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INTEGRABLE SEMICLASSICAL DEFORMATIONS OF GENERAL

ALGEBRAIC CURVES AND ASSOCIATED CONSERVATION LAWS

B. G. Konopelchenko,∗ L. Mart́ınez Alonso,† and E. Medina‡

Based on the Lenard relations, we completely classify integrable deformations of general algebraic curves.

We construct the general solution of the Lenard relation from the invariance condition with respect to an

element of the Galois group of the curve. We give some examples and also some associated conservation

laws.

Keywords: algebraic curve, integrable system, Lenard relation, conservation law

1. Introduction

Algebraic curves are fundamental in analyzing integrable nonlinear differential equations [1]–[2]. A
particularly interesting problem is characterizing and classifying integrable deformations of algebraic curves.
In [2], Krichever formulated a general theory of dispersionless hierarchies of integrable models associated
with the deformations of algebraic curves arising in the Whitham averaging method. A different approach
was proposed in [3]–[7] for seeking integrable deformations of algebraic curves C defined by monic polynomial
equations

F (p, k) := pN −
N∑

n=1

un(k)pN−n = 0, un ∈ C[k]. (1)

To introduce these deformations, we must consider the N branches pj = pj(k), j = 1, . . . , N , of the
multivalued function defined by (1), i.e.,

F (p, k) =
N∏

j=1

(p − pj(k)) = 0, p(k) = (p1(k), . . . , pN (k))T.

The problem can be formulated in terms of these branches as seeking deformations C(x, t) consistent with
the degrees of the polynomials un and characterized by the existence of an action function S = S(k, x, t)
satisfying the following conditions:

1. The function p = p(k) can be expressed as

p = Sx.

2. The functions Sx and St are meromorphic functions of p on C(x, t) with poles only at k = ∞.
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As a consequence of these conditions, p satisfies the equation

∂tp = ∂xQ, (2)

where Q := St = (Q1, . . . , QN )T with Qj ∈ C[k, p]/C has the form [3], [8]

Qj =
N∑

r=1

ar(k, x, t)pN−r
j , ar ∈ C[k], j = 1, . . . , N.

In what follows, we need an important result concerning the branches pj(k). Let C((λ)) denote the field of
Laurent series in λ with at most a finite number of terms with positive powers. Then we have the Newton
theorem [9].

Theorem 1. There exists a positive integer l such that the N branches

pj(z) := (pj(k))|k=zl , j = 1, . . . , N, (3)

are elements of C((z)). Furthermore, if F (p, k) is irreducible as a polynomial over the field C((k)), then

l0 = N is the least permissible l, and the branches pj(z) can be labeled such that

pj(z) = pN (εjz), ε := e2πi/N .

Notation convention. Henceforth, given an algebraic curve C, we let z denote the variable associated
with the least positive integer l0 for which the substitution k = zl0 implies pj ∈ C((z)) for all j. We call l0

the Newton exponent of C.

Equation (2) can be rewritten in terms of the potentials un, n = 1, 2, . . . , N , as [4], [5]

∂tu = J0a, (4)

where J0 is an N×N matrix differential operator whose elements can be written in terms of the potentials
and their derivatives as

(J0)11 = N∂x,

(J0)i1 = (i − 1)Pi−1∂x −
i−1∑

l=2

ui−lPl−1∂x − Nui−1∂x, i �= 1,

(J0)ij = (i + j − 2)Pi+j−2∂x + (j − 1)Pi+j−2,x −

−
i−1∑

k=1

ui−k[(k + j − 2)Pk+j−2∂x + (j − 1)Pk+j−2,x], i �= 1, j �= 1,

(5)

the Ps are the power sums [10]

Ps :=
1
s
(ps

1 + · · · + ps
N) =

(s)∑

1≤i≤s

1
i
(u1 + · · · + uN )i,

and the superscript (s) in the summation symbol indicates that only the terms of weight s are retained.
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The next problem is to determine expressions for a (in (4)) depending on k and u such that flow (4)
is consistent with the polynomial dependence of u on the variable k. In other words, if dn := degree(un)
are the degrees of the coefficients un as polynomials in k, then

degree(J0a)n ≤ dn, n = 1, . . . , N,

must be satisfied. The strategy for finding consistent deformations [4], [5] is to use Lenard-type relations

J0r = 0, r := (r1, . . . , rN )T, rj ∈ C((k)), (6)

and take a := r+, where ( · )+ and ( · )− indicate the respective parts of nonnegative and negative powers
in k. It is now clear from the identity J0a = J0r+ = −J0r− that a sufficient condition for the consistency
of (4) is

max
m=1,...,N

{degree(J0)nm} ≤ dn + 1, n = 1, . . . , N. (7)

Imposing this condition, we obtain a sufficient condition for consistency that depends only on curve (1) and
is independent of the particular solution of the Lenard relation used. All the solutions of (7) were given
in [4], [6] for the cases N = 2 and N = 3 and in [7] for N = 4. It was thus found that the compatible
degrees are

N = 2 : d1 ≤ d2 + 1,

N = 3 : (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 1, 2), (1, 0, 0), (1, 0, 1),

(1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (1, 2, 3),

N = 4 : (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0),

(0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (0, 1, 1, 2).

(8)

Also, a general result for N ≥ 5 was proved in [7]; it is formulated as follows.

Theorem 2. For each N ∈ N (N ≥ 5), the degrees (d1, . . . , dN ) satisfy compatibility condition (7) if

and only if they are

dj = 0, j = 1, 2, . . . , N − 3, dN−2, dN−1, dN ≤ 1. (9)

The next step for classifying the deformations is to determine solutions r of Lenard relation (6). It was
proved in [4], [5] that the solution of the equation J0r = 0 is given by

r = T∇uR, R =
N∑

j=1

gj(z)pj, ∇uR =
(

∂R

∂u1
, . . . ,

∂R

∂uN

)T

, (10)

where

T :=





1 −u1 · · · −uN−1

0 1 · · · −uN−2

...
...

. . .
...

0 0 · · · 1





and gj ∈ C((z)). Hence, the remaining problem is determining the appropriate choices of the functions gj
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such that R ∈ C((k)) (and consequently r ∈ C((k))). This problem was considered in [6] in terms of the
element σ0 of the Galois group of the curve,

σ0(pj)(z) := pj(ε0z), ε0 := e2πi/l0 . (11)

It is therefore clear that requiring R ∈ C((k)) is equivalent to requiring that R be invariant under the action
of σ0, i.e.,

R(ε0z, σ0p) = R(z,p). (12)

In this paper, we focus on constructing functions R of form (10) satisfying invariance condition (12).
Using these functions, we can give some examples of integrable systems of deformations. To determine the
invariant functions R specified by (10)–(12), we must classify all the compatible degrees (8) and (9) of the
potentials according to σ0 and l0.

This paper is organized as follows. In Sec. 2, we compute the Newton exponent l0 and the element σ0

in (11) of the Galois group of the curve in each compatible case in (8) and (9). In Sec. 3, we consider the
problem of constructing the function R of form (10) satisfying (12) in each compatible case. Finally, we
illustrate all these results in Sec. 4 with some examples of integrable deformations of algebraic curves and
also compute some conservation laws associated with each integrable deformation.

2. Newton exponents and Galois group elements of the curve

Our next goal is to classify all the compatible cases in terms of the corresponding Newton exponent
and the element σ0 of the Galois group of the curve (see (11)). We first note that in the cases N = 2, 3, 4,
the branches can be written in terms of the potentials. Consequently, expanding the branches in powers of
z and using definition (11), we immediately obtain the results in Tables 1–3.

Table 1
σ0 l0 (d1, d2)

(
p1 p2

p2 p1

)
2 d2 > 2d1, d2 odd

(
p1 p2

p1 p2

)
1 d2 < 2d1 or d2 even

Values of σ0 and l0 for N = 2.

Table 2
σ0 l0 (d1, d2, d3)

(
p1 p2 p3

p2 p3 p1

)
3 (0, 0, 1) (0, 1, 2)

(
p1 p2 p3

p2 p1 p3

)
2

(0, 1, 0) (0, 1, 1)

(1, 0, 0) (1, 1, 2)

(
p1 p2 p3

p1 p2 p3

)
1

(1, 0, 1) (1, 1, 0)

(1, 1, 1) (1, 2, 1)

(1, 2, 2) (1, 2, 3)

Values of σ0 and l0 for N = 3.
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Table 3
σ0 l0 (d1, d2, d3, d4)

(
p1 p2 p3 p4

p2 p3 p4 p1

)
4 (0, 0, 0, 1)

(
p1 p2 p3 p4

p2 p3 p1 p4

)
3

(0, 0, 1, 0)

(0, 0, 1, 1)

(
p1 p2 p3 p4

p2 p1 p3 p4

)
2

(0, 1, 1, 0)

(0, 1, 1, 1)

(0, 1, 0, 1)
(

p1 p2 p3 p4

p2 p1 p4 p3

)
2

(0, 1, 0, 0)

(0, 1, 1, 2)

Values of σ0 and l0 for N = 4.

Because of the Abel theorem, the branches in the general case N ≥ 5 cannot be written in terms of the
potentials. Nevertheless, all the algebraic curves corresponding to (9) are rational (k is a rational function
of p). The classification can therefore be obtained by studying the asymptotic behavior of the N branches
pj , j = 1, 2, . . . , N , as k → ∞. To do that, we write the potentials as

un =
dn∑

j=0

unjk
j.

We then have the following classification:
• Let (d1, . . . , dN−3, dN−2, dN−1, dN ) = (0, . . . , 0, 0, 0, 1). Then (1) can be written as

k =
1

uN1

(
pN −

N∑

l=1

ul0p
N−l

)
.

Hence,
pN

j ∼ uN1k as k → ∞, j = 1, 2, . . . , N.

Consequently, pj ∈ C((k1/N )), j = 1, 2, . . . , N , and

l0 = N, σ0 =

(
p1 p2 · · · pN−1 pN

p2 p3 · · · pN p1

)
.

• Let (d1, . . . , dN−3, dN−2, dN−1, dN ) = (0, . . . , 0, 0, 1, 0). Then (1) can be written as

k =
1

uN−1 1

(
pN−1 −

N∑

l=1

ul0p
N−l−1 − uN0

p

)
.

Hence,

pN−1
j ∼ uN−1 1k as k → ∞, j = 1, 2, . . . , N − 1,

pN ∼ − uN0

uN−11

1
k

as k → ∞.

Consequently,

l0 = N − 1, σ0 =

(
p1 p2 · · · pN−1 pN

p2 p3 · · · p1 pN

)
.
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• Let (d1, . . . , dN−3, dN−2, dN−1, dN ) = (0, . . . , 0, 1, 0, 0). Then (1) can be written as

k =
1

uN−21

(
pN−2 −

N−2∑

l=1

ul0p
N−l−2 +

uN−1 0

p
+

uN0

p2

)
.

Hence,

pN−2
j ∼ uN−2 1k as k → ∞, j = 1, 2, . . . , N − 2,

p2
j ∼ uN0

uN−2 1

1
k

as k → ∞, j = N − 1, N.

Consequently, the Newton exponent is

l0 =





N − 2 if N is even,

2(N − 2) if N is odd,

and the corresponding Galois group element is given by

σ0 =

(
p1 p2 · · · pN−2 pN−1 pN

p2 p3 · · · p1 pN pN−1

)
.

Proceeding in the same way with the remaining cases, we obtain the results in Table 4.

Table 4
σ0 l0 (d1, . . . , dN )

(
p1 p2 . . . pN−1 pN

p2 p3 . . . pN p1

)
N (0, . . . , 0, 0, 0, 1)

(
p1 p2 . . . pN−1 pN

p2 p3 . . . p1 pN

)
N − 1

(0, . . . , 0, 0, 1, 0)

(0, . . . , 0, 0, 1, 1)

(
p1 . . . pN−2 pN−1 pN

p2 . . . p1 pN−1 pN

)
N − 2

(0, . . . , 0, 1, 1, 0)

(0, . . . , 0, 1, 1, 1)

(0, . . . , 0, 1, 0, 1)
(

p1 . . . pN−2 pN−1 pN

p2 . . . p1 pN pN−1

)
N − 2, if N even

2(N − 2), if N odd
(0, . . . , 0, 1, 0, 0)

Classification of (9) according to σ0 and l0.

3. The invariant function R

To obtain the hierarchy of integrable deformations (4), we must determine the function R of form (10)
satisfying invariance condition (12). In view of (12), the different cases are classified according to the
corresponding element σ0 of the Galois group of the curve.

• Let

σ0 =

(
p1 p2 . . . pN−1 pN

p2 p3 . . . pN p1

)
.
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According to Tables 1–4 in the preceding section, we have l0 = N (ε0 = ε = e2πi/N ). To determine the
invariant function R, we seek functions

Rk =
N∑

j=1

αjpj such that σ0(Rk) = ε−k
0 Rk, k = 0, 1, . . . , N − 1.

It is easy to verify that

σ0(Rk) = αNp1 +
N∑

j=2

αj−1pj .

Hence, the condition σ0(Rk) = ε−k
0 Rk implies that

αj−1 = ε−k
0 αj , j = 2, . . . N − 1, N, αN = ε−k

0 α1.

This system admits the nontrivial solutions αj = εj k
0 αN . The functions R of form (10) satisfying (12) can

therefore be written as

R =
N−1∑

k=0

zkfk(zN)
N∑

j=1

εj k
0 pj, (13)

where fk ∈ C((zN )), k = 0, 1, . . . , N − 1.
• Let

σ0 =

(
p1 . . . pN−2 pN−1 pN

p2 . . . pN−1 p1 pN

)
.

Then the corresponding Newton exponent is l0 = N−1 (ε0 = e2πi/(N−1)). In this case, we have σ0(pN ) = pN

or, equivalently, pN ∈ C((k)). Proceeding as in the preceding case, we seek functions of the form

Rk =
N−1∑

j=1

αjpj such that σ0(Rk) = ε−k
0 Rk, k = 0, 1, . . . , N − 2.

Because the action of σ0 on the function Rk is given by

σ0(Rk) = αN−1p1 +
N−1∑

j=2

αj−1pj ,

the condition σ0(Rk) = ε−k
0 Rk leads to

αj−1 = ε−k
0 αj , j = 2, 3, . . . , N − 1, αN−1 = ε−k

0 α1.

Hence, αj = εj k
0 αN−1, and

R =
N−2∑

k=0

zkfk(zN−1)
N−1∑

j=1

εj k
0 pj + fN−1(zN−1)pN . (14)

Example 3.1. For N = 3,

R = f0(z2)(p1 + p2) + zf1(z2)(p1 − p2) + f2(z2)p3.
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• Let

σ0 =

(
p1 . . . pN−2 pN−1 pN

p2 . . . p1 pN−1 pN

)
.

In this case, l0 = N − 2 (ε0 = e2πi/(N−2)). We note that pN−1, pN ∈ C((k)). We seek functions of the form

Rk =
N−2∑

j=1

αjpj such that σ0(Rk) = ε−k
0 Rk, k = 0, 1, . . . , N − 3.

We find that
αj−1 = ε−k

0 αj , j = 2, 3, . . . , N − 2, αN−2 = ε−k
0 α1.

Hence, αj = εj k
0 αN−2, and

R =
N−3∑

k=0

zkfk(zN−2)
N−2∑

j=1

εj k
0 pj + fN−2(zN−2)pN−1 + fN−1(zN−2)pN . (15)

Example 3.2. For N = 4,

R = f0(z2)(p1 + p2) + zf1(z2)(p1 − p2) + f2(z2)p3 + f3(z2)p4.

• Let

σ0 =

(
p1 . . . pN−2 pN−1 pN

p2 . . . p1 pN pN−1

)
.

As discussed in Sec. 3, the Newton exponent for this σ0 depends on whether N is even or odd.
Let N be even. Then l0 = N − 2 (ε0 = e2πi/(N−2)). It is easy to see that pN−1 + pN ∈ C((k)) and

σ0(pN−1 − pN ) = −(pN−1 − pN ). On the other hand, because σ0 acts on pj, j = 1, 2, . . . , N − 2, as in the
preceding case and ε0 coincides with the preceding value, we again have

Rk =
N−2∑

j=1

εj k
0 pj , k = 0, 1, . . . , N − 3,

such that σ0(Rk) = ε−k
0 Rk. Hence, R is now given by

R =
N−3∑

k=0

zkfk(zN−2)
N−2∑

j=1

εj k
0 pj +

+ z(N−2)/2fN−2(zN−2)(pN−1 − pN ) + fN−1(zN−2)(pN−1 + pN ). (16)

Example 3.3. For N = 4,

R = f0(z2)(p1 + p2) + zf1(z2)(p1 − p2) + zf2(z2)(p3 − p4) + f3(z2)(p3 + p4).

Let N be odd. Then l0 = 2(N − 2) (ε0 = eπi/(N−2)). In this case, we again have pN−1 + pN ∈ C((k))
and σ0(pN−1 − pN) = −(pN−1 − pN ). Moreover, if we seek functions of the form

Rk =
N−2∑

j=1

αjpj such that σ0(Rk) = ε−2k
0 Rk, k = 0, . . . , N − 3,
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proceeding as in the preceding cases, then we find that αj = ε2j k
0 αN−2 Hence,

R =
N−3∑

k=0

z2kfk(z2(N−2))
N−2∑

j=1

ε2j k
0 pj +

+ zN−2fN−2(z2(N−2))(pN−1 − pN ) + fN−1(z2(N−2))(pN−1 + pN ). (17)

Example 3.4. For N = 5,

R = f0(z6)(p1 + p2 + p3) + z2f1(z6)(e2πi/3p1 + e4πi/3p2 + p3) +

+ z4f2(z6)(e4πi/3p1 + e2πi/3p2 + p3) + z3f3(z6)(p4 − p5) + f4(z6)(p4 + p5).

The integrable deformations are determined by the expressions for R in (13)–(17) depending on σ0 and
the Newton exponent l0.

4. Some examples and associated conservation laws

In this section, we include some examples of integrable deformations of algebraic curves corresponding
to the cases N = 3 and N = 4. First, we note that expanding the components of the vectors p and Q in
series in z in our first equation for deformations (2) leads to an infinite set of conservation laws. This is
the sense in which we say that the deformations are integrable. In our examples, we determine the first
members of these systems of conservation laws.

Example 4.1. Let N = 3 and (d1, d2, d3) = (0, 0, 1). This choice of the degrees corresponds to the
irreducible case and consequently to the Newton exponent l0 = 3. From (4)–(6), we find the trivial equations
u10,t = u31,t = 0. We hence take

u1 = 1, u2 = u20, u3 = k + u30,

and choosing

R =
27
4

(1 − i
√

3)z5L2,

we find that the deformation is given by the system of conservation laws

u20,t =
5
18

∂x(7u20 + 18u2
20 + 9u3

20 + 54u20u30 + 12u30 + 81u2
30),

u30,t =
5
18

∂x(2u2
20 + 27u30u

2
20 − u30 − 27u2

30 + 6u3
20).

(18)

This system can also be obtained from (2). Indeed, the coefficients of z−1 and z−2 in (2) lead to (18).
On the other hand, the coefficient of z−3 gives trivial equations, while the coefficient of z−4 leads to the
conservation law

∂t(5u20 + 9u2
20 + 9u30 + 27u20u30) =

= ∂x

(
175
18

u20 +
95
2

u2
20 +

195
2

u3
20 +

135
2

u4
20 +

85
6

u30 +
255
2

u20u30 +
675
2

u2
20u30 +

+
675
2

u2
20u30 +

405
2

u3
20u30 + 90u2

30 + 405u20u
2
30 + 405u3

30

)
.

The coefficients of z−j , j > 4, lead to more involved conservation laws.
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Example 4.2. Let N = 3 and (d1, d2, d3) = (1, 0, 0). Then the Newton exponent is l0 = 2, and (4)–(6)
imply that (u30/u11)t = 0. Setting

u1 = u11k + u10, u2 = u20, u3 = u11

and choosing R as
R = z4(p1 + p2),

we obtain

u11,t = ∂x

(
−2u10

u11

)
, u10,t = ∂x

(
−u2

10 + 2u20

u2
11

)
,

u20,t =
1

u3
11

[2u10u20u11,x + u11(−2u20u10,x + 4u11,x)],

(19)

where only the two first equations are conservation laws. New conservation laws can be obtained from (2).
For example, from the coefficients of z−2, z−3, and z−4, we obtain

∂t

(
u20

u11

)
= ∂x

(
− 2

u2
11

)
, ∂t

(
4u10

u11
+

u2
20

u2
11

)
= ∂x

(
−8u20

u3
11

)
,

∂t

(
1

u11
− u10u20

u2
11

)
= ∂x

(
2u10

u3
11

+
u2

20

u4
11

)
.

Example 4.3. Let N = 4 and (d1, d2, d3, d4) = (0, 1, 0, 0). For this choice of the degrees, the Newton
exponent is l0 = 2, and (u40/u21)t = 0. We then set

u1 = u10, u2 = u21k + u20, u3 = u30, u4 = u21.

Labeling the branches of C such that p1,2 ∼ z + O(1) and p3,4 ∼ z−1 + O(z−2) and taking

R = z4(p3 + p4),

we obtain

u10,t = ∂x

(
2u2

10u20 + 2u2
20 − 4u21 + 2u10u30

u2
21

)
,

u2 1,t = 4u
1/2
21 ∂x

(
2u10u20 − 2u30

u
3/2
21

)
,

u20,t = u−2
21 [(4u2

20 − 2u10u30 + 4u21)u10,x + (4u10u20 + 2u30)u20,x − 2u2
10u30,x] +

+ u−3
21 (6u10u21 − 6u10u

2
20 + 4u2

10u30 − 2u20u30 − 14u10u21)u21,x,

u30,t = u−2
21 [(4u20u30 − 4u10u21)u10,x + (4u10u30 + 4u21)u20,x − 4u30u30,x] +

+ u−3
21 [(4u20 − 2u2

10 − 12u20)u21 − 6u10u20u30 + 6u2
30 + 6u2

10u21]u21,x.

(20)

Here, the first equation is given in conserved form, and the second can be transformed into a conservation
law for u

1/2
21 . New conservation laws associated with (20) can be derived from (2). From the coefficients of

z−1, we obtain

∂t

(
4u2

10 + 4u20

u
1/2
21

)
= ∂x

(
2u3

10u20 + 8u10u
2
20 + 16u10u21 − 2u2

10u30 + 8u20u30

u
5/2
21

)
,
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and from the coefficients of z−j , j = 2, 3, 4, of the last two components of (2), we obtain the corresponding
conservation laws

∂t

(
u30

u21

)
= ∂x

(
4u20 − 2u2

10

u2
21

)
,

∂t

(
4u20u21 + u2

30

u2
21

)
= ∂x

(
16u10u21 − 8u2

10u30 + 16u20u30

u3
21

)
,

∂t

(
u10u21 + u20u30

u2
21

)
= ∂x

(
− 2

u2
21

+
4u2

20 − 2u2
10u20 + 6u10u30

u3
21

+
(2u20 − u2

10)u2
30

u4
21

)
.
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