

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 307 (2007) 2322-2327

www.elsevier.com/locate/disc

Note

New results on the Zarankiewicz problem

C. Balbuena^a, P. García-Vázquez^b, X. Marcote^a, J.C. Valenzuela^c

^aDepartament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, Barcelona, Spain ^bDepartamento de Matemática Aplicada I, Universidad de Sevilla, Sevilla, Spain ^cDepartamento de Matemáticas, Universidad de Cádiz, Cádiz, Spain

Received 6 September 2005; received in revised form 21 September 2006; accepted 9 November 2006 Available online 17 January 2007

Abstract

Let (X, Y) denote a bipartite graph with classes X and Y such that |X| = m and |Y| = n. A complete bipartite subgraph with s vertices in X and t vertices in Y is denoted by $K_{(s,t)}$. The Zarankiewicz problem consists in finding the maximum number of edges, denoted by z(m, n; s, t), of a bipartite graph (X, Y) with |X| = m and |Y| = n without a complete bipartite $K_{(s,t)}$ as a subgraph. First, we prove that z(m, n; s, t) = mn - (m + n - s - t + 1) if $max\{m, n\} \le s + t - 1$. Then we characterize the family Z(m, n; s, t) of extremal graphs for the values of parameters described above. Finally, we study the s = t case. We give the exact value of z(m, n; t, t) if $2t \le n \le 3t - 1$ and we characterize the extremal graphs if either n = 2t or both $2t < n \le 3t - 1$ and $m \le \lfloor (3t - 1)/2 \rfloor$. © 2007 Elsevier B.V. All rights reserved.

Keywords: Zarankiewicz problem; Extremal graph theory; Forbidden subgraphs

1. Introduction

Throughout this paper only undirected simple graphs without loops or multiple edges are considered. Unless stated otherwise, we follow the book by Bollobás [1] for terminology and definitions.

Let (X, Y) denote a bipartite graph with classes X and Y such that |X| = m and |Y| = n. A complete bipartite subgraph with s vertices in X and t vertices in Y is denoted by $K_{(s,t)}$. Given any integers m, n, s, t, what is the maximum size of a bipartite graph (X, Y) if it does not contain a $K_{(s,t)}$? Denote this maximum by z(m, n; s, t) and let Z(m, n; s, t)stand for the family of extremal bipartite graphs (X, Y) free of $K_{(s,t)}$ whose size is z(m, n; s, t); when m = n and s = t, simply put z(n; t) = z(n, n; t, t) and Z(n; t) = Z(n, n; t, t). To avoid the trivial cases we shall suppose that $2 \le s \le m$, $2 \le t \le n$. In 1951 Zarankiewicz [9] posed the problem of determining z(n; 3) for n = 4, 5, 6 and the general problem has also become known as *the problem of Zarankiewicz*. It is worth noting that a related problem to this is to find the maximum number of edges of a bipartite graph (X, Y) without $K_{s,t}$ as a subgraph (i.e., (X, Y) is free of both $K_{(s,t)}$ and $K_{(t,s)}$). This number is denoted by $ex(m, n; K_{s,t})$ and we use $EX(m, n; K_{s,t})$ to denote the corresponding family of extremal graphs with $ex(m, n; K_{s,t})$ edges. Clearly,

 $\operatorname{ex}(m, n; K_{s,t}) \leq z(m, n; s, t).$

E-mail addresses: m.camino.balbuena@upc.edu (C. Balbuena), pgvazquez@us.es (P. García-Vázquez), francisco.javier.marcote@upc.edu (X. Marcote), jcarlos.valenzuela@uca.es (J.C. Valenzuela).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2006.11.002

A survey of work on Zarankiewicz problem appears in Section VI.2 of [1]. Some of the more recent work includes the papers [3–8]. In [3,5,6], bounds for the function z(m, n; s, t) are given in an asymptotical way, i.e., when s, t are fixed and m, n are much larger than s, t. In this work we are concerned with the exact values of the function z(m, n; s, t). In this regard Culik [2] has shown that if s, t, m are fixed then

$$z(m,n;s,t) = (s-1)n + (t-1)\binom{m}{s} \quad \text{for all } n > (t-1)\binom{m}{s}.$$

$$\tag{1}$$

It is known [1] that $z(n; 2) \leq (n + n\sqrt{4n - 3})/2$ and equality holds when $n = q^2 + q + 1$ for a prime power q. Goddard et al. [4] found the exact values of z(n; 2) for $n \leq 20$ and showed that in some cases the family Z(n; 2) is formed by only one extremal graph.

The problem of Zarankiewicz can be formulated using matrix terminology. More precisely, z(m, n; s, t) might be defined as the maximum number of ones in an $m \times n$ {0, 1}-matrix free of $s \times t$ submatrix of ones (where a submatrix is the intersection of s rows and t columns). Griggs et al. [7,8] studied the so-called "half-half" case, or in other words the function z(2s, 2t; s, t). Thus, supposing $s \leq t$, the following bounds are stated in [8]:

$$4st - (2t + 2s - \gcd(s, t) + 1) \leq z(2s, 2t; s, t) \leq 4st - (2t + s + 1),$$

where gcd(s, t) being the greatest common divisor of *s* and *t*. Furthermore, it is proved that if t = ks + r, $0 \le r < s$, such that either r = 0 or r > 0 and $s \le k + r$ (which is always true for $t > (s - 1)^2$) then

$$z(2s, 2t; s, t) = 4st - (2t + s + 1).$$
⁽²⁾

Later [7] deals with the case t = ks + 1, evaluating z(2s, 2t; s, t) for large enough s and t, and providing the exact values for $t \leq 20$ and $s \leq 7$.

In this work we determine the exact value of z(m, n; s, t) and we characterize the family Z(m, n; s, t) of extremal graphs if max $\{m, n\} \leq s+t-1$. Besides, we study the s=t case providing the exact value of the function z(m, n; t, t) if $2t \leq n \leq 3t-1$. Finally, we characterize the family Z(m, n; t, t) of extremal graphs if either n=2t or both $2t < n \leq 3t-1$ and $m \leq \lfloor (3t-1)/2 \rfloor$.

Let us define an *X*-matching in a complete bipartite graph $K_{(m,n)} = (X, Y)$ as the edges of a set of pairwise disjoint $K_{(j,1)}$ with $j \ge 1$; that is, such that all the vertices of degree greater than 1 (if any) belong to the *Y*-class of $K_{(m,n)}$. A *Y*-matching in $K_{(m,n)}$ is defined analogously. Observe that a matching in $K_{(m,n)}$ is always both an *X*-matching and a *Y*-matching.

If s = m by (1) it follows that for every $n \ge t$, z(m, n; m, t) = mn - (n - t + 1). Analogously if t = n by (1) it follows that for every $m \ge s$, z(m, n; s, n) = mn - (m - s + 1). Our first result concerns with the extremal family for these cases.

Theorem 1.1. Let m, n, t be integers with m > 2, $2 \le t < n$. Let us denote by X the m-vertices class and by Y the *n*-vertices class of $K_{(m,n)}$. Then

$$Z(m, n; m, t) = \{K_{(m,n)} - M\}$$

where *M* is any *Y*-matching in $K_{(m,n)}$ with cardinality n - t + 1.

It is worth noting that for all values of the parameters m, n, s, t we have z(m, n; s, t) = z(n, m; t, s). Moreover, the extremal graphs of the family Z(n, m; t, s) are obtained by swapping the vertices classes of each one of the graphs in Z(m, n; s, t). Therefore, Theorem 1.1 also provides the extremal family of graphs Z(m, n; s, n) in terms of the *X*-matchings of cardinality m - s + 1 of the complete bipartite graph $K_{(m,n)}$.

Next, we present a theorem which extends (1) and allows us to obtain the exact value of the Zarankiewicz number z(m, n; s, t) whenever the parameters m, n, s, t are related by $\max\{m, n\} \leq s + t - 1$.

Theorem 1.2. Let m, n, s, t be integers with $2 \le s < m, 2 \le t < n$ and such that $\max\{m, n\} \le s + t - 1$. Then

 $\begin{cases} z(m, n; s, t) = \exp(m, n; K_{s,t}) = mn - (m + n - s - t + 1), \\ Z(m, n; s, t) = \exp(m, n; K_{s,t}) = \{K_{(m,n)} - M\}, \end{cases}$

where *M* is any matching of cardinality m + n - s - t + 1.

Note that both Theorem 1.2 and (1) give the same value when t=2 and n=m=s+1. Next, we present a theorem which can be compared with the "half–half" case (2) in the sense that we find the exact value for the function z(m, 2t; t, t) for every $m \leq 2t$.

Theorem 1.3. Let *m*, *t* be integers such that $2 \le t \le m \le 2t$. Then

 $z(m, 2t; t, t) = m \cdot 2t - (2m - t + 1).$

Moreover,

 $Z(m, 2t; t, t) = \{K_{(m,2t)} - (M_1 \cup M_2)\},\$

where M_1 is a matching on t - 1 - 2r edges with $r \in \{0, ..., \lfloor (t - 1)/2 \rfloor\}$, and M_2 is a subset of edges of $K_{(m,2t)}$ for which one of the following assertions hold:

(i) m = 2t, r = 0 and M_2 induces a cycle of length 2(t + 1); (ii) m < 2t, r = 0 and M_2 induces a forest with m - (t - 1) vertices of degree 2 in the m-class; (iii) $m < 2t, r \neq 0$ and M_2 consists of the edges of m - (t - 1) + r disjoint copies of $K_{(1,2)}$,

and such that the induced subgraphs by M_1 and M_2 are disjoint.

Observe that when m = 2t item (i) of the theorem gives the same result as (2). Hence Theorem 1.3(i) is an improvement of the "half-half" case when s = t.

Finally, we partially extend the latter result for greater values of the parameter *n*.

Theorem 1.4. Let m, n, t be integers such that $2 \le t \le m \le n$ and $2t < n \le 3t - 1$. Then

z(m, n; t, t) = mn - (2m + n - 3t + 1).

Moreover, if $m \leq \lfloor (3t - 1)/2 \rfloor$ *then*

 $Z(m, n; t, t) = \{K_{(m,2t)} - (M_1 \cup M_2)\},\$

where M_1 is a matching on n - t + 1 - 2r edges with $r \in \{2, ..., \lfloor (n - t + 1)/2 \rfloor\}$, and M_2 consists of the edges of m - t + r disjoint copies of $K_{(1,2)}$ such that the induced subgraphs by M_1 and M_2 are disjoint.

We must bear in mind the fact that if s = t then both extremal problems, z(m, n; t, t) and $ex(m, n; K_{t,t})$, become equivalent. Therefore, Theorems 1.3 and 1.4 not only give us the solution for the Zarankiewicz problem but also for the problem of bipartite graphs free of $K_{t,t}$.

2. Proofs

The degree of a vertex w in a graph G is denoted by $d_G(w) = d(w)$, $N_G(w)$ is the set of vertices that are adjacent to w in G, and $N_G(T) = \bigcup_{w \in T} N_G(w)$ denotes the neighborhood of a subset of vertices T. We will also use e(G) to denote the number of edges of G, and G[V'] stands for the induced subgraph in G by the set of vertices $V' \subseteq V(G)$.

Proof of Theorem 1.1. Let G = (X, Y) be a bipartite graph with *m*-class *X* and *n*-class *Y*. We claim that *G* does not contain a bipartite $K_{(m,t)}$ as a subgraph if and only if there exists a set $U \subset Y$ of n - t + 1 vertices which are not adjacent to some vertex of *X*. Indeed, every *t*-subset $T \subset Y$ contains at least one vertex of *U*, hence $G[X \cup T] \neq K_{(m,t)}$; furthermore, if no such *U* exists, at most n - t vertices of *Y* are not adjacent to some vertex of *X*, hence we can find a *t*-subset of *Y* whose vertices are adjacent to all the vertices of *X*, so $K_{(m,t)} \subset G$. As a consequence, $z(m, n; m, t) = e(K_{(m,n)}) - (n - t + 1) = mn - (n - t + 1)$, and every extremal graph in Z(m, n; m, t) must be obtained after deleting n - t + 1 edges (incident with n - t + 1 different vertices of *Y*) from a complete bipartite $K_{(m,n)}$, so the result follows. \Box

We focus our attention on bipartite graphs (X, Y) with no subgraph $K_{(s,t)}$ such that both s < m and t < n, as the cases s = m and t = n have been treated in Theorem 1.1. To do that, next we prove the following lemma.

Lemma 2.1. Let m, n, s, t be integers such that $2 \le s < m$ and $2 \le t < n$. Let G = (X, Y) be a bipartite graph without $K_{(s,t)}$ such that |X| = m and |Y| = n. Then the following assertions hold:

- (i) $e(G) \leq mn (m + n s t + 1)$.
- (ii) If e(G) = mn (m + n s t + 1) then $\max\{m, n\} \le s + t 1$ and the m-class X of G consists of vertices of degree at least n 1 and the n-class Y of G consists of vertices of degree at least m 1.

Proof. Let us order the vertices of X in such a way that $d(x_i) \ge d(x_{i+1})$, for i = 1, ..., m - 1. Let us also denote by $S = \{x_1, ..., x_s\}$. Then $d(x_s) \le n - 1$ because otherwise $d(x_i) = n$, for all i = 1, ..., s and therefore, $G[S \cup Y] = K_{(s,n)} \supseteq K_{(s,t)}$, against our assumptions. Thus, we have $d(x_s) \le n - 1$, which implies that $d(x_i) \le n - 1$, for all i = s, ..., m. Since G does not contain $K_{(s,t)}$ as a subgraph, by (1) it follows that $e(G[S \cup Y]) \le sn - (n - t + 1)$. So,

$$e(G) = e(G[S \cup Y]) + e(G[(X \setminus S) \cup Y])$$

$$\leq sn - (n - t + 1) + \sum_{i=s+1}^{m} d(x_i)$$

$$\leq sn - (n - t + 1) + (m - s)d(x_{s+1})$$

$$\leq sn - (n - t + 1) + (m - s)(n - 1)$$

$$= mn - (m + n - s - t + 1),$$
(3)

and assertion (i) of the lemma is true.

Now suppose that e(G) attains its maximum value. Then all the above inequalities of (3) become equalities. So, we deduce that $d(x_i) = n - 1$ for all i = s, ..., m and $n - 1 \le d(x_i) \le n$ for all i = 1, ..., s - 1. Moreover, $G[S \cup Y]$ is the graph resulting from the complete bipartite $K_{(s,n)}$ after deleting exactly n - t + 1 edges, no two of them being incident with the same vertex of *X* because of the degrees of $x_1, ..., x_m$. Therefore $n - t + 1 \le s$. The argument for the class *Y* is similar. This proves item (ii). \Box

Recall that the cardinality of a maximum matching in a complete bipartite $K_{(m,n)}$ is min $\{m, n\}$. Next, we present a result concerning the structure of the remaining graph after deleting a matching from $K_{(m,n)}$.

Lemma 2.2. Let m, n, s, t be integers such that $2 \le s \le m, 2 \le t \le n$ and $\max\{m, n\} \le s + t - 1$. Let M be a set of edges of $K_{(m,n)}$ of cardinality m + n - s - t + 1. If M is a matching then the bipartite graph $K_{(m,n)} - M$ has neither $K_{(s,t)}$ nor $K_{(t,s)}$ as subgraphs.

Proof. Let $K_{(m,n)} = (X, Y)$ and let *S* be any subset of *X* of cardinality *s* and *T* any subset of *Y* of cardinality *t*. Since *M* is a matching then the number of edges of *M* which are incident with some vertex in $(X \setminus S) \cup (Y \setminus T)$ is at most $|X \setminus S| + |Y \setminus T| = (m - s) + (n - t) = |M| - 1$. It follows that there exists some edge $ab \in M$ with $a \in S$ and $b \in T$. Hence $K_{(s,t)}$ cannot be a subgraph of $K_{(m,n)} - M$. Similarly, it is proved that $K_{(m,n)} - M$ does not contain $K_{(t,s)}$ as a subgraph. \Box

The previous result provides a lower bound for the extremal function $ex(m, n; K_{s,t})$, which allows us to prove Theorem 1.2.

Proof of Theorem 1.2. The existence in $K_{(m,n)}$ of some matching M with cardinality m+n-s-t+1 follows from the condition max $\{m, n\} \leq s+t-1$. Hence, for any such matching M, from Lemma 2.2 it follows that $K_{(m,n)} - M$ does not contain neither $K_{(s,t)}$ nor $K_{(t,s)}$ as subgraphs, so ex $(m, n; K_{s,t}) \geq mn - (m+n-s-t+1)$. Furthermore, by Lemma 2.1, $z(m, n; s, t) \leq mn - (m+n-s-t+1)$. Therefore we conclude that ex $(m, n; K_{s,t}) = z(m, n; s, t) = mn - (m+n-s-t+1)$, and also that $K_{(m,n)} - M \in \text{EX}(m, n; K_{s,t}) \subset Z(m, n; s, t)$ for every matching M in $K_{(m,n)}$ with |M| = m+n-s-t+1.

Next, we show that there are no other extremal graphs in Z(m, n; s, t). Let *G* be a graph of the family Z(m, n; s, t) with classes *X* and *Y* such that |X| = m and |Y| = n. Clearly e(G) = mn - (m + n - s - t + 1). Lemma 2.1 allows us

to guarantee that $\min\{d_G(x) : x \in X\} = n - 1$ and $\min\{d_G(y) : y \in Y\} = m - 1$, hence there must exist a matching M in $K_{(m,n)}$ of cardinality m + n - s - t + 1 such that $G = K_{(m,n)} - M$. So the proof is complete. \Box

Next, we concentrate upon the s = t case for which we are going to prove similar results to the ones obtained for the general case.

Lemma 2.3. Let m, n, t be integers such that $2 \le t \le m$ and $2t \le n \le 3t - 1$. Let G = (X, Y) be a bipartite graph without $K_{(t,t)}$ such that |X| = m and |Y| = n. Then the following assertions hold:

- (i) $e(G) \leq mn (2m + n 3t + 1)$.
- (ii) If e(G) = mn (2m + n 3t + 1) then the m-class X of G consists of vertices of degree at least n 2.

Proof. Let us order the vertices of *X* as in Lemma 2.1. Let us also denote by $T = \{x_1, \ldots, x_t\}$. First, since *G* does not contain $K_{(t,t)}$ as a subgraph, by (1) it follows that $e(G[T \cup Y]) \leq tn - (n - t + 1)$. Then $d(x_t) \leq n - 2$ because otherwise $d(x_i) \geq n - 1$, for all $i = 1, \ldots, t$ and therefore, $e(G[T \cup Y]) \geq tn - t > tn - (n - t + 1) \geq e(G[T \cup Y])$, against our assumptions. Thus, we can assume that $d(x_t) \leq n - 2$, which implies that $d(x_i) \leq n - 2$, for all $i = t, \ldots, m$. So,

$$e(G) = e(G[T \cup Y]) + e(G[(X \setminus T) \cup Y])$$

$$\leq tn - (n - t + 1) + (m - t)(n - 2)$$

$$= mn - (2m + n - 3t + 1),$$
(4)

and assertion (i) of the lemma is proved.

Next, if e(G) = mn - (2m + n - 3t + 1) then all the above inequalities of (4) become equalities. Therefore, $d(x_i) = n - 2$ for all i = t, ..., m and $n - 2 \le d(x_i) \le n$ for all i = 1, ..., t - 1, which prove item (ii). Furthermore, notice that $e(G[T \cup Y]) = tn - (n - t + 1)$, and the edge set of $K_{(t,n)} - G[T \cup Y]$ is a Y-matching because $K_{(t,t)} \nsubseteq G$. \Box

Let us denote by G^c the bipartite complement of a bipartite graph G = (X, Y), that is $G^c = K_{(m,n)} - E(G)$, where E(G) denotes the edge set of G.

Lemma 2.4. Let m, n, t be integers such that $2 \le t \le m \le n$. The bipartite graph $K_{(m,n)} - (M_1 \cup M_2)$, M_1 and M_2 inducing disjoint subgraphs of $K_{(m,n)}$, does not contain $K_{(t,t)}$ as a subgraph if one of the following conditions hold:

- (i) M_1 is a matching of cardinality t 1 and M_2 induces a path of length 2(m t + 1) with end vertices in Y, provided that m < n = 2t.
- (ii) M_1 is a matching of cardinality t 1 and M_2 induces a cycle of length 2(t + 1), provided that m = n = 2t.
- (iii) M_1 is a matching on n t + 1 2r edges with $r \in \{2, ..., \lfloor (n t + 1)/2 \rfloor\}$, and M_2 induces m t + r disjoint copies of $K_{(1,2)}$, provided that $m \leq \lfloor (3t 1)/2 \rfloor$ and $2t < n \leq 3t 1$.

Proof. First, suppose that m < n = 2t and let us consider the graph *G* described in item (i). The existence of such sets of edges M_1 and M_2 follows from $(t-1) + (m-t+2) = m+1 \le n$. Let us denote by *T* any subset of *t* vertices of the *m*-class *X*. The set *T* is formed by *j* vertices incident with *j* edges of M_1 and t - j vertices incident with 2(t - j) edges of M_2 , where $j \in \{0, \ldots, t\}$. These *j* vertices are adjacent in G^c to *j* vertices in *Y* because the set of edges of M_1 is a matching. The remaining t - j vertices are adjacent to at least t - j + 1 vertices in *Y* because M_2 induces a path. Then the number of vertices of the *n*-class *Y* that are adjacent in G^c to some vertex in *T* is at least j + t - j + 1 = t + 1. That is to say, because |Y| = 2t, the number of vertices of *Y* that are adjacent in *G* to all vertices in *T* is at most 2t - (t+1) = t - 1 and therefore $K_{(t,t)} \notin G$. This proves item (i). The proof for items (ii) and (iii) is analogous.

Note that the size of the graphs described in the above lemma is mn - (2m + n - 3t + 1).

Proof of Theorem 1.3. By item (i) of Lemma 2.3 we have $z(m, 2t; t, t) \leq mn - (2m-t+1)$. The other inequality comes from items (i) and (ii) of Lemma 2.4. This proves the exact value of the extremal function z(m, 2t; t, t) = mn - (2m-t+1). Let G = (X, Y) be a graph of the family Z(m, 2t; t, t). From now on we consider the bipartite complement G^{c} of the

graph G. Let us assume that the vertices of G are ordered as in Lemma 2.1, so $d(x_1) \leq \cdots \leq d(x_m)$ in G^c . By the proof of Lemma 2.3 we know that $d(x_t) = \cdots = d(x_m) = 2$ and $e(G^c[T \cup Y]) = t + 1$, where T denotes the set of vertices $\{x_1,\ldots,x_t\}$. First, suppose that $d(x_{t-1})=1$. Then $d(x_i)=1$ for all $i=1,\ldots,t-1$ because $e(G^c[T\cup Y])=t+1, d(x_t)=2$ and $d(x_i) \leq d(x_{i+1})$ in G^c . Moreover, for all $j = t, \ldots, m$ and all $i = 1, \ldots, t-1$ we have $N_{G^c}(x_i) \cap N_{G^c}(x_i) = \emptyset$. Otherwise, we can consider the set $T' = \{x_1, \ldots, x_{t-1}, x_i\}$ which satisfies $|N_{G^c}(T')| = t$, following $K_{(t,t)} \subseteq G$ because |Y| = 2t, against our assumptions. Then the edge set $M_1 = E(G^c[\{x_1, \ldots, x_{t-1}\} \cup Y])$ is a matching on t-1 edges. Furthermore, if the edge set $M_2 = E(G^c[\{x_1, \ldots, x_m\} \cup Y])$ induces a cycle of length 2*l*, with $2 \le l \le t$, then we can consider the t-subset T' of X formed by the l vertices of X on the cycle and t - l vertices incident with the edges of M_1 . Clearly, $|N_{G^c}(T')| = t$ which again leads us to an absurdity. Therefore the edge set of G^c is $M_1 \cup M_2$, where M_1 and M_2 induce disjoint subgraphs of $K_{(m,2t)}$. More precisely, M_1 is a matching of cardinality t-1 and either M_2 induces a cycle of length 2(t + 1) (which implies m = 2t) or M_2 induces an acyclic subgraph. Note that in this latter case M_2 induces a forest such that all the vertices in the X class have degree 2. Second, suppose $d(x_{t-1}) = 2$. Then it is easy to check, reasoning as above, that M_1 is a Y-matching on t-1 edges formed by the edges of disjoint copies of $K_{(1,1)}$ and $K_{(1,2)}$. Since $d(x_t) = d(x_{t-1}) = 2$ and $e(G^c[T \cup Y]) = t + 1$ hence $d(x_1) = 0$. If there exists $\tilde{x}_1, \tilde{x}_2 \in \{x_t, \dots, x_m\}$ such that $N_{G^c}(\tilde{x}_1) \cap N_{G^c}(\tilde{x}_2) \neq \emptyset$ then we can consider the subset $T' = \{x_1, x_2, \dots, x_{t-2}, \tilde{x}_1, \tilde{x}_2\}$ of X, and clearly $|N_{G^c}(T')| \leq t$ which is impossible. Therefore M_2 consists of the edges of m - (t - 1) disjoint copies of $K_{(1,2)}$. This proves the theorem. \Box

Proof of Theorem 1.4. By item (i) of Lemma 2.3 we have $z(m, n; t, t) \leq mn - (2m + n - 3t + 1)$. The other inequality comes from item (iii) of Lemma 2.4. Then z(m, n; t, t) = mn - (2m + n - 3t + 1). Let *G* be an extremal graph of the family Z(m, n; t, t) and let us follow the same notation and assumptions as in the proof of Theorem 1.3. Notice that $e(G^c) = 2m + n - 3t + 1 \leq n$ because $m \leq \lfloor (3t - 1)/2 \rfloor$, hence $E(G^c)$ may be a *Y*-matching. By the proof of Lemma 2.3 we know that $d(x_t) = \cdots = d(x_m) = 2$ in G^c , and $E(G^c[T \cup Y])$ is a *Y*-matching with n - t + 1 edges. Since $d(x_i) \leq d(x_{i+1})$ in G^c , then $G^c[T \cup Y]$ consists of n - t + 1 - 2r disjoint copies of $K_{(1,1)}$ and *r* disjoint copies of $K_{(1,2)}$. Since $n \geq 2t + 1$ hence $e(G^c[T \cup Y]) = n - t + 1 \geq t + 2$, that is to say, there exists at least two vertices in *T* of degree 2 and therefore $2 \leq r \leq \lfloor (n - t + 1)/2 \rfloor$. Reasoning as in the proof of Theorem 1.3 we can check that the edge set of the subgraph $G^c[(X \setminus T) \cup Y]$ is a *Y*-matching with m - t vertices of degree 2 in *X*. Consequently, $G = K_{(m,n)} - (M_1 \cup M_2)$ where $M_1 = E(G^c[\{x_1, \ldots, x_{t-r}\} \cup Y])$ is a matching on n - t + 1 - 2r edges, and $M_2 = E(G^c[\{x_{t-r+1}, \ldots, x_m\} \cup Y])$ consists of the edges of m - t + r disjoint copies of $K_{(1,2)}$.

Acknowledgments

This research was supported by the Ministry of Education and Science, Spain, and the European Regional Development Fund (ERDF) under project MTM2005-08990-C02-02.

References

- [1] B. Bollobás, Extremal Graph Theory, Academic Press, New York, 1978.
- [2] K. Culik, Teilweise Losung eines verallgemeinerten problems von Zarankiewicz, Ann. Soc. Polon. Math. 3 (1956) 165–168.
- [3] Z. Furëdi, New asymptotics for bipartite Turán numbers, J. Combin. Theory Ser. A 75 (1996) 141–144.
- [4] W. Goddard, M.A. Henning, O.R. Oellermann, Bipartite Ramsey numbers and Zarankiewicz numbers, Discrete Math. 219 (2000) 85–95.
- [5] A.P. Godbole, H.C. Graziano, Contributions to the problem of Zarankiewicz, J. Statist. Plann. Interference 95 (2001) 197–208.
- [6] A.P. Godbole, B. Lamorte, E.J. Sandquist, Threshold functions for the bipartite Turán property, Electron. J. Combin. 4 (1997) R18.
- [7] J. Griggs, H. Chih-Chang, On the half-half case of the Zarankiewicz problem, Discrete Math. 249 (2002) 95–104.
- [8] J. Griggs, J. Ouyang, (0, 1)-Matrices with no half-half submatrix of ones, European J. Combin. 18 (1997) 751–761.
- [9] K. Zarankiewicz, Problem P 101, Colloq. Math. 2 (1951) 301.