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Abstract

Let (X, Y) denote a bipartite graph with classes X and Y such that | X| = m and |Y| = n. A complete bipartite subgraph with s
vertices in X and ¢ vertices in Y is denoted by K, ). The Zarankiewicz problem consists in finding the maximum number of edges,
denoted by z(m, n; s, t), of a bipartite graph (X, ¥) with | X|=m and |Y | =n without a complete bipartite K (s ;) as a subgraph. First,
we prove that z(m, n; s, t) =mn — (m +n —s —t + 1) if max{m, n} <s + ¢ — 1. Then we characterize the family Z(m, n; s, t) of
extremal graphs for the values of parameters described above. Finally, we study the s =t case. We give the exact value of z(m, n; ¢, t)
if 2t <n <3t — 1 and we characterize the extremal graphs if either n = 27 or both 2t <n <3t — land m < [ (3t — 1)/2].
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Throughout this paper only undirected simple graphs without loops or multiple edges are considered. Unless stated
otherwise, we follow the book by Bollobds [1] for terminology and definitions.

Let (X, Y) denote a bipartite graph with classes X and Y such that | X| =m and |Y| =n. A complete bipartite subgraph
with s vertices in X and ¢ vertices in Y is denoted by Ky, ;). Given any integers m, n, s, t, what is the maximum size
of a bipartite graph (X, Y) if it does not contain a K ;)? Denote this maximum by z(m, n; s, t) and let Z(m, n; s, t)
stand for the family of extremal bipartite graphs (X, Y) free of K5 ;) whose size is z(m, n; s, t); whenm =n and s =1,
simply put z(n; t) = z(n,n; t,t) and Z(n; t) = Z(n, n; t, t). To avoid the trivial cases we shall suppose that 2 s <m,
2<t<n. In 1951 Zarankiewicz [9] posed the problem of determining z(n; 3) for n =4, 5, 6 and the general problem
has also become known as the problem of Zarankiewicz. It is worth noting that a related problem to this is to find the
maximum number of edges of a bipartite graph (X, Y) without K, as a subgraph (i.e., (X, Y) is free of both K
and K y)). This number is denoted by ex(m, n; K, ;) and we use EX(m, n; K ;) to denote the corresponding family
of extremal graphs with ex(m, n; K, ;) edges. Clearly,

ex(m,n; Ky ;) <z(m,n;s,t).
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A survey of work on Zarankiewicz problem appears in Section V1.2 of [1]. Some of the more recent work includes the
papers [3-8]. In [3,5,6], bounds for the function z(m, n; s, t) are given in an asymptotical way, i.e., when s, ¢ are fixed
and m, n are much larger than s, ¢. In this work we are concerned with the exact values of the function z(m, n; s, t). In
this regard Culik [2] has shown that if s, ¢, m are fixed then

m m
2m,nis, 1) =(s — Dn + ( — 1)(S) f0ra11n>(t—1)<s). (1)
It is known [1] that z(n; 2) < (n +n+/4n — 3)/2 and equality holds when n = g% + ¢ + 1 for a prime power g. Goddard
et al. [4] found the exact values of z(n; 2) for n <20 and showed that in some cases the family Z(n; 2) is formed by
only one extremal graph.

The problem of Zarankiewicz can be formulated using matrix terminology. More precisely, z(m, n; s, t) might be
defined as the maximum number of ones in an m x n {0, 1}-matrix free of s x ¢ submatrix of ones (where a submatrix
is the intersection of s rows and ¢ columns). Griggs et al. [7,8] studied the so-called “half-half” case, or in other words
the function z(2s, 2¢; s, t). Thus, supposing s <, the following bounds are stated in [8]:

4st — (2t +2s —ged(s, 1) + 1) <z(2s,2t; 5, 1) <4st — 2t +s5+ 1),

where gecd(s, t) being the greatest common divisor of s and ¢. Furthermore, it is proved that if t = ks +r, 0<r <,
such that either r = 0 or r > 0 and s <k + r (which is always true for > (s — 1)2) then

z(2s,2t;s,t) =4st — 2t +5+ 1). 2)

Later [7] deals with the case t = ks + 1, evaluating z(2s, 2¢; s, t) for large enough s and 7, and providing the exact
values for t <20 and s <7.

In this work we determine the exact value of z(m, n; s, ) and we characterize the family Z(m, n; s, t) of extremal
graphs if max{m, n} <s+1t — 1. Besides, we study the s =t case providing the exact value of the function z(m, n; t, t) if
2t <n <3¢ — 1. Finally, we characterize the family Z (m, n; ¢, t) of extremal graphs if either n =2¢ or both 2t <n <3¢ —1
andm< [(3r — 1)/2].

Let us define an X-matching in a complete bipartite graph K, ») = (X, Y) as the edges of a set of pairwise disjoint
K ;1) with j >1; that is, such that all the vertices of degree greater than 1 (if any) belong to the Y-class of Ky n). A
Y-matching in K, ) is defined analogously. Observe that a matching in K, ,) is always both an X-matching and a
Y-matching.

If s =m by (1) it follows that for every n > ¢, z(m, n; m, t) =mn — (n — t + 1). Analogously if t =n by (1) it follows
that for every m > s, z(m, n; s,n) = mn — (m — s + 1). Our first result concerns with the extremal family for these
cases.

Theorem 1.1. Let m, n,t be integers with m > 2, 2<t <n. Let us denote by X the m-vertices class and by Y the
n-vertices class of K n). Then

Z(m,n;m,t) = {K(m,n) - M},
where M is any Y-matching in K o, ») with cardinalityn —t + 1.

It is worth noting that for all values of the parameters m, n, s, t we have z(m, n; s, t) = z(n, m; t, s). Moreover, the
extremal graphs of the family Z(n, m; t, s) are obtained by swapping the vertices classes of each one of the graphs
in Z(m, n; s, t). Therefore, Theorem 1.1 also provides the extremal family of graphs Z(m, n; s, n) in terms of the
X-matchings of cardinality m — s + 1 of the complete bipartite graph K, ,).

Next, we present a theorem which extends (1) and allows us to obtain the exact value of the Zarankiewicz number
z(m, n; s, t) whenever the parameters m, n, s, t are related by max{m, n}<s +¢ — 1.

Theorem 1.2. Let m, n, s, t be integers with 2<s <m, 2<t <n and such that max{m,n}<s +1t — 1. Then

{z(m,n;s,t) =ex(m,n; Ks;)=mn—m+n—s—t+1),
Z(m7 n;s, t) :Ex(m7 n; KS,Z) = {K(ﬂ’l,ﬂ) - M}’

where M is any matching of cardinalitym +n —s —t + 1.
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Note that both Theorem 1.2 and (1) give the same value when =2 and n=m=s+ 1. Next, we present a theorem which
can be compared with the “half-half” case (2) in the sense that we find the exact value for the function z(m, 2¢; ¢, t)
for every m < 2¢.

Theorem 1.3. Let m, t be integers such that 2 <t <m <2t. Then
zm,2t;t,t)=m -2t — 2m —t +1).

Moreover,
Z(m,2t;t,1) = {Kgn,2 — (M1 UM2)},

where My is a matching ont — 1 — 2r edges withr € {0, ..., [(t — 1)/2]}, and M> is a subset of edges of K .21 for
which one of the following assertions hold:

(i) m =2t,r =0 and My induces a cycle of length 2(t + 1);
(i) m <2t,r =0 and M induces a forest with m — (t — 1) vertices of degree 2 in the m-class;
(iii) m <2t,r # 0 and M, consists of the edges of m — (t — 1) + r disjoint copies of K1),

and such that the induced subgraphs by M| and M» are disjoint.

Observe that when m =2t item (i) of the theorem gives the same result as (2). Hence Theorem 1.3(i) is an improvement
of the “half-half” case when s = ¢.
Finally, we partially extend the latter result for greater values of the parameter n.

Theorem 1.4. Let m, n, t be integers such that 2<t<m<n and 2t <n<3t — 1. Then
zim,n;t, t)=mn — 2m+n—3t+1).

Moreover, if m< | (3t — 1)/2] then
Z(m,n;t,t) ={Kmo — (M1 UM>)},

where M is a matching onn —t + 1 — 2r edges withr € {2,...,[(n —t + 1)/2]}, and M; consists of the edges of
m — t + r disjoint copies of K1 2y such that the induced subgraphs by M| and M, are disjoint.

We must bear in mind the fact that if s = ¢ then both extremal problems, z(m, n; ¢, t) and ex(m, n; K; ), become
equivalent. Therefore, Theorems 1.3 and 1.4 not only give us the solution for the Zarankiewicz problem but also for
the problem of bipartite graphs free of K; ;.

2. Proofs

The degree of a vertex w in a graph G is denoted by dg(w) = d(w), Ng(w) is the set of vertices that are adjacent
tow in G, and Ng(T) = UweTNg(w) denotes the neighborhood of a subset of vertices 7. We will also use e(G) to
denote the number of edges of G, and G[V'] stands for the induced subgraph in G by the set of vertices V' C V(G).

Proof of Theorem 1.1. Let G = (X, Y) be a bipartite graph with m-class X and n-class Y. We claim that G does not
contain a bipartite K, ;) as a subgraph if and only if there exists a set U C Y of n — ¢ + 1 vertices which are not
adjacent to some vertex of X. Indeed, every t-subset 7 C Y contains at least one vertex of U, hence G[X U T] #
K n,1); furthermore, if no such U exists, at most n — t vertices of Y are not adjacent to some vertex of X, hence
we can find a t-subset of ¥ whose vertices are adjacent to all the vertices of X, so K¢, ;) C G. As a consequence,
zm,nym,t)=e(Ku,n)— (n—t+1)=mn—(n—t+1),and every extremal graph in Z(m, n; m, t) must be obtained
after deleting n — ¢ + 1 edges (incident with n — ¢ + 1 different vertices of Y) from a complete bipartite K(,, ), so the
result follows. [
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We focus our attention on bipartite graphs (X, Y') with no subgraph K ;) such that both s <m and ¢t <n, as the
cases s =m and t = n have been treated in Theorem 1.1. To do that, next we prove the following lemma.

Lemma 2.1. Let m, n, s, t be integers such that2<s <m and 2<t <n. Let G = (X, Y) be a bipartite graph without
K s,1) such that | X| =m and |Y| = n. Then the following assertions hold:

G) e(G)sKmn—(m+n—s—1t+1).
@) Ife(G)=mn —(m+n—s —t+ 1) then max{m, n} <s 4+t — 1 and the m-class X of G consists of vertices of
degree at least n — 1 and the n-class Y of G consists of vertices of degree at least m — 1.

Proof. Let us order the vertices of X in such a way that d(x;) >d(x;j4+1), fori =1, ..., m — 1. Let us also denote by
S={x1,...,x5}. Thend(x;) <n—1because otherwise d(x;) =n, foralli=1, ..., s and therefore, G[SUY | =K, ) 2
K s 1), against our assumptions. Thus, we have d(x;) <n — 1, which implies that d(x;) <n — 1, foralli =5, ..., m.

Since G does not contain K, ;) as a subgraph, by (1) it follows that e(G[S U Y])<sn — (n —t + 1). So,
e(G)=e(G[SUY]) +e(GL(X\S)UY])

<Ssn—(—t+1D+ > dx)
i=s+1
<sn—(n—t+ 1)+ (m—s)d(xs41)
<sn—m—t+1D)+(m—s)(n—1)
=mn—(m+n—s—t+1), (3)

and assertion (i) of the lemma is true.

Now suppose that e(G) attains its maximum value. Then all the above inequalities of (3) become equalities. So, we
deducethatd(x;)=n —1foralli=s,...,mandn — 1<d(x;)<nforalli=1,...,s5s — 1. Moreover, G[S U Y] is the
graph resulting from the complete bipartite K ,) after deleting exactly n — r 4 1 edges, no two of them being incident
with the same vertex of X because of the degrees of x1, ..., x,,. Therefore n — t + 1 <s. The argument for the class Y
is similar. This proves item (ii). [J

Recall that the cardinality of a maximum matching in a complete bipartite K, ,) is min{m, n}. Next, we present a
result concerning the structure of the remaining graph after deleting a matching from K, ).

Lemma 2.2. Letm,n, s, t be integers such that 2<s <m, 2 <t <n and max{m,n}<s+t — 1. Let M be a set of edges
of K n) of cardinalitym +n — s — t + 1. If M is a matching then the bipartite graph K, ny — M has neither K ;)
nor K sy as subgraphs.

Proof. Let K, ») = (X, Y) and let S be any subset of X of cardinality s and 7 any subset of Y of cardinality ¢. Since
M is a matching then the number of edges of M which are incident with some vertex in (X\S) U (Y\T) is at most
[ X\S|+ |Y\T|=(m —s)+ (n —t)=|M| — 1. It follows that there exists some edge ab € M witha € Sandb € T.
Hence Ky ;) cannot be a subgraph of K, ,y — M. Similarly, it is proved that K, ,y — M does not contain K ) as a
subgraph. [J

The previous result provides a lower bound for the extremal function ex(m, n; Ky ;), which allows us to prove
Theorem 1.2.

Proof of Theorem 1.2. The existence in K, ,) of some matching M with cardinality m 4+-n —s —t + 1 follows from the
condition max{m, n} <s+t — 1. Hence, for any such matching M, from Lemma 2.2 it follows that K, ,,j — M does not
contain neither K ;) nor K(; sy as subgraphs, so ex(m, n; K, ;) >mn— (m-+n—s—t+1). Furthermore, by Lemma 2.1,
z(m, n; s, t) <mn—(m+n—s—t+1). Therefore we conclude thatex(m, n; K5 ;)=z(m, n; s, t)=mn—(m+n—s—t+1),
and also that K, ) —M € EX(m, n; K, ;) C Z(m, n; s, t) forevery matching M in K, ) with |[M|=m+n—s—t+1.

Next, we show that there are no other extremal graphs in Z(m, n; s, t). Let G be a graph of the family Z(m, n; s, t)
with classes X and Y such that | X| =m and |Y| =n. Clearly e(G) =mn — (m +n —s —t + 1). Lemma 2.1 allows us
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to guarantee that min{dg(x) : x € X} =n — 1 and min{dg(y) : y € Y} =m — 1, hence there must exist a matching M
in K, p) of cardinality m +n — s —t + 1 such that G = K, 5 — M. So the proof is complete. []

Next, we concentrate upon the s = ¢ case for which we are going to prove similar results to the ones obtained for the
general case.

Lemma 2.3. Letm, n, t be integers such that 2 <t <mand 2t <n<3t—1. Let G=(X, Y) be a bipartite graph without
K (t.1) such that | X| =m and |Y | = n. Then the following assertions hold:

(1) e(G)s<mn — 2m +n -3t +1).
(i) Ife(G) =mn — 2m +n — 3t + 1) then the m-class X of G consists of vertices of degree at least n — 2.

Proof. Let us order the vertices of X as in Lemma 2.1. Let us also denote by T = {xy, ..., x;}. First, since G does not
contain K ;) as a subgraph, by (1) it follows that e(G[T UY]) <tn — (n —t +1). Then d (x;) <n —2 because otherwise
d(xj)zn—1,foralli =1,...,t and therefore, e(G[T UY)) >tn —t>tn — (n —t + 1) 2 e(G[T U Y]), against our
assumptions. Thus, we can assume that d (x;) <n — 2, which implies that d (x;) <n — 2, foralli =¢, ..., m. So,

e(G)=e(G[T UY]) +e(GI(X\T)UY])
<tn—m—t+1)+m—1)(n—2)
=mn— 2m+n—73t+1), 4)

and assertion (i) of the lemma is proved.

Next, if e(G) = mn — (2m + n — 3t + 1) then all the above inequalities of (4) become equalities. Therefore,
dxjy=n—2foralli=t,...,mandn —2<d(x;)<nforalli =1,...,t — 1, which prove item (ii). Furthermore,
notice that e(G[T UY]) =tn — (n —t + 1), and the edge set of K(; ,y — G[T U Y]is a Y-matching because K(,,,),@G.
O

Let us denote by G° the bipartite complement of a bipartite graph G = (X, Y), that is G° = K,y — E(G), where
E(G) denotes the edge set of G.

Lemma 2.4. Let m, n,t be integers such that 2<t <m<n. The bipartite graph K, ny — (M1 U M>), My and M>
inducing disjoint subgraphs of K, ny, does not contain K, 1y as a subgraph if one of the following conditions hold:

(1) M, is a matching of cardinality t — 1 and M> induces a path of length 2(m — t + 1) with end vertices in Y,
provided that m <n = 2t.
(i) My is a matching of cardinality t — 1 and M» induces a cycle of length 2(t + 1), provided that m = n = 2t.
(iii) My is a matching onn —t + 1 —2r edges withr € {2,...,|(n —t + 1)/2]}, and M> induces m — t + r disjoint
copies of K(1,2), provided that m < | (3t — 1)/2] and 2t <n <3t — 1.

Proof. First, suppose that m < n =2t and let us consider the graph G described in item (i). The existence of such sets
of edges M and M> follows from (t — 1) + (m —t +2) =m + 1 <n. Let us denote by T any subset of ¢ vertices of the
m-class X. The set T'is formed by j vertices incident with j edges of M| and r — j vertices incident with 2(r — ;) edges
of M, where j € {0, ..., t}. These j vertices are adjacent in G° to j vertices in Y because the set of edges of M) is a
matching. The remaining # — j vertices are adjacent to at least # — j + 1 vertices in Y because M» induces a path. Then
the number of vertices of the n-class Y that are adjacent in G° to some vertex in 7'is at least j +¢ — j+1=¢+ 1. Thatis
to say, because |Y | =2t¢, the number of vertices of Y that are adjacent in G to all vertices in Tis atmost 2 — (t +1) =t — 1
and therefore K )¢ G. This proves item (i). The proof for items (ii) and (iii) is analogous. [J

Note that the size of the graphs described in the above lemma is mn — (2m +n — 3¢ + 1).
Proof of Theorem 1.3. Byitem (i) of Lemma 2.3 we have z(m, 2t; t, t) <mn—(2m—t+1). The other inequality comes

fromitems (i) and (ii) of Lemma 2.4. This proves the exact value of the extremal function z(m, 2¢; ¢, t)=mn—2m—t+1).
Let G = (X, Y) be a graph of the family Z(m, 2t; ¢, t). From now on we consider the bipartite complement G¢ of the
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graph G. Let us assume that the vertices of G are ordered as in Lemma 2.1, so d(x) < - - - <d(x,;) in G°. By the proof
of Lemma 2.3 we know that d(x;) = --- =d(x,;,) =2 and e(G°[T U Y]) =t + 1, where T denotes the set of vertices
{x1, ..., x:}. First, suppose thatd (x;—1)=1.Thend (x;)=1foralli=1, ..., t —1 because e(G[TUY])=t+1,d (x;)=2
and d(x;) <d(x;41) in G°. Moreover, forall j =¢,...,mandalli=1,...,1 — 1 we have Nge(x;) N Nge(x;) = 0.

Otherwise, we can consider the set T/ = {x1, ..., x;_1, xj} which satisfies | Nge (TH| =t, followingK ;) € G because
|Y'| = 2¢, against our assumptions. Then the edge set M| = E(G°[{x{, ..., x;—1} U Y]) is a matching on ¢t — 1 edges.
Furthermore, if the edge set M = E(G [{x;, ..., x,} U Y]) induces a cycle of length 2/, with 2 </ <t, then we can

consider the z-subset T’ of X formed by the [ vertices of X on the cycle and ¢ — [ vertices incident with the edges of
M;. Clearly, |[Nge(T')| = ¢ which again leads us to an absurdity. Therefore the edge set of G¢ is M| U M, where
M, and M induce disjoint subgraphs of K, 2;). More precisely, M is a matching of cardinality + — 1 and either
M induces a cycle of length 2(¢ + 1) (which implies m = 2¢) or M» induces an acyclic subgraph. Note that in this
latter case M» induces a forest such that all the vertices in the X class have degree 2. Second, suppose d(x;—1) = 2.
Then it is easy to check, reasoning as above, that M is a Y-matching on + — 1 edges formed by the edges of disjoint
copies of K(j,1) and K(1,2). Since d(x;) = d(x;—1) =2 and e(G°[T U Y]) =t + I hence d(x1) = 0. If there exists
X1, X2 € {x;, ..., xp}such that Nge (X1) N Nge (X2) # @ then we can consider the subset 7/ ={xy, x2, ..., x,_2, X1, X2}
of X, and clearly |[Nge(T")| <t which is impossible. Therefore M consists of the edges of m — (¢ — 1) disjoint copies
of K(1,2). This proves the theorem. [

Proof of Theorem 1.4. By item (i) of Lemma 2.3 we have z(m, n; t, t) <mn — (2m +n — 3t + 1). The other inequality
comes from item (iii) of Lemma 2.4. Then z(m, n; t,t) =mn — (2m +n — 3t + 1). Let G be an extremal graph of the
family Z(m, n; t, t) and let us follow the same notation and assumptions as in the proof of Theorem 1.3. Notice that
e(G) =2m +n — 3t + 1<nbecause m < | (3t — 1)/2], hence E(G°) may be a Y-matching. By the proof of Lemma
2.3 we know that d(x;) = -+ =d(x;,) =2 in G, and E(G°[T U Y]) is a Y-matching with n — ¢ + 1 edges. Since
d(x;) <d(xi41)in G, then G°[T UY] consists of n — ¢ + 1 — 2r disjoint copies of K(;,1) and r disjoint copies of K(j 7).
Since n >2t + 1 hence e(G°[T UY]) =n —t + 1 >t + 2, that is to say, there exists at least two vertices in 7 of degree
2 and therefore 2<r < [(n — ¢+ 1)/2]. Reasoning as in the proof of Theorem 1.3 we can check that the edge set of the
subgraph G°[(X\T) U Y] is a Y-matching with m — ¢ vertices of degree 2 in X. Consequently, G = K, n) — (M1 U M>)
where M| = E(G°[{xy, ..., x;—,}UY])isamatchingonn —r+ 1 —2r edges, and My = E(G [{x;—y41, ..., Xxm}UY])
consists of the edges of m — ¢ + r disjoint copies of K 2). [
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