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ANTONIO AIZPURU, FRANCISCO J. GARCIA-PACHECO,
AND CONSUELO PEREZ-ESLAVA
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ABSTRACT. Some classical results about uniform convergence of uncondition-
ally convergent series are generalized to weakly unconditionally Cauchy series
by means of the matrix summability method for regular matrices.

1. INTRODUCTION AND BACKGROUND

A series zzozl Zr in a real Banach space X is called weakly unconditionally
Cauchy (wuC) if 37,2, |f (zk)| < oo for every f € X *, and is called unconditionally
convergent (uc) if 3 7 Tr(k) is convergent for every permutation 7 of N. It is well
known (see [7] and [8]) that a series Y re1 Tr is uc if and only if the series D ore QR
is convergent for every (ay) rken € Loo, and is wuC if and only if the series ey BETR
is convergent for every (ax),.y € co. It is also well known (see [4] and [7]) that a
Banach space has a copy of ¢q if and only if it possesses a wuC series which is not
uc. Another characterization of wuC series that appears in [7] states that a series
> e Tk is wuC if and only if

T
sup Zakmi lag| <L ke{l,...,n},neN} < .
k=1
Now, let X denote a real Banach space. Given a regular matrix 4 = (ay;), jeN

and a vector subspace S of £, containing cq, the following space of vector sequences
is defined:

. ‘
XS A) =< (), o X AZaka:k exists for every (ax),.y € S
k=1

o oo J
A E arTr = lim E Qi E arTy
T—00
k=1 j=1 k=1

We refer the reader to [5] for a wider perspective on matrix summability methods.
Following the notation in [1], we let X (co) denote the space of weakly uncondi-
tionally Cauchy series in X, also denoted by €9 (X), and X (£.,) will be the space

?

where
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of unconditionally convergent series in X. Both spaces are real Banach spaces
endowed with the norm

1) el =sup{

T
E apTE
k=1

Furthermore, X (£o) € X (S,A) C X (¢o). Also, notice that if A is the identity
matrix, then X (S, A) is exactly the space X (S) studied in [1].

On the other hand, in [11] is shown the following representative result concerning
uniform convergence of unconditionally convergent series.

:|ak|§1,ke{1,...,n},n€N}.

Theorem 1.1. Let X be a real Banach space. Let (z™), oy be a sequence in X (Loo)
such that for every (a (k))yen € foos iMn—oo D gy @ (k) 2™ (k) exists. Then, there
exists 2° € X (€s) such that lim, e |27 — SED” =in X (Lso).

In [1] and [2] several similar results are proved for the case of weakly uncondi-
tionally Cauchy series. In this manuscript, we mean to show some other results on
uniform convergence of weakly unconditionally Cauchy series.

2. PRELIMINARY RESULTS

The first result we would like to present shows the completeness of the space
X (S, A) endowed with the norm given in (1.1).

Theorem 2.1. Let X be a real Banach space and consider A = (o ), jen to be a

regqular matriz and S a vector subspace of {o, containing co. Then, X (S, A) is a
complete space endowed with the norm given in (1.1).

Proof. We will show that X (S, A) is closed in X (¢p). Let us start by denoting
o>
M = sup Z]aij\ :1 €N
=1

Note that 0 < M < oo since A is regular. Now, take (z™), oy to be a sequence in
X (8, A) and 2° € X (co) such that ||z" —2°|| — 0 as n — oo in X (cp). We will
see that ¥ € X (S, A). Let us fix an arbitrary element a = (a (k))zey € S. For
every n € N, there exists z,, € X such that _

iEn;OZaéj (Za(k) z (k)) = &n.
j=1 k=1

Let us show that (z,,),cy is a Cauchy sequence in X. Let € > 0. Since (z"),, oy is a
Cauchy sequence in X (¢p), we can find ng € N so that ||zP — 29| < g/ (M (|la|| + 1))
if p,q = ng. Then, for arbitrarily fixed p, g > ng, we have

D (Za(k) (z? (k) — 27 (k))) < D eyl D a(k) @ (k) — (k))‘
i=1 k=1 i=1 k=1

<

M |la] |lz* — =9
&€
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for every i € N. Now, by taking into account that

lzp — 24|l = Z% (Za(k) (=" (k) — 27 (k))) ;

k=1

we deduce that [z, — z,|| <& for p,q > ng, and hence (z,),,cy is a Cauchy sequence
in X. Since X is complete, (), is convergent to some z € X. Finally, we will

show that _
o0 j
lim Z By (Z a (k) x° (k)) = T,

=1 k=1 -
and we will be done. Let e > 0. Let usfix p € Nwith ||2? — 2°|| < ¢/ (8M (||a]| + 1)) .
and ||z, — zo|| < §. Now, there exists iy € N verifying that -

Zau (Z (k) = (k)) - ¥p S% |

g=1 k=1

Y

for every i > 4. Therefore,

Zau (Za k) z° Uﬂ)) — Iy = Zlawl

7l

> _a(k) (a° (k) — 27 (k))

j=1 k=1 k=1
oo J
=t Zaw Za k) zP (k)) —,
= k=1
+ II:L"p = :foll
€
£ gy
- 3 3 3
== E’
for every i > ip. As a consequence, the result is proved. ] |

Now, we will introduce another space of vector sequences. Let X denote a real
Banach space. Given a regular matrix A = (ay;), jen and a vector subspace S of
£, containing cg, the following space of vector sequences is defined:

3 o e i
s 1L ot WU

X (S, 4) = {(rk)ng in X : wAZaka:k exists for every (ax),cy € S} :
k=1

where i
wAZa.thEk = w,]i%loza” (Z akmk) .

In [3] it is proved that a series > .7 | @ is qu if and only if wA "7 | arzy exists |
for every (ax)gen € co- Notice that X (o) € X (S5, 4) C X, (8, 4) C X (cg). In

the next theorem, we show that the space X, (S, A) is complete endowed with the j
norm given in (1. 1) !

Theorem 2.2. Let X be a real Banach space and consider A = (au,)” en to be a

regular matriz and S a vector subspace of £ containing cy.
complete space endowed with the norm given in (1.1).

B e e o e e L T

LS.
m
=
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Proof. As before, we will show that X,, (S, A4) is closed in X (co). Again

o0
M = sup Z]am:iGN
j=1

Take (z"), ) to be a sequence in X,, (S, A) and z° € X (cy) such that ||z™ — 2f || —
0 asn — oo in X (cp). We will see that z° € X,, (S, A). Let us fix an arbitrary
element a = (a (k)), oy € S. For every n € N, there exists z,, € X such that

wil_ijgloZa,;j (Za(k) " (k)) = By
i .f i=t k=1

Let us see that (), is a Cauchy sequence in X. Let ¢ > 0. Since (&%) ox 50
Cauchy sequence in X (¢o), we can find ng € Nso that |27 — 29| < ¢/ (M (lla]l + 1))
if p,g = ng. Also, there is g € Sx» with |z, — z,] = |g (zp— z4)|. Then, for
arbitrarily fixed p, g > ng, we have

3 ay (Z a (k) g (2 () - 2° (k))))'

j=1 k=1

< Zﬂfz’j ( a (k) (z* (k) — «? (k)))
j=1 k=1

<Y Joyl

D _a(k) (@ (k) — 2% (k))

j=1 k=1
< M |a| [|2? — 27|
<.E

for every i € N. Now, by taking into account that

lzp —z4ll = g (zp — 24)
= |lim > oy (Za (k) g ((z” (k) — 27 Uf)”) )
=t k=1

we deduce that ||z, — z,|| < € for p, ¢ > ny, and hence (Zn) ey 18 a Cauchy sequence

in X. Since X is complete, (z,),,.y is convergent to some 7 € X. Finally, we will
show that

w zlirgo Z a; (Z a (k) z° (k:)) = %y,

=1 k=1

and we will be done. Let € > 0 and f € Sx-. Let us fix p € N with ||=? — :ED“ =
e/ (BM (|la]| + 1)) and ||z, — 20| < . Now, there exists iy € N verifying that

D (Za(k)f(m” (k))) ~f@)| <35,
F=1 k=1




MATRIX SUMMABILITY AND UNIFORM CONVERGENCE OF SERIES 3575

for.every i > ig. Therefore,

Z% (Z“(k)f (=) (k)) — [ (o)

k=1

oo

Z aij|

Z a (k) (z° (k) — 2" (k))

k=1

= Zaij (Za(k)f(ﬂ?p) (k)) — [ (zp)
j=1 k=1
S+ IIf(wp) — f (o)l

_+3+§

WO’]

o

for every i > ig. As a consequence, the result is proved. O

3. MAIN RESULTS

In this section, we will show two sufficient conditions for the uniform convergence
of weakly unconditionally Cauchy sequences. Both results could be considered as
general versions of Theorem 1.1 for weakly unconditionally Cauchy series.

Lemma 3.1. Let X be a real Banach space and consider A = ('a,-j)z.jeN to be

a regular matriz and S a vector subspace of Lo, containing co. For every wvector
sequence T = (z (k))peny € Xo (S, A), the linear mapping " :

08 — X
3.1 =
e a= (@ (e — o< (a) = 43 a(k)a(k
k=1
is continuous with ||oz|| < M ||z.
Proof. Let us consider
M = sup Z]aijl 1eN
j=1
: g Let a = (a (k))zeny € S- There exists f € Sx~ satisfying

\ low @I = 1f (oz (a))]
. = |im Zaw (E k) f ( (k)))

k=1

Now, for every i € N, we have

Zaw (Za f(:z(k:))) < D ey (Za(k):c(k))
i=1 k=1
< Ml [l=] -




3576 A. AIZPURU, F. J. GARCTA—PACHECO, AND C. PEREZ-ESLAVA

As a consequence, (o5 (a)]| < M |la||||z||, which means that o is continuous with
loz|l < M |lz]. O

Remark 3.2. Before stating the first main theorem, let us make some remarks
related to regular matrices and uniform convergence.

(1) Keeping the same notation as in the previous lemma, for every vector se-
quence z = (z (k)),cy € X (S, A), the linear mapping

0z:8 — X

o0
a = (a(k))ken — oz(a) = A a(k)x(k)

k=1

is continuous with [|o,|| < M ||z
(2) Tt is well known that if D he1 Tk = @p and A is a regular matrix, then

AZ?__I Iy = zop. However, the converse is not true in general. It is also
possible that wA Y 2 |z exists but not w > ke Tk Therefore, it is pos-
sible that (7). € X (S, A), but for some (@k)pen € S, Dope | apay does
not exist. Similarly, it is possible that (Tk) pen € Xuw (S, A), but for some
(ak)reny €S, wY 52| axxy does not exist either.

Next, we will present the first one of our main results in this paper, in which
we deduce, from a pointwise convergence situation, the existence of uniform con-
vergence. More specifically, we obtain a sufficient condition for the convergence
of sequences in X (co). Nevertheless, before stating this result, we need first to
recall some concepts. We will say (see [2]) that a real Banach space X is an M-
Grothendieck space, where M is a vector subspace of X** containing X, if every
o (X*, X)-convergent sequence in X* is o (X*, M)-convergent. When M = X =,
we just say that X is a Grothendieck space. Let us observe also that if S is a vector
subspace of £, containing cg, then ¢, can be identified with a vector subspace of
S**. Indeed, we can identify any (ay) ken € €oo with the mapping

S — R

3.2 =
] g = Y ag(eb),
k=1
where (e"”) ren denotes the canonical basis of co. Therefore, if S is a closed vector

subspace of £, containing ey, it does make sense to consider the possibility for S
of being an ¢,-Grothendieck space.

Theorem 3.3. Let X be a real Banach space. Let (z™)
satisfying the following:
(1) There ezists a closed vector subspace S of ¢
{oo-Grothendieck space.
(2) There ezists a regular matriz A — (a,—j)i_jeN such that

nen e a sequence in X (cp)

co Containing co which is an

n]gxgo wA,; a (k) z™ (k)

ezists for every (a (k)),oy € S.
Then, there exists z° € X (co) such that lim,, ., ”m" - z‘]“ =0 in X ().
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Proof. Since X (cp) is complete, it suffices to show that (2"),en is a Cauchy se-
quence in X (cp). On the contrary, let us assume that it is not. There exists & > 0
and an increasing sequence (ny),, oy of naturals such that if 2™ := z™m — et
then ||zm| > . Now, for every m € N there exists f,,, € Sx~ such that

(3.3) S (™ ()] > .
k=1

Again for every m € N, we consider the continuous linear mapping o,~ defined
in (3.1), which will be simply denoted as a,,. Let us observe that, for every a =
(a(k))pen € S, we have

m m—co

hlnoo om(a) = lim (wAZ a (k) z"m (k))
\ k=1

~ lim (wAfIa(k) i (k))
k=1

therefore (fp, o O’m)meN is a sequence in §* which is w*-convergent to 0. By hy-
pothesis, (fm © 0m),en 18 (8*, foo)-convergent to 0. According to mapping (3.2),
this means that if (a (k)), .y € fo, then

M—Cc0o

lim Za(k) (fmoom) () =0.

Now, for every m, k € N, we have that

(Fie 2@m)ief) "= fn wAZ e® (1) 2™ (l))
=1

=1

(i gt
= fm ‘wi]ilgloZaq:j (Zek (l)zm(l))
j=1

T—00

= fm |w lim Za,;j 2™ (k)
= lim Za@-) fm (2™ (k)
j=k

o0 k—1

= l]i_t{.lo Zm;j = Zaz’j S (zm (k))
P =

= fm (2™ (k)) (since A is regular).

Next, note that (( Frn (™ (D) ent) " EN) is a sequence in ¢; verifying that, for every
(@ (k) ken € Loos

Jim > a (k) fm (27 (K)) =0
k=1
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that is, it is w-convergent to 0. Schur’s theorem then allows us to deduce that the
sequence (( Ho P IEY, EN)meN) Is convergent to 0 in #¢;, but this fact contradicts
(8:3). O

Remark 3.4. Before stating the other main result of this paper, let us make some
remarks about the previous theorem and Boolean algebras.

(1) If A is the identity matrix, then the previous theorem generalizes Theorem
1.1 of Swartz and other results in [1] and [6].

(2) Let us consider F to be a Boolean subalgebra of P (N) verifying that
%o (N) :== {A CN:card (4) < o0} C F (in [2] such Boolean subalgebras
are called natural Boolean algebras). Let T be the Stone space of F. It
is known (see [10]) that the corresponding space of real-valued continuous
functions on T, C (T), can be identified with a subspace of £.,. Accord-
ing to [10], F is said to have the Grothendieck property if C (T') has the
Grothendieck property; F is said to have the Nikodym property if the space
Co (T'), of real-valued continuous functions on T' of finite range, is barrelled;
and F is said to have the Vitali-Hahn—Saks property if it has both the
Grothendieck and Nikodym properties.

(3) There exists a closed vector subspace S of £, containing ¢y which does not
have a copy of £, and possesses the Vitali-Hahn—Saks property. This space
was due to Hayden (see [9],) who obtained, by using transfinite induction,
a particular subalgebra F of P (N) with v, (N) C F.

Finally, it is time to present the second main result in this paper, in which we
provide a sufficient condition for the convergence of sequences in X (¢y) by means
of pointwise convergence in natural Boolean algebras.

Theorem 3.5. Let X be a real Banach space. Let (2") nen be a sequence in X (cp).
Consider a regular matriz A — (et jen and a natural Boolean algebra F with the
Vitali-Hahn—Saks property. Assume that, for every B € F,

lim wA Z z" (k)

n—oo
keB

czists. Then, there exists 2° € X (co) such that i, o |2 — 2| =0 in X (co).

Proof. Let T be the Stone space of F, whose corresponding space of real-valued
continuous functions on T, C (T'), can be linearly and isometrically identified with
a closed vector subspace S of £, containing c¢y. For every n € N, let us consider
the continuous linear mapping o,~ defined in (3.1), which will be simply denoted
as on, and let 09 be the restriction of 0n t0 Sp, where S; is the subspace of S
composed by all sequences of finite range. Next,

lim wAd ) b(k)z™ (k)
exists for every (b (k)),n € So. Since Sy is barrelled (because it is linearly isometric
to Co (T")), there exists H > 0 such that lonll = ||oS|| < H for every n € N, and
this, together with the fact that Sp is dense in S, allows us to deduce that

lim wA ) a(k)z™ (k)

n—o0

k=1
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exists for every (a (k)),cy € S. Finally, S is an £.,-Grothendieck space (because
C (T') has the Grothendieck property), so by applying Theorem 3.3 we deduce the
existence of an element z° € X (cg) such that limp_, e “3:" —a%| =0in X (¢p). O

To finish this section, we want to show an immediate consequence of the previous
results and the fact that X, (S, A) is complete (Theorem 2.2).

Corollary 3.6. Let X be a real Banach space. Let (z™), . be a sequence in
X, (8, A). Consider a closed vector subspace S of lq, containing cg which is an
{oo-Grothendieck space, and a regular matriz A = (o) Then, (F%) e
convergent in X, (S, A) if and only if

lim wA i a(k)z" (k)
k=1

1,jEN"

exists for every (a (k))cn € S.
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