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Abstract

Let (X, Y ) denote a bipartite graph with classes X and Y such that |X| = m and |Y | = n. A complete bipartite subgraph with s
vertices in X and t vertices in Y is denoted by K(s,t). The Zarankiewicz problem consists in finding the maximum number of edges,
denoted by z(m, n; s, t), of a bipartite graph (X, Y ) with |X|=m and |Y |=n without a complete bipartite K(s,t) as a subgraph. First,
we prove that z(m, n; s, t) = mn − (m + n − s − t + 1) if max{m, n}�s + t − 1. Then we characterize the family Z(m, n; s, t) of
extremal graphs for the values of parameters described above. Finally, we study the s= t case. We give the exact value of z(m, n; t, t)

if 2t �n�3t − 1 and we characterize the extremal graphs if either n = 2t or both 2t < n�3t − 1 and m��(3t − 1)/2�.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Throughout this paper only undirected simple graphs without loops or multiple edges are considered. Unless stated
otherwise, we follow the book by Bollobás [1] for terminology and definitions.

Let (X, Y ) denote a bipartite graph with classes X andY such that |X|=m and |Y |=n. A complete bipartite subgraph
with s vertices in X and t vertices in Y is denoted by K(s,t). Given any integers m, n, s, t , what is the maximum size
of a bipartite graph (X, Y ) if it does not contain a K(s,t)? Denote this maximum by z(m, n; s, t) and let Z(m, n; s, t)

stand for the family of extremal bipartite graphs (X, Y ) free of K(s,t) whose size is z(m, n; s, t); when m=n and s = t ,
simply put z(n; t) = z(n, n; t, t) and Z(n; t) = Z(n, n; t, t). To avoid the trivial cases we shall suppose that 2�s�m,
2� t �n. In 1951 Zarankiewicz [9] posed the problem of determining z(n; 3) for n = 4, 5, 6 and the general problem
has also become known as the problem of Zarankiewicz. It is worth noting that a related problem to this is to find the
maximum number of edges of a bipartite graph (X, Y ) without Ks,t as a subgraph (i.e., (X, Y ) is free of both K(s,t)

and K(t,s)). This number is denoted by ex(m, n; Ks,t ) and we use EX(m, n; Ks,t ) to denote the corresponding family
of extremal graphs with ex(m, n; Ks,t ) edges. Clearly,

ex(m, n; Ks,t )�z(m, n; s, t).
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A survey of work on Zarankiewicz problem appears in Section VI.2 of [1]. Some of the more recent work includes the
papers [3–8]. In [3,5,6], bounds for the function z(m, n; s, t) are given in an asymptotical way, i.e., when s, t are fixed
and m, n are much larger than s, t . In this work we are concerned with the exact values of the function z(m, n; s, t). In
this regard Culik [2] has shown that if s, t, m are fixed then

z(m, n; s, t) = (s − 1)n + (t − 1)
(m

s

)
for all n > (t − 1)

(m

s

)
. (1)

It is known [1] that z(n; 2)�(n+n
√

4n − 3)/2 and equality holds when n= q2 + q + 1 for a prime power q. Goddard
et al. [4] found the exact values of z(n; 2) for n�20 and showed that in some cases the family Z(n; 2) is formed by
only one extremal graph.

The problem of Zarankiewicz can be formulated using matrix terminology. More precisely, z(m, n; s, t) might be
defined as the maximum number of ones in an m × n {0, 1}-matrix free of s × t submatrix of ones (where a submatrix
is the intersection of s rows and t columns). Griggs et al. [7,8] studied the so-called “half–half” case, or in other words
the function z(2s, 2t; s, t). Thus, supposing s� t , the following bounds are stated in [8]:

4st − (2t + 2s − gcd(s, t) + 1)�z(2s, 2t; s, t)�4st − (2t + s + 1),

where gcd(s, t) being the greatest common divisor of s and t. Furthermore, it is proved that if t = ks + r , 0�r < s,
such that either r = 0 or r > 0 and s�k + r (which is always true for t > (s − 1)2) then

z(2s, 2t; s, t) = 4st − (2t + s + 1). (2)

Later [7] deals with the case t = ks + 1, evaluating z(2s, 2t; s, t) for large enough s and t, and providing the exact
values for t �20 and s�7.

In this work we determine the exact value of z(m, n; s, t) and we characterize the family Z(m, n; s, t) of extremal
graphs if max{m, n}�s+ t −1. Besides, we study the s= t case providing the exact value of the function z(m, n; t, t) if
2t �n�3t−1. Finally, we characterize the family Z(m, n; t, t) of extremal graphs if either n=2t or both 2t < n�3t−1
and m��(3t − 1)/2�.

Let us define an X-matching in a complete bipartite graph K(m,n) = (X, Y ) as the edges of a set of pairwise disjoint
K(j,1) with j �1; that is, such that all the vertices of degree greater than 1 (if any) belong to the Y-class of K(m,n). A
Y-matching in K(m,n) is defined analogously. Observe that a matching in K(m,n) is always both an X-matching and a
Y-matching.

If s =m by (1) it follows that for every n� t , z(m, n; m, t)=mn− (n− t + 1). Analogously if t =n by (1) it follows
that for every m�s, z(m, n; s, n) = mn − (m − s + 1). Our first result concerns with the extremal family for these
cases.

Theorem 1.1. Let m, n, t be integers with m > 2, 2� t < n. Let us denote by X the m-vertices class and by Y the
n-vertices class of K(m,n). Then

Z(m, n; m, t) = {K(m,n) − M},
where M is any Y-matching in K(m,n) with cardinality n − t + 1.

It is worth noting that for all values of the parameters m, n, s, t we have z(m, n; s, t) = z(n, m; t, s). Moreover, the
extremal graphs of the family Z(n, m; t, s) are obtained by swapping the vertices classes of each one of the graphs
in Z(m, n; s, t). Therefore, Theorem 1.1 also provides the extremal family of graphs Z(m, n; s, n) in terms of the
X-matchings of cardinality m − s + 1 of the complete bipartite graph K(m,n).

Next, we present a theorem which extends (1) and allows us to obtain the exact value of the Zarankiewicz number
z(m, n; s, t) whenever the parameters m, n, s, t are related by max{m, n}�s + t − 1.

Theorem 1.2. Let m, n, s, t be integers with 2�s < m, 2� t < n and such that max{m, n}�s + t − 1. Then{
z(m, n; s, t) = ex(m, n; Ks,t ) = mn − (m + n − s − t + 1),

Z(m, n; s, t) = EX(m, n; Ks,t ) = {K(m,n) − M},
where M is any matching of cardinality m + n − s − t + 1.
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Note that both Theorem 1.2 and (1) give the same value when t=2 and n=m=s+1. Next, we present a theorem which
can be compared with the “half–half” case (2) in the sense that we find the exact value for the function z(m, 2t; t, t)

for every m�2t .

Theorem 1.3. Let m, t be integers such that 2� t �m�2t . Then

z(m, 2t; t, t) = m · 2t − (2m − t + 1).

Moreover,

Z(m, 2t; t, t) = {K(m,2t) − (M1 ∪ M2)},
where M1 is a matching on t − 1 − 2r edges with r ∈ {0, . . . , �(t − 1)/2�}, and M2 is a subset of edges of K(m,2t) for
which one of the following assertions hold:

(i) m = 2t , r = 0 and M2 induces a cycle of length 2(t + 1);
(ii) m < 2t , r = 0 and M2 induces a forest with m − (t − 1) vertices of degree 2 in the m-class;

(iii) m < 2t , r �= 0 and M2 consists of the edges of m − (t − 1) + r disjoint copies of K(1,2),

and such that the induced subgraphs by M1 and M2 are disjoint.

Observe that when m=2t item (i) of the theorem gives the same result as (2). Hence Theorem 1.3(i) is an improvement
of the “half–half” case when s = t .

Finally, we partially extend the latter result for greater values of the parameter n.

Theorem 1.4. Let m, n, t be integers such that 2� t �m�n and 2t < n�3t − 1. Then

z(m, n; t, t) = mn − (2m + n − 3t + 1).

Moreover, if m��(3t − 1)/2� then

Z(m, n; t, t) = {K(m,2t) − (M1 ∪ M2)},
where M1 is a matching on n − t + 1 − 2r edges with r ∈ {2, . . . , �(n − t + 1)/2�}, and M2 consists of the edges of
m − t + r disjoint copies of K(1,2) such that the induced subgraphs by M1 and M2 are disjoint.

We must bear in mind the fact that if s = t then both extremal problems, z(m, n; t, t) and ex(m, n; Kt,t ), become
equivalent. Therefore, Theorems 1.3 and 1.4 not only give us the solution for the Zarankiewicz problem but also for
the problem of bipartite graphs free of Kt,t .

2. Proofs

The degree of a vertex w in a graph G is denoted by dG(w) = d(w), NG(w) is the set of vertices that are adjacent
to w in G, and NG(T ) = ⋃

w∈T NG(w) denotes the neighborhood of a subset of vertices T. We will also use e(G) to
denote the number of edges of G, and G[V ′] stands for the induced subgraph in G by the set of vertices V ′ ⊆ V (G).

Proof of Theorem 1.1. Let G = (X, Y ) be a bipartite graph with m-class X and n-class Y. We claim that G does not
contain a bipartite K(m,t) as a subgraph if and only if there exists a set U ⊂ Y of n − t + 1 vertices which are not
adjacent to some vertex of X. Indeed, every t-subset T ⊂ Y contains at least one vertex of U, hence G[X ∪ T ] �=
K(m,t); furthermore, if no such U exists, at most n − t vertices of Y are not adjacent to some vertex of X, hence
we can find a t-subset of Y whose vertices are adjacent to all the vertices of X, so K(m,t) ⊂ G. As a consequence,
z(m, n; m, t)=e(K(m,n))− (n− t +1)=mn− (n− t +1), and every extremal graph in Z(m, n; m, t) must be obtained
after deleting n − t + 1 edges (incident with n − t + 1 different vertices of Y) from a complete bipartite K(m,n), so the
result follows. �
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We focus our attention on bipartite graphs (X, Y ) with no subgraph K(s,t) such that both s < m and t < n, as the
cases s = m and t = n have been treated in Theorem 1.1. To do that, next we prove the following lemma.

Lemma 2.1. Let m, n, s, t be integers such that 2�s < m and 2� t < n. Let G = (X, Y ) be a bipartite graph without
K(s,t) such that |X| = m and |Y | = n. Then the following assertions hold:

(i) e(G)�mn − (m + n − s − t + 1).

(ii) If e(G) = mn − (m + n − s − t + 1) then max{m, n}�s + t − 1 and the m-class X of G consists of vertices of
degree at least n − 1 and the n-class Y of G consists of vertices of degree at least m − 1.

Proof. Let us order the vertices of X in such a way that d(xi)�d(xi+1), for i = 1, . . . , m − 1. Let us also denote by
S={x1, . . . , xs}. Then d(xs)�n−1 because otherwise d(xi)=n, for all i=1, . . . , s and therefore, G[S∪Y ]=K(s,n) ⊇
K(s,t), against our assumptions. Thus, we have d(xs)�n − 1, which implies that d(xi)�n − 1, for all i = s, . . . , m.
Since G does not contain K(s,t) as a subgraph, by (1) it follows that e(G[S ∪ Y ])�sn − (n − t + 1). So,

e(G) = e(G[S ∪ Y ]) + e(G[(X\S) ∪ Y ])
�sn − (n − t + 1) +

m∑
i=s+1

d(xi)

�sn − (n − t + 1) + (m − s)d(xs+1)

�sn − (n − t + 1) + (m − s)(n − 1)

= mn − (m + n − s − t + 1), (3)

and assertion (i) of the lemma is true.
Now suppose that e(G) attains its maximum value. Then all the above inequalities of (3) become equalities. So, we

deduce that d(xi) = n − 1 for all i = s, . . . , m and n − 1�d(xi)�n for all i = 1, . . . , s − 1. Moreover, G[S ∪ Y ] is the
graph resulting from the complete bipartite K(s,n) after deleting exactly n− t + 1 edges, no two of them being incident
with the same vertex of X because of the degrees of x1, . . . , xm. Therefore n − t + 1�s. The argument for the class Y
is similar. This proves item (ii). �

Recall that the cardinality of a maximum matching in a complete bipartite K(m,n) is min{m, n}. Next, we present a
result concerning the structure of the remaining graph after deleting a matching from K(m,n).

Lemma 2.2. Let m, n, s, t be integers such that 2�s�m, 2� t �n and max{m, n}�s + t − 1. Let M be a set of edges
of K(m,n) of cardinality m + n − s − t + 1. If M is a matching then the bipartite graph K(m,n) − M has neither K(s,t)

nor K(t,s) as subgraphs.

Proof. Let K(m,n) = (X, Y ) and let S be any subset of X of cardinality s and T any subset of Y of cardinality t. Since
M is a matching then the number of edges of M which are incident with some vertex in (X\S) ∪ (Y\T ) is at most
|X\S| + |Y\T | = (m − s) + (n − t) = |M| − 1. It follows that there exists some edge ab ∈ M with a ∈ S and b ∈ T .
Hence K(s,t) cannot be a subgraph of K(m,n) − M . Similarly, it is proved that K(m,n) − M does not contain K(t,s) as a
subgraph. �

The previous result provides a lower bound for the extremal function ex(m, n; Ks,t ), which allows us to prove
Theorem 1.2.

Proof of Theorem 1.2. The existence in K(m,n) of some matching M with cardinality m+n−s−t+1 follows from the
condition max{m, n}�s + t −1. Hence, for any such matching M, from Lemma 2.2 it follows that K(m,n) −M does not
contain neither K(s,t) nor K(t,s) as subgraphs, so ex(m, n; Ks,t )�mn−(m+n−s−t +1). Furthermore, by Lemma 2.1,
z(m, n; s, t)�mn−(m+n−s−t+1). Therefore we conclude that ex(m, n; Ks,t )=z(m, n; s, t)=mn−(m+n−s−t+1),
and also that K(m,n)−M ∈ EX(m, n; Ks,t ) ⊂ Z(m, n; s, t) for every matching M in K(m,n) with |M|=m+n−s−t+1.

Next, we show that there are no other extremal graphs in Z(m, n; s, t). Let G be a graph of the family Z(m, n; s, t)

with classes X and Y such that |X| = m and |Y | = n. Clearly e(G) = mn − (m + n − s − t + 1). Lemma 2.1 allows us
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to guarantee that min{dG(x) : x ∈ X} = n − 1 and min{dG(y) : y ∈ Y } = m − 1, hence there must exist a matching M
in K(m,n) of cardinality m + n − s − t + 1 such that G = K(m,n) − M . So the proof is complete. �

Next, we concentrate upon the s = t case for which we are going to prove similar results to the ones obtained for the
general case.

Lemma 2.3. Let m, n, t be integers such that 2� t �m and 2t �n�3t −1. Let G=(X, Y ) be a bipartite graph without
K(t,t) such that |X| = m and |Y | = n. Then the following assertions hold:

(i) e(G)�mn − (2m + n − 3t + 1).
(ii) If e(G) = mn − (2m + n − 3t + 1) then the m-class X of G consists of vertices of degree at least n − 2.

Proof. Let us order the vertices of X as in Lemma 2.1. Let us also denote by T = {x1, . . . , xt }. First, since G does not
contain K(t,t) as a subgraph, by (1) it follows that e(G[T ∪Y ])� tn− (n− t +1). Then d(xt )�n−2 because otherwise
d(xi)�n − 1, for all i = 1, . . . , t and therefore, e(G[T ∪ Y ])� tn − t > tn − (n − t + 1)�e(G[T ∪ Y ]), against our
assumptions. Thus, we can assume that d(xt )�n − 2, which implies that d(xi)�n − 2, for all i = t, . . . , m. So,

e(G) = e(G[T ∪ Y ]) + e(G[(X\T ) ∪ Y ])
� tn − (n − t + 1) + (m − t)(n − 2)

= mn − (2m + n − 3t + 1), (4)

and assertion (i) of the lemma is proved.
Next, if e(G) = mn − (2m + n − 3t + 1) then all the above inequalities of (4) become equalities. Therefore,

d(xi) = n − 2 for all i = t, . . . , m and n − 2�d(xi)�n for all i = 1, . . . , t − 1, which prove item (ii). Furthermore,
notice that e(G[T ∪ Y ]) = tn − (n − t + 1), and the edge set of K(t,n) − G[T ∪ Y ] is a Y-matching because K(t,t)�G.
�

Let us denote by Gc the bipartite complement of a bipartite graph G = (X, Y ), that is Gc = K(m,n) − E(G), where
E(G) denotes the edge set of G.

Lemma 2.4. Let m, n, t be integers such that 2� t �m�n. The bipartite graph K(m,n) − (M1 ∪ M2), M1 and M2
inducing disjoint subgraphs of K(m,n), does not contain K(t,t) as a subgraph if one of the following conditions hold:

(i) M1 is a matching of cardinality t − 1 and M2 induces a path of length 2(m − t + 1) with end vertices in Y,
provided that m < n = 2t .

(ii) M1 is a matching of cardinality t − 1 and M2 induces a cycle of length 2(t + 1), provided that m = n = 2t .
(iii) M1 is a matching on n − t + 1 − 2r edges with r ∈ {2, . . . , �(n − t + 1)/2�}, and M2 induces m − t + r disjoint

copies of K(1,2), provided that m��(3t − 1)/2� and 2t < n�3t − 1.

Proof. First, suppose that m < n = 2t and let us consider the graph G described in item (i). The existence of such sets
of edges M1 and M2 follows from (t − 1) + (m − t + 2) = m + 1�n. Let us denote by T any subset of t vertices of the
m-class X. The set T is formed by j vertices incident with j edges of M1 and t − j vertices incident with 2(t − j) edges
of M2, where j ∈ {0, . . . , t}. These j vertices are adjacent in Gc to j vertices in Y because the set of edges of M1 is a
matching. The remaining t − j vertices are adjacent to at least t − j + 1 vertices in Y because M2 induces a path. Then
the number of vertices of the n-class Y that are adjacent in Gc to some vertex in T is at least j + t − j +1= t +1. That is
to say, because |Y |=2t , the number of vertices ofY that are adjacent in G to all vertices in T is at most 2t −(t +1)= t −1
and therefore K(t,t)�G. This proves item (i). The proof for items (ii) and (iii) is analogous. �

Note that the size of the graphs described in the above lemma is mn − (2m + n − 3t + 1).

Proof of Theorem 1.3. By item (i) of Lemma 2.3 we have z(m, 2t; t, t)�mn−(2m−t+1). The other inequality comes
from items (i) and (ii) of Lemma 2.4.This proves the exact value of the extremal function z(m, 2t; t, t)=mn−(2m−t+1).
Let G = (X, Y ) be a graph of the family Z(m, 2t; t, t). From now on we consider the bipartite complement Gc of the
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graph G. Let us assume that the vertices of G are ordered as in Lemma 2.1, so d(x1)� · · · �d(xm) in Gc. By the proof
of Lemma 2.3 we know that d(xt ) = · · · = d(xm) = 2 and e(Gc[T ∪ Y ]) = t + 1, where T denotes the set of vertices
{x1, . . . , xt }. First, suppose that d(xt−1)=1. Then d(xi)=1 for all i=1, . . . , t−1 because e(Gc[T ∪Y ])=t+1, d(xt )=2
and d(xi)�d(xi+1) in Gc. Moreover, for all j = t, . . . , m and all i = 1, . . . , t − 1 we have NGc(xj ) ∩ NGc(xi) = ∅.
Otherwise, we can consider the set T ′ = {x1, . . . , xt−1, xj } which satisfies |NGc(T ′)|= t , followingK(t,t) ⊆ G because
|Y | = 2t , against our assumptions. Then the edge set M1 = E(Gc[{x1, . . . , xt−1} ∪ Y ]) is a matching on t − 1 edges.
Furthermore, if the edge set M2 = E(Gc[{xt , . . . , xm} ∪ Y ]) induces a cycle of length 2l, with 2� l� t , then we can
consider the t-subset T ′ of X formed by the l vertices of X on the cycle and t − l vertices incident with the edges of
M1. Clearly, |NGc(T ′)| = t which again leads us to an absurdity. Therefore the edge set of Gc is M1 ∪ M2, where
M1 and M2 induce disjoint subgraphs of K(m,2t). More precisely, M1 is a matching of cardinality t − 1 and either
M2 induces a cycle of length 2(t + 1) (which implies m = 2t) or M2 induces an acyclic subgraph. Note that in this
latter case M2 induces a forest such that all the vertices in the X class have degree 2. Second, suppose d(xt−1) = 2.
Then it is easy to check, reasoning as above, that M1 is a Y-matching on t − 1 edges formed by the edges of disjoint
copies of K(1,1) and K(1,2). Since d(xt ) = d(xt−1) = 2 and e(Gc[T ∪ Y ]) = t + 1 hence d(x1) = 0. If there exists
x̃1, x̃2 ∈ {xt , . . . , xm}such that NGc(x̃1)∩NGc(x̃2) �= ∅ then we can consider the subset T ′ = {x1, x2, . . . , xt−2, x̃1, x̃2}
of X, and clearly |NGc(T ′)|� t which is impossible. Therefore M2 consists of the edges of m − (t − 1) disjoint copies
of K(1,2). This proves the theorem. �

Proof of Theorem 1.4. By item (i) of Lemma 2.3 we have z(m, n; t, t)�mn−(2m+n−3t +1). The other inequality
comes from item (iii) of Lemma 2.4. Then z(m, n; t, t) = mn − (2m + n − 3t + 1). Let G be an extremal graph of the
family Z(m, n; t, t) and let us follow the same notation and assumptions as in the proof of Theorem 1.3. Notice that
e(Gc) = 2m + n − 3t + 1�n because m��(3t − 1)/2�, hence E(Gc) may be a Y-matching. By the proof of Lemma
2.3 we know that d(xt ) = · · · = d(xm) = 2 in Gc, and E(Gc[T ∪ Y ]) is a Y-matching with n − t + 1 edges. Since
d(xi)�d(xi+1) in Gc, then Gc[T ∪Y ] consists of n− t +1−2r disjoint copies of K(1,1) and r disjoint copies of K(1,2).
Since n�2t + 1 hence e(Gc[T ∪ Y ]) = n − t + 1� t + 2, that is to say, there exists at least two vertices in T of degree
2 and therefore 2�r ��(n− t + 1)/2�. Reasoning as in the proof of Theorem 1.3 we can check that the edge set of the
subgraph Gc[(X\T )∪Y ] is a Y-matching with m− t vertices of degree 2 in X. Consequently, G=K(m,n) − (M1 ∪M2)

where M1 =E(Gc[{x1, . . . , xt−r}∪Y ]) is a matching on n− t +1−2r edges, and M2 =E(Gc[{xt−r+1, . . . , xm}∪Y ])
consists of the edges of m − t + r disjoint copies of K(1,2). �
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