
Arch. Hist. Exact Sci. (2007) 61:537–552
DOI 10.1007/s00407-007-0007-5

Numerical solving of equations in the work
of José Mariano Vallejo

José-Miguel Pacheco Castelao ·
F. Javier Pérez-Fernández ·
Carlos-Oswaldo Suárez Alemán

Received: 10 November 2004 / Published online: 24 May 2007
© Springer-Verlag 2007

Abstract The progress of Mathematics during the nineteenth century was
characterised both by an enormous acquisition of new knowledge and by the attempts
to introduce rigour in reasoning patterns and mathematical writing. Cauchy’s presen-
tation of Mathematical Analysis was not immediately accepted, and many writers,
though aware of that new style, did not use it in their own mathematical production.
This paper is devoted to an episode of this sort that took place in Spain during the
first half of the century: It deals with the presentation of a method for numerically
solving algebraic equations by José Mariano Vallejo, a late Spanish follower of the
Enlightenment ideas, politician, writer, and mathematician who published it in the
fourth (1840) edition of his book Compendio de Matemáticas Puras y Mistas, claim-
ing to have discovered it on his own. Vallejo’s main achievement was to write down
the whole procedure in a very careful way taking into account the different types of
roots, although he paid little attention to questions such as convergence checks and the
fulfilment of the hypotheses of Rolle’s Theorem. For sure this lack of mathematical
care prevented Vallejo to occupy a place among the forerunners of Computational
Algebra.
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538 J.-M. Pacheco Castelao et al.

1 A biographical sketch

Inspired by Enlightenment ideas, José Mariano Vallejo Ortega (Vallejo from now on)
was a prominent character of the Spanish social scene in the first half of the nineteenth
century. He was a civil servant, a politician, a prolific writer on a wide range of topics,
from Agriculture to Grammar and Railways, and a mathematician. Vallejo was born in
1779 at Albuñuelas, a small village in the province of Granada, Andalusia. It is known
[9, p. 105] [10, p. 382] that he spent some time as a college student in Granada, and in
1801, [10, p. 383] he was an appointed Lecturer of Mathematics at the Real Academia
de San Fernando1 in Madrid. In 1802, although he had not yet finished his studies,
Vallejo won a public contest for the Chair of Matemáticas, Ataque, Fortificación y
Defensa de Plazas at the Real Seminario de Nobles in Madrid. According to [11,
pp. 32-34], he was a brilliant, promising student, but the complex political situation
in Spain kept him from becoming a first rate mathematician.

Vallejo served as a representative of Granada at the Cortes de Cádiz in 1812, and
he kept a good relationship with politics during the first half of Fernando VII’s regime,
from 1814 to 1820. He was socially very active and held positions such as Librarian
of the Sociedad Económica de Madrid, Chief Accountant in the Colegio de Sordomu-
dos, Director of the Gabinete Geográfico, and some more. He was an active liberal
and during the trienio liberal he served as a member of the Dirección General de
Estudios at the Ministerio del Interior. The subsequent ten years or década ominosa
(1823–1833), when the Spanish political situation reverted to royal absolutism, he
had to flee from the royal persecution and went into exile. Vallejo spent those years
travelling through France, Belgium, Britain, and the Netherlands, and he took profit
of his exile by visiting most of the leading European scientists of his time. We read
in the foreword to his Tratado his acknowledgement and gratitude towards a number
of cultivated people (all quotations from Vallejo have been translated into English by
the authors):

In finishing this foreword, I cannot but express my gratitude to several wise men,
who have favoured me with their attention during my travels around Europe.
They are, in alphabetical order in Paris: MM. Ampère, Arago, Beudant, Biot,
Brochant, Brogniart, Cauchy, Chaptal, Dégérando, Elie de Beaumont, Fourier,
Francoeur, Gay-Lussac, Girard, Hachette, Jornard, Lacroix, Laplace, Lasteyrie,
Legendre, Navier, Poisson, Prony, Puissant, and Tenard (…) in Brussels: Mr.
Quételet and Mr. Lejoinne [24, Vol. II, p. XV].2

The European scientific community accepted Vallejo as a relevant member, as
shown by Valson’s biography of Cauchy, where Vallejo appears among the attendants
to Cauchy’s lectures which included many other well known scientists:

1 For this and other untranslated Spanish terms, see the glossary at the end of the article.
2 Al concluir este prólogo, no puedo menos de manifestar mi gratitud a varios sabios, a quienes he debido
atenciones, durante mis viajes por Europa, y que me han favorecido con su ilustración. Estos, colocados
por orden alfabético, son:…
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José Mariano Vallejo Ortega (1779–1846)

A côté de simples étudiants, on y voyait les hommes les plus illustres dans les sci-
ences mathématiques, tels que MM. Ampère, Sturm, Coriolis, Lamé et la plupart
des géomètres de ce temps. Il lui venait même des auditeurs de l’étranger, et ce
devait être, pour le profeseur, l’occasion d’un sentiment d’orgueil bien légitime
d’avoir à porter la parole devant des hommes tels que MM. Lejeune-Dirichlet,
de Berlin, Vallejo, de Madrid (our emphasis), Ostrogradsky et Bouniakousky, de
l’Académie de Saint-Pétersbourg, devant des savants qui s’étaient déjà illustres
par des travaux personnels de premier ordre et que la réputation de Cauchy avait
ré unis de si loin autour de sa chaire [30, Vol. I, p. 66].

After the death of king Fernando VII, Vallejo returned to Spain in 1833 and resumed
his previous intense political activity. He came back to the Government sphere and
served as Director General de Estudios in 1835. The next year he was re-elected as
a representative of Granada and involved himself in a plethora of projects, among
them the introduction and extension of the Metric System, the division of Spain into
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540 J.-M. Pacheco Castelao et al.

Compendio, 1835. The first edition to include Vallejo’s Method.

provinces, Railways, and the renovation of teaching methods. From 1843 until his
death in 1846 he was a Senator.

As a mathematician, Vallejo wrote several books and memoirs. His first one, from
1804, was a teaching aid for children, a topic he returned to in his 1826 and 1840
books. This paper is focused on the study of some ideas about numerical computa-
tions appearing in his Tratado [24] and Compendio [22]. Both texts had many printings
and editions along the years, and as late as 1856 the estate of Vallejo published a sort
of ultimate edition.

His two mathematical memoirs deal with the curvature of lines (1807) [20] and
some addenda (1806) [19] to the classical Spanish Instituciones de Geometría práctica
(1795) by Benito Bails (1730–1797) [2].

The pedagogical bias in Vallejo’s mathematical writings is most interesting and
deserves comment. Above all, he really believed in the need of promoting mathemat-
ical literacy and awareness, much in the line started in the middle of the eighteenth
century, when several European governments asked known scientists and philosophers
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to write texts for school usage. For instance, the well known Logic by E. Condillac
(1714–1780) was written for its use in Polish schools as shown in the Introduction to
[6]. Many examples can be found in the books by Vallejo supporting this view. The
writing is extremely rhetoric, keeping formulae to a bare minimum and with various
mnemonic rules. In fact, his teaching techniques encouraged learning by rote. Here
is the list of the works by Vallejo (full bibliographical details are provided in the
bibliography):

• Aritmética para niños. Madrid, 1804.
• Adiciones a la Geometría de don Benito Bails. Madrid, 1806.
• Memoria sobre la curvatura de líneas. Madrid, 1807.
• Tratado Elemental de Matemáticas, (3 Vol.). Palma de Mallorca, 1812 (Vol.I and

II) and Valencia, 1817 (Vol. III).
• Compendio de Matemáticas puras y mistas. Valencia 1819.
• Ideas primarias que deben darse a los niños …acerca de los números. Paris, 1826.
• Definiciones y extracto de las principales reglas y operaciones de la Aritmética.

Madrid, 1840.
• Explicación del sistema decimal. Madrid, 1840.
• Tratado completo de Matemáticas y Álgebra. Paris, 1856. (Posthumously pub-

lished by his estate).

2 Numerical solution of equations in Vallejo’s Compendio

The method Vallejo claims to be his discovery for numerical solving of (polynomial)
equations of any degree is presented [25, Vol. I, pp. 191–290] in the fourth (1840)
edition of his Compendio, where the reader is informed on the front page that the book
contains

A new, simple, general and reliable method to find real roots of numerical equa-
tions of any degree, even those that resist all means and resources offered by
Mathematics, even those provided by the Infinitesimal Calculus [25].3

The history of how this topic came to be included in this edition is the following:
Neither the first nor the second edition (1826) of Compendio dealt with the subject
of numerical solution of equations, but the 1841–1844 edition of Tratado reads:

In my Tratado sobre el movimiento y aplicaciones de las aguas (A treatise on
the movement and applications of waters), book 3, I solved through a simplified
version of this method some questions that were impossible to solve by any other
method. Later on, when I was preparing the third edition of Compendio I dis-
covered that the method could be generalised and simplified in a most admirable
way. I was involved in this research by 1835, and the printing of the first book
of Compendio arrived at the point where this doctrine should be inserted, so I

3 Un método Nuevo, sencillo, general y seguro para encontrar las raíces reales de las ecuaciones numéricas
de todos los grados, aun las que se resisten á cuantos medios y recursos ofrecen las Matemáticas, inclusos
los que suministra el Cálculo Infinitesimal.[Our emphasis.]
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542 J.-M. Pacheco Castelao et al.

had to stop solving a seventh degree equation and delayed its conclusions to an
appendix in the second Volume of Compendio. As stated in the notes on pages
218 and 263, I did this work while staying in bed [28, Vol. I, p. 368].4

Then follows the announcement [28, Vol. I, p. 369] that this new technique will
be included in the next printing of Compendio. This printing, or rather a new edition
(fourth) of Compendio appeared in 1840 [25], and will be the standard reference in
this article.

In pages 150–167 of Compendio Vallejo makes a succinct though interesting his-
torical description of the art of numerically solving equations. He is well aware of
the work by several previous authors: Viète, Harriot, Oughtred, Pell, Newton, Halley,
Lagni, Raphson, Jakob, Johann and Daniel Bernoulli, Euler, Lagrange, and Budan
de Bois-Laurent. The purpose of this introductory report is to highlight the difficul-
ties he had found in the practical application of these methods. In his survey Vallejo
comments on several possible causes for the malfunction of the methods he knew:

(a) Some of them, like Newton’s, depend heavily on the knowledge of a good
initial estimate. Vallejo writes:
This method of Newton needs the estimation of the root with an error less than
one tenth of the difference (Vallejo refers to the example given by Newton
in Analysis, where he states: “et sit 2 numerus qui minus quam decima sui
parte differt a Radice quæsita” [13, p. 8]) between the initial estimate and
the true value. In the case of a complicated equation this estimation may
be more cumbersome than directly solving the equation by my method [25,
Vol. I, p. 153].5

On the contribution by Raphson:
As a rule, for the methods by Newton and Raphson to produce their effect,
the difference between the initial estimate and the true value must be less
than one tenth of the true value. Should this not happen, the approximation
would be much slower and a greater number of calculations would be needed.
Occasionally the method would “fall in defect” [25, Vol. I, p. 154].6

4 En mi Tratado sobre el movimiento y aplicaciones de las aguas (§§130, 131, 132, 133, 140, 141, 142 y
276 del libro 3 o) resolví por este método, algo simplificado, varias cuestiones que no se podían resolver por
ningún otro procedimiento; y al preparar el original para la tercera edición de mi Compendio de Matemáti-
cas, llegué a descubrir, que este procedimiento se podía simplificar y generalizar del modo más admirable
y portentoso; y continuaba estas investigaciones en 1835, cuando ya la impresión del primer tomo llegó
hasta el parage en que se insertaba esta doctrina; y tuve que suspender la resolución de una ecuación del
7 o grado, reservándome insertar su conclusión y demás investigaciones en el apéndice al fin del 2 o tomo
de aquella edición del Compendio. Y consta por la notas de las páginas 218 y 263, que este trabajo lo hice
yo estando en cama.
5 Este método de Newton estriba en que por tanteos se conozca ya el verdadero valor de la raíz con menos
de una décima parte de diferencia; lo cual en ecuaciones complicadas exige más molestia y trabajo que la
resolución completa de la ecuación por mi método.
6 En general, para que el método de Newton y el de Raphson produzcan su efecto, conviene que se conozca
un valor a de la raíz, que difiera del verdadero valor de x en menos de la décima parte de dicho valor; si
esto no se verifica la aproximación será más lenta, y la operación exigirá un gran número de sustituciones,
pudiendo llegar el caso de caer en defecto.
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Here “fall in defect” means “be not convergent”. And on the method by
Lagrange:
This method is based, as Newton’s, on the hypothesis that the integer part of
a root is known [25, Vol. I, p. 155].7

(b) Other methods are complicated, tedious and leading to hard computations.
Vallejo comments:
Lagrange’s method often leads to long, troublesome, and painful calcula-
tions. Therefore, in practice Newton’s method is preferred, as well as some
other procedures by Kramp, Cagnoli.8, etc. [25, Vol. I, p. 155]9

The method of Daniel Bernoulli is also criticised. Vallejo referred to slow
convergence as weak approximation:
The method by Bernoulli is the computation of a recursive series such that the
quotient of consecutive terms yields better approximations to the root as the
index grows. This method is not suitable for every equation, for quite often
the number of terms needed is very high and only a weak approximation is
obtained.10

(c) Difficulties in estimating and bounding the error of the computed approxi-
mation:
It is rather difficult to know the degree of approximation obtained with the
preceding methods, i.e. which is the right number of decimal figures where
one should stop in order that the subsequent computations do not become
too laborious [25, Vol. I, p. 154].11

Moreover, Vallejo insists on the fact that all these methods need Differential Cal-
culus or Matemática sublime:

In addition to incompleteness, all these methods do need higher Mathematics
[25, Vol. I, p. 155].12

Finally, the author states his teaching interests and writes:

7 Supone, como el de Newton, que ya por tanteos se conozca que una de las raíces se halla entre a y a + 1;
o de la cual a es la parte entera.
8 He refers to the astronomers Christian Kramp (1770–1826) and Antonio Cagnoli (1743–1816).
9 El método de Lagrange conduce muchas veces a cálculos tan largos, molestos, penosos y desagradables,
que en la práctica se prefiere aún el de Newton y algunos otros procedimientos usados por Kramp, Cagnoli,
etc.
10 El método de Bernoulli consiste en hallar una serie recurrente, tal que uno de sus términos, dividido por
el precedente, dé un valor más y más aproximado a una raíz de la ecuación, según los términos empleados
sean mayores.

No todas las ecuaciones son de naturaleza de podérselas aplicar este método con ventaja; y frec-
uentemente hay precisión de calcular un muy gran número de términos de la serie, para obtener una
dé bil aproximación.
11 Es bastante difícil poder conocer exactamente el grado de aproximación que se obtiene por los métodos
precedentes, a saber: en cada operación, cuáles son las cifras decimales, en que se debe uno detener para
no hacer inúltilmente los cálculos sucesivos demasiado laboriosos.
12 Todos estos métodos, además de lo defectuoso e incompletos que son, necesitan para poderse emplear,
conocimientos de los más sublimes de las Matemáticas.
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I think I could say that my method can be applied by pupils at schools [25,
Vol. I, p. 156].13

It is most interesting to notice the absence of references in the quotations by Vallejo
to two authors who made first-order contributions to the field. These are Paolo Ruffin-
i’s (1765–1822) Sopra la Determinazione delle Radici nelle Equazione numeriche di
qualunque Grado [15] and William Horner’s (1786–1837) A new method of solving
numerical equations of all orders by continuous approximation [12]. There is not a
clear explanation of this fact. It is quite possible that Vallejo was not aware of them,
or maybe the very strong influence of French culture and Mathematics in Spain—and
most notably Cauchy’s (cf. [31,32])—was determinant in his ignorance. This should
be no surprise because, as Cajori points out in [3], the works of Horner and Ruffini
were relegated in French treatises to a few footnotes until the beginning of the twenti-
eth century. On the other hand, Budan’s method based on polynomial transformations
was indeed known to Vallejo (cf. [25, Vol. I, p. 156]), even though this method did
not count among the favourites of Cauchy, whose opinion on it is described in his
Mémoire sur la résolution numérique des équations... with the words “ ...sont appuyés
sur des théories étrangères aux éléments d’Algèbre” [5, 2a ser., T. 9, p. 88].

3 Numerical solution of equations according to Vallejo

The work of Vallejo on this topic is presented in pages 191–290 of the 1840 edition
of Compendio. Pages 191–200 contain a study of Regula Falsi, 200–209 deal with
errors, and his own method is explained in twenty pages from 209 to 229. The remain-
ing pages contain a number of fully worked out exercises illustrating the method at
work in several polynomial equations with degrees ranging from two to six. Further on
the reader finds a very long footnote on logarithms, extending from page 312 to page
335, where the application of the method to seventeen examples of transcendental
equations is considered. More applications can be found in an appendix to Volume II
of Compendio, where he presents the work of students at Escuelas Normales (institu-
tions for the training of future schoolteachers) on 29 more equations, even one of the
80th degree.

3.1 The toolbox

As an introduction to his method, Vallejo presents in Compendio the fundamental
results on which it is based. Six theorems are studied, and he claims they contain
everything that is needed for the method to work.

The first theorem, for which a standard proof is provided, is the well known factor
theorem stated this way:

13 creo haber llegado hasta el punto de poderse aplicar mi método por los discípulos de las escuelas.
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If a is root of the equation xn + Axn−1 + Bxn−2 +Cxn−3 +· · ·+ K x + L = 0,

then x − a is a factor of the left member [25, Vol. 1, p. 157].14

Second comes the theorem now known as Bolzano’s, rhetorically formulated in a
complicated nineteenth century language. It goes like this:

Let two different numbers be substituted for the unknown in the left member
of a (polynomial) equation, such that they yield numerical values with different
signs. Then it is verified that the equation must have at least one root comprised
between the two chosen numbers [25, Vol. I, p. 158].15

Vallejo offers a “proof” which strongly contrasts with the rigorous style of Cauchy:

Let the polynomial p(x) be written by grouping together all positive and neg-
ative terms, p(x) = P(x) − N (x). Now consider two numbers a and b such
that p(a) < 0 and p(b) > 0. It follows that P(a) < N (a) and P(b) > N (b).
Therefore some z must exist between a and b which satisfies P(z) = N (z) or
equivalently p(z) = 0.

This is a circular argument: To infer the existence of z from P(a) < N (a) and
P(b) > N (b), Bolzano’s theorem is needed, but it is the one Vallejo wants to prove.
In his defense it must be noted that his argument is more a geometric intuition, quite
possibly inspired in the Cours d’Analyse [4, p. 43], than a proof.

A third theorem establishes the fact that every odd degree polynomial has a real
root whose sign is opposite to that of its independent term [25, T. I, p. 159].16

The proof offered by Vallejo combines Bolzano’s theorem with the following result
contained in the second Volume of Compendio:

For any polynomial of degree n, a value z can be chosen for the unknown such
that the term containing the highest degree term zn is larger than the sum of all
the remaining terms [25, Vol. II, pp. 50–52].17

Next comes the related theorem for polynomials of even degree, proved in an anal-
ogous way: Every even degree polynomial whose independent term is negative has at
least two real roots, a positive and a negative one [25, T. I, p. 159].18

The two previous results are combined with the change of variable x2 = z in order
to show that: Every polynomial whose terms are all of even degree and having a neg-

14 Si a es raíz de la ecuación xn + Axn−1 + Bxn−2 + Cxn−3 + · · · + K x + L = 0, el primer miembro
de dicha ecuación será divisible por x − a.
15 Si de sustituir dos números por la incógnita en una ecuación, el primer miembro da valores de signos
contrarios, se verifica, que dicha ecuación ha de tener al menos una raíz real comprendida entre aquellos
dos valores de la incógnita.
16 Toda ecuación de grado impar, tiene al menos una raíz real de signo contrario al de su último término.
17 En toda serie ordenada por potencias de una sola variable, se le puede dar a esta un valor tal que un
término cualquiera sea mayor que la suma de todos los que le siguen.
18 Toda ecuación de grado par, cuyo último término es negativo, tiene al menos dos raíces reales, una
positiva y otra negativa.
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ative independent term has at least two real roots of equal absolute value, a positive
and a negative one [25, T. I, p. 160].19

The toolbox is completed by adding the last item, an easy consequence of the above
theorems: Every polynomial whose terms are all of even degree and with positive
coefficients has no real roots, only imaginary ones [25, T. I, p. 160].20

A remark on nineteenth century nomenclature is that our “absolute value” and
“complex numbers” are indicated as “numerical value” and “imaginary quantities”.

Now Vallejo proudly proclaims in his flourished style: On the only basis of the
preceding results I shall solve any sort of numerical equations, even the most difficult
ones solved up to date by any other known method [25, T. I, p. 161]21...

As an application, he adds that the 64 roots of u64 −7u48 +21u32 −29u16 +14 = 0
are computed by his purely arithmetical method.

3.2 Vallejo and Rolle’s Theorem

Vallejo is extremely confident on the validity of his “completely arithmetical” method.
Nevertheless, he knows well that location of the roots can be assessed from an appli-
cation of Rolle’s theorem, and when it comes to looking for bounds of the roots, he
does use the theorem in a rather rhetoric way without giving it any name. In Com-
pendio [25, Vol. I, pp. 217–218], instead of simply stating that the real roots of the
derivative are separated by the real roots of the polynomial or any similar formula-
tion, he proceeds to explain how to write down the derivative of a polynomial and
how to use its roots in order to compute intervals such that the original polynomial
has different signs at the endpoints. His idea is to provide the user with a simple
rule to be used in a purely algorithmic way as a mere complement to his arithmetical
conception:

To form the derivative of the equation, just multiply the coefficient of each term
by the exponent and reduce this in one unit, eliminate the independent term and
equate everything to zero. This new equation will be solved by my method in an
easier way because its degree is one less than that of the original equation. The
values obtained are employed as supposed numbers in the equation, and if their
errors are of different signs [25, Vol. I, pp. 217–218].22

19 La ecuación en que todos los exponentes de la incógnita sean números pares, y su último término sea
negativo, tendrá al menos dos raíces reales de igual valor numérico.
20 La ecuación en que todos los exponentes sean números pares y todos los coeficientes sean números
positivos, no tiene ninguna raíz real; y todas serán imaginarias.
21 Fundándome únicamente en lo que precede resolveré por mi mé todo toda clase de ecuaciones numéri-
cas; contrayéndome desde luego a las ecuaciones más difíciles, que cuantas se han resuelto hasta el día por
todas los otros métodos conocidos...
22 Fórmese la ecuación derivada de la ecuación primitiva; lo que se consigue multiplicando el exponente de
la incógnita en cada término, por su coeficiente, disminuyendo cada exponente en una unidad, suprimiendo
el término constante de la primitiva e igualando a cero todo este conjunto de términos. Se resolverá esta
ecuación derivada encontrando sus raíces reales por el procedimiento anterior lo cual será mas fácil, pues
la ecuación derivada resulta siempre un grado inferior a la primitiva. Los valores, que se obtengan para las
raíces de la ecuación derivada, se sustituirán en la ecuación primitiva; si diesen resultados de signos con-
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He also thinks that the lower the degree is, the easier to solve is the polynomial
equation. In general, this is not true: A simple example is provided by the polynomial
(x − 1)(x − 2)(x − 3)(x − 4)(x − 5). It is enough to expand it and to compute its
derivative to check that Vallejo’s assumption is a risky one.

3.3 The method

Strictly speaking, the method of Vallejo for the numerical solution of polynomial
equations is a clear example of the general shape of a numerical method:

(a) A starting two-point (or double) Regula Falsi, including possible checks by Bolz-
ano’s theorem when needed.

(b) Iteration of (a).

The theory starts with the statement: The doctrine of the false position, either
simple or double, can only be applied to problems where the left hand side of the
equation is proportional with the sought number [25, Vol. I, pp. 197–198],23 and
Vallejo illustrates it by writing xn + Axn−1 + Bxx−2 + · · · + K x + L = 0 in the
form x

(
xn−1 + Axn−2 + Bxn−3 + · · · + K

) = −L and observing that in this last
expression the first factor is indeed proportional to x and though the second one ...is
not strictly proportional to x , it does vary with it; therefore variations in the value of
the left hand side are dominated by its being proportional to x, and any formulae we
may apply to the left hand side, obtained on the hypothesis of this proportionality, will
yield results that, although not exact ones, will certainly approximate the true ones.
And this is the basis of the most essential part of my method [25, Vol. I, pp. 197–198].24

It is difficult to understand what Vallejo had in mind, and little help is obtained when
he presents a first estimate25 to the actual root obtained by means of the “method of the
secant” (see Fig. 1), starting from any two numbers a and b such that | f (a)| < | f (b)|:

Here x̄ ≈ c = a + f (a)(a−b)
f (b)− f (a)

, a formula easily derived from the similarity of
triangles B ′ D A′ and A′ AC . In fact, the method actually introduces a forward finite
difference approximation to f ′(a) in the Newton–Raphson formula. In the language
of Vallejo a and b are called supposed numbers (Spanish: supuestos), f (a) and f (b)

are errors, | f (a)| and | f (b)| are numerical errors, where a and b are chosen in order
that | f (a)| < | f (b)|, and f (a)(a−b)

f (b)− f (a)
is the correction term. As a rule, the author sys-

tematically begins with the supposed numbers a = 1, b = 2 and then checks that the

trarios a los que se hayan obtenido por lo otros supuestos, se tomarán para dos primeros números supuestos
respecto a esta combinación, (...) y con ellos se continuará hasta encontrar las raíces reales que contengan.
23 La doctrina de la falsa posición, simple o doble sólo se puede aplicar a cuestiones en que el primer
miembro de la ecuación a que conduzcan sea proporcional con el número buscado.
24 ... aunque no es esencialmente proporcional con x , varía con x ; luego siempre la parte dominante de las
variaciones del primer miembro es el ser proporcional a x ; y cuantas fórmulas apliquemos a dicho primer
miembro, que estén sacadas en el supuesto de la proporcionalidad con x , darán resultados que, aunque
no serán exactos, se aproximarán a los verdaderos. Y en esto se funda la parte más esencial de mi nuevo
método.
25 The first step in the numerical computation of a root is the choice of an initial trial estimate, but it may
happen that an unadequate one will spoil the calculations. Therefore this choice must be optimised through
some a priori knowledge on the location of the roots of p(x) before embarking on the solution of p(x) = 0.
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Fig. 1

difference f (b)− f (a) is large enough in order to guarantee that the first trial interval
is not too long. It is known that the length of this interval will strongly influence the
number of iterations.

Then, a detailed discussion of every possible case is presented. For instance, under
the hypothesis f (b) f (a) > 0, a first case would be finding some c such that
f (a) f (c) > 0 and | f (b)| > | f (a)| > | f (c)| > 0. When this happens, iteration of the
procedure follows taking a and c as new supposed numbers, and continues in this way
until either f (c∗) = 0 for some iteration, or | f (c∗)| is small enough according to the
needs of the calculation under way. The exposition is found in [25, Vol. I, pp. 212–213]
and a number of worked examples are given in [25, Vol. II, pp. 438–451].

Vallejo does not explicitly describe any stopping criterion. Intuitively, he thinks
that if the sequence of supposed numbers defines a monotone decreasing sequence of
numerical errors, then this last one converges to some root of the equation, but no
further convergence discussion is offered.

The second interesting case appears whenever f (b) > f (a) > 0 and f (c) < 0
or f (b) < f (a) < 0 and f (c) > 0. Now there exists at least one root of the equa-
tion between26 a and c [25, Vol. I, p. 213], and Vallejo proceeds by applying again
Regula Falsi with the new supposed numbers a and c. Furthermore, Vallejo explicitly
cites convergence of Regula Falsi, to our knowledge for the first time in history [25,
Vol. I, p. 214].

Further analyses are subtler. The third case is when the sequence of numerical
errors | f (b)|, | f (a)|, | f (c)| is not monotonically decreasing. In fact, the hypothesis
| f (c)| > min {| f (b)|, | f (a)|} is considered. Now the method is to systematically
explore the behaviour of the polynomial at the supposed numbers 10, 100, 1000,…,
and if no change of sign is detected, at –10, –100, –1000,…, until a change of sign
is found or it is clear from the nature of the equation that this will never happen [25,
Vol. I, p. 214].27 Surprisingly, Vallejo does not give any criterion for stopping this
search. He certainly knew the Cours d’Analyse [4, pp. 470–479], where the estimate

26 entonces hay al menos una raíz real comprendida entre.
27 hasta que se logre que cambie de signo la equivocación o error, o se vea por la naturaleza de la ecuación
que esto jamas se logrará.
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|x̄ | < 1 + max
0≤i≤n

∣
∣∣ ai

an

∣
∣∣ for any root of f (x) = an xn + an−1xn−1 + · · · + a1x + a0 is

given, a formula already found by Rolle [16, p. 254]. This method certainly works
for odd degree polynomials, but for even degree polynomials it can skip pairs of
real roots located between successive powers of 10. Vallejo writes on this in [25,
Vol. I, p. 217], and he points out that the derivative—whose roots can also be com-
puted by his method—must be calculated in order to apply the theorem of Rolle. In a
long footnote in p. 219 [25, Vol. I] he describes the behaviour of f (x) when f ′(x) = 0.
In short, his discussion can be summarised in three points:

If x is a root of f ′(x) = 0 , it can happen that:

(a) It is a root of f (x) = 0 as well.
(b) The sign of f (x) is different from that of the values in previous supposed num-

bers. In this case, the theorem of Bolzano is applied in the interval defined by x
and the nearest one of the supposed numbers.

(c) The sign of f (x) is not different from that of the values in previous supposed
numbers. Now we must look for other roots of the derivative until (a) or b) holds,
or else, when no more roots of the derivative can be computed, we find that the
original polynomial is of constant sign and therefore has no real roots.

With the above procedure, Vallejo is able either to find a root x̄ of the equation, or
to decide that it has no real roots. In the first case, further roots can be sought in the
new equation f (x)

x−x̄ = f1(x) = 0, to which the method is again applied and can be
repeated until some rootless quotient fN (x) is found.

The author thinks that his procedure is robust in the sense that it is immune to the
effect of erroneous computations. Since no convergence proofs are offered, it seems
that he was led to this conclusion only on empirical evidence, because in every exam-
ple he presents, the new supposed number is a rounded value of the previous one.
Moreover, the method has no predilection for any particular root. To summarise, it
always finds some root (or the lack of them), and as long as his only aim is the solving
of equations, Vallejo is certainly satisfied with the final result.

4 The method from today’s viewpoint

Numerical equation solving is above all a practical matter. In the first half of the
nineteenth century, numerical computations were done by hand and there was little
knowledge on the role of accumulative rounding errors. In some cases, especially
when dealing with multiple roots, rounding errors can lead to wrong conclusions:

(a) For the first case studied by Vallejo, | f (b)| > | f (a)| > | f (c)| > 0, we know
today that the iterates of the secant method may not converge toward a multiple
root.

(b) In the second case f (b) > f (a) > 0 and f (c) < 0 (or f (b) < f (a) < 0 and
f (c) > 0), it can happen that rounding errors lead to non accurate sign deter-
minations, so the interval where Bolzano’s Theorem is applied will not be the
correct one, yielding a senseless computation.
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(c) The deflating process by which the lower degree polynomial f1(x) is obtained
after division of f (x) by x − x̄ can be unstable from the computational view-
point. As a rule, small errors in the determination of x̄ will give small errors
in the coefficients of f1(x) and in the determination of its roots, but examples
can be found in the literature [1,8] where this assumption is a false one: In [8,
pp. 70–71] the following example is presented: Let f (x) = (x −1)(x −2)(x −3)

(x − 4)(x − 5)(x − 6)(x − 7), where the coefficient of x6 is −28. If we
take −28.002 as an approximate coefficient with eight significant digits, then the
two roots 5 and 6 switch into a pair of complex roots 5.4586758 + 0.54012578i,
5.4586758–0.54012578i . In modern language, this is a case of bifurcation of the
roots as functions of the polynomial coefficients. Some interesting references on
this “perfidious polynomial” are [7,33].

(d) It has been already remarked that Vallejo does not explicitly give stopping criteria
for the iterative processes contained in his method. Instead, the user may decide
when to stop calculations [25, Vol. I, p. 213] by determining some k such that
f (c) ≤ 10−k . A simple example shows that false roots could be determined:
If f (x) = (x − p)q + 10−r and r > k, p could be taken as a root because
f (p) < 10−k . Indeed Vallejo should be forgiven for not having considered such
special cases: His aim was to show how to train human computers and from his
viewpoint these strange could be left to first-rate analysts or skilled mathemati-
cians, if needed.

5 Conclusions

As a first result, it can be concluded that Vallejo contributed a formulation of Regula
Falsi and the secant methods in almost present day terms, hoping that it could yield a
Calculus-free approach to the problem of solving equations numerically. Regula Falsi
as a method in its own right had somehow been abandoned during the two preceding
Centuries in favour of methods derived from the new Differential Calculus, infinite
series, and continued fractions. The secant method is simply a finite difference formu-
lation of the Newton–Raphson procedure, where the derivative is approximated by a
forward difference quotient.

Moreover, Vallejo combined his Regula Falsi with iteration, and was able to write
down a rather straightforward procedure—or algorithm—that worked well in a large
number of examples presented in [25]. Of course these examples do not contain any
badly behaved polynomial, and only a few transcendental equations are dealt with. It
is highly remarkable that his emphasis on the algorithmic nature of computations is
ahead of his time by more than one hundred years. Vallejo insists on the main feature
of his method: It is a global one, in the sense that it always arrives either at a root or
to the lack thereof regardless of the two first supposed numbers employed, so there is
no need of a previous estimation of a candidate root.

The second result is the observation that Vallejo is reluctant to accept the tools
of Calculus into his method, and only uses Rolle’s theorem when he finds that his
arithmetical viewpoint is unable of further progress. Had he stated the method more
completely by including Rolle’s theorem as a routine check, he would certainly have
been a real forerunner of Computational Algebra.
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As a third result, it has been found that Vallejo was aware of the state of Mathemat-
ics in the first third of the nineteenth century and of the developments leading to the
introduction of rigorous reasoning, whose main character was Cauchy. In spite of this,
Vallejo did not formulate his theory and methods for solving equations in a rigorous
way. Some proofs are simple geometric intuitions and long rhetoric arguments are
offered in order to convince the reader of the validity of results. Rigour as a standard
requirement in mathematical writing was starting its way, and the acceptation of this
idea in Spanish Mathematics during the nineteenth century is the core of the doctoral
dissertation [17] by one of the authors (CSA).

Spanish–English Glossary

Real Academia: Royal Academy
Real Seminario de Nobles: Royal Seminar or High School for Nobles
Cortes de Cádiz: The first democratic Parliament elected in Spain. Its

sessions took place in Cádiz the year 1812.
Sociedad Económica: A type of private philanthropic society for the eco-

nomic and cultural promotion of some city or area.
They still survive in many parts of Spain.

Colegio de Sordomudos: Special school for the deaf-mute.
Gabinete Geográfico: Geographical Cabinet.
Trienio liberal: Three year period (1820–1823) in the reign of

Fernando VII during which all constitutional rights
were respected.

Década ominosa: Ominous decade. Ten year period following the trie-
nio liberal where absolute monarchy was restored. It
ended with the death of Fernando VII the year 1833.

Dirección General de Estudios: General Directorate of Studies. Its headperson is the
Director General de Estudios.

Tratado: Treatise.
Compendio: Compendium.
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