγ + 2βuuγ + βuxuζ + βuuρu4 + βuρu3 + 6βρu2 + βuuδu2 + βtuτu +

+ βuzηu + βuδu = 0,

− βxxuxγ − 3βxuγ − βxxuζ − βuxρu4 + 2βxρu3 − βuxδu2 − βtxτu − βxzηu = 0.

(16)

The complexity of system (16) is why we cannot solve it in general. Nevertheless, if β = β(z, t), then a
solution is

ξ = ζ(z, t), η = η(z, t), τ = 1, φ = δ(z)u.

Solving the corresponding surface condition, we obtain

w1 = x + b(z, t), w2 = a(t, z), u = ρ(z)f(w1, w2),

which leads to the following system of PDEs in two independent variables with at − k1a
2az = 0 and the

arbitrary functions ρ = ρ(z) and b = b(z, t):

f3fw1fw1w1w1w1 − f3fw1w1fw1w1w1 − 3f2f2
w1

fw1w1w1 + 6ff3
w1

fw1w1 − 3f5
w1

= 0,

−4k1f
3fw1w1f

2
w2w2

+ 4k1f
3fw1f

2
w1w2w2

− f2fw1fw1w1w1fw2 + f2f2
w1w1

fw2 +

+ 3ff2
w1

fw1w1fw2 − 3f4
w1

fw2 + f3fw1fw1w1w1w2 − f3fw1w1fw1w1w2 −

− 2f2f2
w1

fw1w1w2 − f2fw1fw1w2fw1w1 + 3ff3
w1

fw1w2 = 0.

(17)

Reduction 2.1. System (17) is invariant under the scaling group. Hence, solving the characteristic
equation, we obtain the symmetry reduction

ϑ = w1w2, f = h(ϑ),

which yields the system of ODEs

h3h′h′′′′ − h3h′′h′′′ − 3h2h′2h′′′ + 6hh′3h′′ − 3h′5 = 0,

3h2h′h′′′ − 2h2h′′2 − 5hh′2h′′ + 3h′4 + 4k1h
2h′2 = 0.

Integrating the first equation once over ϑ and changing the variable h′/h = g, we obtain the system of
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second-order ODEs

gg′′ − g′
2 − g4

4
+ k2 = 0,

3gg′′ − 2g′
2 − g4 + 4k1g

2 = 0.

(18)

Reduction 2.2. System (17) is invariant under the scaling group. Hence, solving the characteristic
equation yields the symmetry reduction

ϑ = w1w2, f =
1
w2

h(ϑ),

which yields the system of ODEs

h3h′h′′′′ − h3h′′h′′′ − 3h2h′2h′′′ + 6hh′3h′′ − 3h′5 = 0,

3h2h′h′′′ − 2h2h′′2 + 4k1h
3h′′ − 5hh′2h′′ + 3h′4 = 0.

(19)

Changing the variable hϑ/h = g and integrating once over ϑ, we obtain the system

gg′′ − g′
2 − g4

4
+ k2 = 0,

3gg′′ − 2g′
2 − 4k1ng′ − g4 + 4k1g

2 = 0.

3. Some exact solutions

We now present some explicit solutions of the second-order ODEs and also the corresponding solution
of the SKdV equation in 2+1 dimensions.

Reduction 1.1. Equation (11) can be integrated in terms of elliptic functions:

g1 = sn±2(ϑ|m), g2 = cn±2(ϑ|m), g3 = dn±2(ϑ|m). (20)

Clearly, any of the rational, hyperbolic, or trigonometric degenerations of the elliptic functions also give
solutions of (11):

g =
k1

k2
tanh±2

(√
−k2 ϑ

2

)

, g = −k1

k2
tan±2

(√
k2 ϑ

2

)

, g = − k1

2k2
sinh±2

(√
k2 ϑ√
2

)

,

g =
k1

2k2
cosh±2

(√
k2 ϑ√
2

)

, g =
k1

2k2
sin±2

(√
−k2 ϑ√

2

)

, g =
k1

2k2
cos±2

(√
−k2 ϑ√

2

)

,

g = k3ϑ
±2, g = k4e

±
√

2k2 ϑ.

(21)

Considering the corresponding symmetry reductions (8) and (10), we find that exact solutions of (1) can
be written as

u = sn±2
(
x + a(z, t) + δ(t)|m

)
, u = dn±2

(
x + a(z, t) + δ(t)|m

)
,

u = sn±2
(
x + a(z, t) + δ(t)|m

)
,

(22)
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where a(z, t) = w2(z, t), δ(t) = −
∫

ζ(t) dt,

u =
k1ρ(z)

k2
tanh±2

(√
−k2

(
x + a(z, t) + δ(t)

)

2

)

,

u = −k1ρ(z)
k2

tan±2

(√
k2

(
x + a(z, t) + δ(t)

)

2

)

,

u = k3ρ(z) sech±2

(√
k2

(
x + a(z, t) + δ(t)

)

√
2

)

,

u = k3ρ(z) csch±2

(√
k2

(
x + a(z, t) + δ(t)

)

√
2

)

,

u = k3ρ(z) sec±2

(√
−k2

(
x + a(z, t) + δ(t)

)

√
2

)

,

u = k3ρ(z) csc±2

(√
−k2

(
x + a(z, t) + δ(t)

)

√
2

)

,

u = k3ρ(z)
(
x + a(z, t) + δ(t)

)±2
,

u = ρ(z)e
√
−2k1 (x+a(z,t)+δ(t)).

(23)

Reduction 1.2. The compatibility of (15) implies that m = ±2n. Consequently, its solutions are

g = k1(ϑ + k2)±2,

and the solutions of (1) are

u = k1

(
an(x − δ) + k2

an

)±2

.

Reduction 2.1. We obtain the following solutions of system (18):

1. If k2 = 0, then g = 4
√

k1 csc
(
2
√

k1 ϑ
)

and g = 4
√
−k1 csch

(
2
√
−k1 ϑ

)
.

2. If k2 = 4k2
1 and k1 = k2/4, then g = k.

From h′/h = g, we respectively obtain

h = c tan±2
(√

k1 ϑ
)
, h = c tanh±2

(√
−k1 ϑ

)
, h = ce±kϑ.

Consequently, we obtain the solutions of (1)

u = ρ(z) tan±2
(
a(z, t)

√
k1

(
x + b(z, t)

))
, u = ρ(z) tanh±2

(
a(z, t)

√
−k1

(
x + b(z, t)

))
,

u = e±2
√

k1a(z,t)(x+b(z,t)),

where a = w2, a satisfies the Riemann wave equation at − k1a
2az = 0, and ρ = ρ(z) and b = b(z, t) are

arbitrary functions.
We see that the functions b = b(z, t), ρ = ρ(z), and a = a(z, t) determine the respective wave displace-

ment, wave amplitude, and wave speed.
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Fig. 1. Solution (24): (a) at t = 1 and (b) at t = 2.
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Fig. 2. Solution (25): (a) at t = 1 and (b) the corresponding section profiles x = 0 at the times t = 1

(solid line) and t = 2 (dashed line).

Reduction 2.2. We obtain the solutions of system (19)

h = sin
(
2
√
−k1 ϑ

)
± 1, h = cos±2

(√
−k1 ϑ

)
, h = cosh±2

(√
k1 ϑ

)
.

Consequently, we obtain the solutions of (1)

u =
ρ(z) sin

(
2
√
−k1 a(z, t)

(
x + b(z, t)

)
±1

)

a(z, t)
,

u =
ρ(z) cos±2

(√
−k1 a(z, t)

(
x + b(z, t)

))

a(z, t)
,

u =
ρ(z) cosh±2

(√
k1 a(z, t)

(
x + b(z, t)

))

a(z, t)
,

where a = w2 and a is an arbitrary solution of the Riemann wave equation at − k1a
2az = 0.

We see that the function b = b(z, t) determines the wave displacement and the function a = a(z, t)
modulates the wave amplitude and the wave speed.

In Fig. 1, we present the solution

u = sech2

(

x + Sin
(

z2t2

4

))

(24)

for t = 1 and t = 2. We see that this solution evolves without restriction on x = b(z, t). This kind of
solution is obtainable by neither the Lie classical method nor the nonclassical method.
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Fig. 3. Solution (26): (a) three dromions at t = −2 and (b) the corresponding section profiles x = 0

at the times t = −2 (dashed line) and t = 2 (solid line).
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Fig. 4. Jacobi solution (27): (a) at t = 0.5 and (b) at t = 2.

In Fig. 2, we present the solution

u = sech2(z) tanh2

(

x + Sin2

(
z2t2

4

))

(25)

for t = 1 and the corresponding section profiles x = 0 at the times t = 1 and t = 2, reflecting the time
evolution.

In Fig. 3, we present the solution

u = ρ(z) sech2
(
x + 0.2 tanh z + 0.2 tanh(z + 6) − 0.1 tanh(z − 8) + sin t

)
(26)

with ρ(z) = 0.2 sech2 z +0.2 sech2(z +6)−0.1 sech2(z−8) for t = −2 and the corresponding section profiles
x = 0 at the times t = −2 and t = 2, which reflect the time evolution.

In Fig. 4, we present the Jacobi solution

u = sn2

(

x + z2t

∣
∣
∣
∣

1
3

)

(27)

at t = 0.5 and t = 2.

4. Conclusions

We have considered the (2+1)-dimensional integrable Schwarzian Korteweg–de Vries equation. Using
weak symmetries and further reductions, we derived second-order ordinary differential equations that pro-
vide new solutions expressible in terms of known functions. The corresponding solutions of (1) depend
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on two arbitrary functions ρ = ρ(z) and b = b(z, t) and on an arbitrary solution a = a(z, t) of the Rie-
mann wave equation at − k1a

2az = 0. Some of the found solutions of the Schwarzian Korteweg–de Vries
equation exhibit a wide variety of qualitative behaviors: soliton and dromion solutions are among the most
interesting.

We saw that in the solitons, the arbitrary function b = b(z, t) determines the wave displacement and
the arbitrary solution of the Riemann wave equation modulates the amplitude and speed of the wave. These
solutions of Eq. (1) cannot be obtained by the classical Lie method of group transformations [15] or by
Bluman and Cole’s nonclassical method [16].
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