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bstract

In the present paper, two univariate forecasting techniques were tested to evaluate the short-term CPUE capacity forecast for Pacific halibut,
ippoglossus stenolepis (Pleuronectidae). The first methodology, based on the Box–Jenkins approach (autoregressive integrated moving average
odels [ARIMA models]), assumes a linear relationship between the time series data. The second methodology, using artificial neural network
odels (ANNs), enables highly non-linear processes to be modelled. The best results from a seasonal ARIMA model indicated that one non-

easonal autoregressive term combined with a non-seasonal moving average term and a seasonal moving average term was suitable to explain a
ariance level of 32.6% in the validation phase, providing statistically acceptable but insufficiently satisfactory estimations. The configuration of
he best ANN model (three autoregressive terms in the input layer and five neurons in the hidden layer) provided a significant improvement in

he independent validation phase (91% of the variation explained), indicating a clear non-linear relationship between variables. Modelling of the
bundance indices is a useful tool for understanding the dynamics of populations and may enable short-term quantitative recommendations for
sheries management to be made.
2007 Elsevier B.V. All rights reserved.
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. Introduction

Considering the economic importance of the fisheries, it is
ssential to know as much as possible about fish populations,
hich can undergo many changes in response to commercial
shing. These include changes in abundance, total biomass, size-
requency distributions, age-structure and spatial distributions.

wide variety of mathematical and statistical methods are avail-
ble to fisheries science for characterising these processes in
rder to understand the dynamics of exploited populations. The
nderlying assumption is that, if we can understand the response

f fish populations to different perturbations, then we should be
ble to manage the fisheries in line with our chosen objectives
Haddom, 2001).

∗ Corresponding author. Tel.: +34 959 217528; fax: +34 959 217528.
E-mail address: juanc@uhu.es (J.C. Gutiérrez-Estrada).
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The Pacific halibut fishery is a good example of an exploited
opulation. Pacific halibut were first harvested in Alaskan waters
uring the 1880s (Rigby et al., 1995). The Alaskan Pacific
alibut fishery generates considerable value, and commercial
andings for the year 2004 were almost 33 million kg, val-
ed at 234 USD million (D 182 million) (Low and Stocker,
005).

The current health of this fishery is attested by the fact that
ome the highest landings on record were taken in the latter half
f the 1990s. Since 1995, the fishery has been managed under an
ndividual Transferable Quota System (ITQS) (Clark and Hare,
004). The International Pacific Halibut Commission (IPHC)
s responsible for management of Pacific halibut fisheries for
ptimum yield. Each year the IPHC estimates the exploitable

iomass (total Pacific halibut biomass available to the fishery),
ecruitment and other statistics for the entire North Pacific hal-
but stock. Harvest quotas are based on a strategy of constant
nnual exploitation rate (currently 20%). Generally, age-at-catch

mailto:juanc@uhu.es
dx.doi.org/10.1016/j.fishres.2007.05.006


ries R

i
b
t

m
s
(

r
o
I
t
a
a
t
f
i
a
t
f
t
T
o
fi
o
t
a
t
1

A
o
a
e
p
r
t
b
p
i
i
n
a
n
e
1
B
a

fi
p
l
a
G
t
t
l

n
b
m
1
t
B
r
Z
d
d

A
F
s

2

2

t
T
t
(
h
T

s
n
t
t
t
a
s
s
M

w
t
3

2

c
o
a

w

w

I.A. Czerwinski et al. / Fishe

nformation has not been available from recreational fisheries,
ut in this case the sport harvest has been included as part of
otal removals, from 1977 to 2005 (Geernaert et al., 2005).

In spite of the economic importance of this fishery, prediction
odels for long-term biomass or CPUE are scarce, except for

ome studies such as Quinn (1985), Zhang et al. (1991), Tanaka
2000) and Clark and Hare (2004).

Forecasting biomass available for a fishery is an extremely
elevant topic, because it plays a central role in management
f stocks, preceding decision making (Makridakis et al., 1983).
n fisheries management policy, the main goal is to establish
he maximum fishing effort applicable in a defined area during

known period to keep the stock replacement rate stable. To
chieve this aim, it is necessary to predict the effect of uncon-
rollable events on abundance. Changes in abundance can be
orecast if quantitative data are available on the past catch, and
f the “assumption of continuity” is accepted: that is to say, if we
ssume that some features of the past pattern will continue into
he future (Makridakis et al., 1983; Stergiou et al., 1997). Apart
rom methods based on biological principles, a variety of sta-
istical techniques have also been used in fisheries forecasting.
hese methods are directed towards: (a) modelling on the basis
f deterministic, regression techniques that explain changes in
shery variables in terms of changes in various biotic and/or abi-
tic variables; (b) modelling on the basis of univariate time series
echniques that treat the system as a “black-box”, i.e. viewed as
n unknown generating process and (c) methods that synthesise
he two above mentioned general approaches (Stergiou et al.,
997).

Among the methods based on univariate techniques, the
RIMA models by Box and Jenkins (1976) stand out because
f their wide range of application. These statistical models
ssume linear dependence between the time series data. Thus,
ach observation can be explained as a linear function of its
ast values, but with some errors. The variability found in the
esults from applying ARIMA models is due mostly to the fact
hat they are linear univariate models (the linear relationship
etween variables is assumed). ARIMA models have the same
roperties as the most simple time series models like mov-
ng average (MA) and autoregressive (AR) models. They can
nclude cyclic/seasonal components and their mathematics is
ot excessively complex. These properties have favoured the
pplication of this kind of model to predict different variables in
umerous fields of engineering and the sciences, including fish-
ry science (Phillips, 1983; Stocker and Noakes, 1988; Stergiou,
989, 1990, 1991; Stergiou et al., 1997; Lloret et al., 2000;
ecerra-Muñoz et al., 2003; Hänninen et al., 2003; Punzón et
l., 2004; Gutiérrez-Estrada et al., 2004).

Stenseth et al. (2002) reported that ecological systems (like
sheries) may be heavily influenced by substantial stochastic
rocesses (as climate conditions), as well as by non-linearities,
eading to non-equilibrium systems as the results. Thus, Lek et
l. (1996a,b), Guégan et al. (1998), Gozlan et al. (1999) and

utiérrez-Estrada et al. (2000) propose a non-linear approach

o the forecasting of ecological–biological variables. Therefore,
hese authors assume that the variables considered in the eco-
ogical systems studied are related in a non-linear way.
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Significant progress in the fields of non-linear pattern recog-
ition and system control theory have recently been made possi-
le through advances in a branch of non-linear system theoretical
odelling called artificial neural networks (ANNs) (Lek et al.,

996b). In recent years, ANNs have attracted increasing atten-
ion from both academic researchers and industrial practitioners.
asically, the reason for their popularity is their powerful pattern

ecognition and flexible non-linear modelling capacity (Qi and
hang, 2001). ANNs have a great capacity to fit highly scattered
ata, far from normality, and produce powerful models from few
ata, thus providing reliable predictions (Govindajaru, 2000).

In this paper, the principal aim is evaluate and compare the
RIMA and ANN models for Pacific halibut CPUE forecasting.
or this we analyse the general characteristics of fishing time
eries and identify the possible sources of error in the models.

. Material and methods

.1. Study area and data source

The Pacific halibut catches data are from the data base of
he IPHC available in http://www.iphc.washington.edu/halcom/.
he data show daily catches during the fishing period (May

o September) from 1998 to 2003 in the IPHC regulation area
Bering Sea and Gulf of Alaska). The gear consisted of fixed
ook, 45 m skates with 16/0 circle hooks spaced 45 cm apart.
his standard skate is used to calculate the CPUE.

The seasonal character of this fishery implies a minimum
ample size problem. Since during 8.5 months per year there is
o fishing activity, most of the time series data have no informa-
ion about CPUE. As a compromise, considering length of the
ime series (the number of data needed to calibrate and validate
he models) and the prediction unit (one-step period prediction),
transformation of the time series is proposed. The daily time

eries data were effectively smoothed by grouping values in 23
ets of 5 consecutive days, over the same fishing period (from

ay 29 to September 16).
In both cases (ARIMA and ANN models), the calibration set

as composed by the first 107 patterns (approximately 77% of
otal patterns) and the validation set was composed by the last
1 patterns (approximately 23% of the total records).

.2. ARIMA models

ARIMA(p,d,q) models assume that a time series is a linear
ombination of its own past values and current and past values
f an error term. The mathematical model can then be written
s follows:

t = φ1wt−1 + φ2wt−2 + · · · + φpwt−p + θ0 − θ1at−1

−θ2at−2 − · · · − θqat−q + εt (1)

here wt is the original data series or difference of degree d of

he original data at time t, at the random error, innovation or
hock at time t, φ1, φ2, . . ., φp the autoregressive parameters, p
he autoregressive order, θ0 a constant term, θ1, θ2, . . ., θq the

oving average parameter, q the moving average order and εt is

http://www.iphc.washington.edu/halcom/
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he white noise (Box and Jenkins, 1976). ARIMA models can
lso adjust for seasonality in the data, in which case the model
s denoted by ARIMA(p,d,q) (P,D,Q)S, where P is the seasonal
utoregressive order, Q the seasonal moving average order, D
he seasonal differencing order and S is the seasonal order.

Extraction of the lag orders (p, q, P, Q and S) of the time
eries can be done using the autocorrelation (ACF) and partial
utocorrelation function (PCAF) (Holton-Winson and Keating,
996). The values of p, d and q that proved to be more appro-
riate according to the accuracy measures presented in model
election criteria section were then used. The parameters φ and
were fixed by using function minimization procedures, so that

he sum of squared residuals was minimized. The level of sig-
ificance of these parameters should be evaluated (acceptable
f p < 0.05). For the seasonal orders, values of P and Q varying
rom one to three (with a unitary step) were proved. A sea-
onal differencing order D = 1 was considered because the first
ifferencing was enough to eliminate stochastic seasonal non-
tationarity. Also, Census X12 method was applied in order to
xtract trend and seasonal patterns (Yaffee and McGee, 2000).
he same lag component was used with ANN models.

.3. Artificial neural network models

Artificial neural networks are mathematical models inspired
y the neural architecture of the human brain. The model neu-
one or node is a simple non-linear unit. The neurones collect
nputs from single or multiple sources and produce an output.
nterconnecting many of these single neurones or nodes in a
nown layer configuration creates a model neural network.

Each node j receives incoming signals from every node i in
he previous layer. Associated with each incoming signal (xi) is
weight (Wji). The effective incoming signal (Ij) to node j is the
eighted sum of all the incoming signals:

j =
q∑

i=1

xiWji (2)

he effective incoming signal, Ij, is passed through an activation
unction (sometimes called a transfer function) to produce the
utgoing signal (yj) of the node j. In this study, the linear function
yj = Ij) will be used in the output layer and the sigmoid non-
inear function will be used in the hidden layers:

j = f (Ij) = 1

1 + e−Ij
(3)

A typical ANN structure with two hidden layers is denoted
y—I:FHs:SHs:Ol, where I is the number of nodes or neurons
n the input layer, FH and SH the number of nodes or neurons
n the first and second hidden layers, respectively, O the number
f neurons in the output layer, s denotes the sigmoid transfer
unction and l indicates the linear transfer function (Fig. 1).

The training method used was the Levenberg–Marquardt

lgorithm (Shepherd, 1997) controlled by the method of internal
alidation (about 27% of calibration data to test the error at the
nd of each epoch) (Tsoukalas and Uhrig, 1997). The weights
re updated at the end of each epoch.

b

%

ig. 1. Schematic representation of a four-layer feed forward artificial neural
etwork for computing halibut CPUE.

The number of hidden layers and nodes in the hidden lay-
rs were determined by trial and error. ANNs with one hidden
ayer and three to nine hidden nodes were successively trained
ased on the calibration data set. The ANN having the best per-
ormance when applied to the validation set, within a pool of
ve repetitions, was selected (Anctil and Rat, 2005). The ANN
odels were implemented using STATISTICA 6.0.

.4. Model selection criteria

There are many measures of forecasting accuracy that one
ay use to compare different models (Legates and McCabe,

999; Abrahart and See, 2000). The correlation between
bserved and predicted CPUE was expressed by means of the
orrelation coefficient R. The coefficient of determination (R2)
escribes the proportion of the total variance in the observed
ata that can be explained by the model. Others measures of
ariances applied were the percent standard error of prediction
%SEP) (Ventura et al., 1995), the coefficient of efficiency (E2)
Nash and Sutcliffe, 1970; Kitanidis and Bras, 1980) and the
verage relative variance (ARV) (Griñó, 1992). These four esti-
ators are unbiased estimators that are employed to see how far

he model is able to explain the total variance of the data.
In addition, it is advisable to quantify the error in the same

nits as the variables. These measures, or absolute error mea-
ures, included the root of the mean square error (RMSE) and
he mean absolute error (MAE), given by:

RMSE =
√∑N

i=1(CPUEt − ̂CPUEt)
2

N
,

MAE =
∑N

i=1|CPUEt − ̂CPUEt|
N

(4)

here CPUEt is the observed Pacific halibut CPUE at the time
tep t, ̂CPUEt the estimated Pacific halibut CPUE at the same
ime step t and N is the total number of observations of the
alidation set.

The percent standard error of prediction, %SEP, is defined

y:

SEP = 100

CPUE
RMSE (5)
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here CPUE is the average of the observed Pacific halibut CPUE
f the validation set. The principal advantage of %SEP is its
on-dimensionality, which allows forecasts given by different
odels to be compared on the same basis. The coefficient of

fficiency E2 and the average relative variance ARV are used to
ee how the model explains the total variance of the data and
epresent the ‘proportion’ of the variation of the observed data
onsidered by the model. E2 and ARV are given by:

2=1−
∑N

i=1(CPUEt − ̂CPUEt)
2

∑N
i=1(CPUEt − CPUEt)

2 , ARV=1−E2 (6)

he sensitivity to outliers due to the squaring of the difference
erms is associated with E2 or, equivalently, with ARV. A value of
ero for E2 indicates that the observed average CPUE is as good
redictor as the model, while negative values indicate that the
bserved average is a better predictor than the model (Legates
nd McCabe, 1999).

For a perfect match, the values of R2 and of E2 should be
lose to one and those of %SEP and ARV close to zero.

Also the persistence index, PI, was used for the model per-
ormance evaluation (Kitanidis and Bras, 1980):

I = 1 −
∑N

i=1(CPUEt − ̂CPUEt)
2

∑N
i=1(CPUEt − CPUEt−L)2

(7)

here CPUEt−L is the observed CPUE at the time step t − L and
is the lead-time. In the applications carried out, L was set equal

o one, since a set of 5 days ahead forecasts were performed. A PI
alue of one reflects a perfect correspondence between predicted
nd observed values, and a value of zero is equivalent to saying
hat the model is no better than a ‘naı̈ve’ model, which always
ives as prediction the previous observation.

A negative PI value would mean that the model is degrad-
ng the original information, thus denoting a performance
orse than the one of the naı̈ve model (Anctil and Rat,
005).

For each measure of accuracy the benchmark of the worst
ermissible error was calculated. McLaughlin (1983) suggests
hat a naı̈ve model determine the forecasting accuracy bench-

ark of any model. The basic naı̈ve model, known as ‘Naı̈ve
orecast I’ (NFI) is defined as the next period’s level will
e the same as that of the preceding period. This way, if the
orecasting model cannot do better than NFI, it should be dis-
ualified.

. Results

.1. ARIMA models

The CPUE data show an overall negative long-term trend by
omparing the year averages (least significant difference test
LSD test], p < 0.05). Therefore, differencing (modelling the

hange in CPUE from set to set rather than the CPUE series
tself) was necessary. One degree of the non-seasonal differenc-
ng factor was enough to eliminate the trend. It was not necessary
o log-transform the data before fitting the models, as the raw
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ata were normally distributed and had no significant scattering
Shapiro–Wilk test: W = 0.988, p = 0.894; Levene test = 0.726,
< 0.05).

Table 1 shows the error terms of ARIMA models (p,d,q)
P,D,Q)S (with S = 23) in the validation phase (N = 31). The
xplained variance level was under 40%, reaching a maxi-
um level of 39.8% (R2 = 0.398; ARIMA(1 1 1) (1 1 1)23) and
minimum level of 9% (R2 = 0.099; ARIMA(1 1 0) (0 0 1)23).

n spite of the low values of the determination coefficient, the
ercent standard errors prediction was around 50%, except for
he ARIMA models (0 0 1) (0 0 1)23, (1 0 0) (0 0 1)23 and (1 0 0)
1 0 0)23. Globally, different behaviour is observed in function of
he seasonal differentiation degree (order D). Thus the ARIMA

odels with order D = 0 provided the worst estimates for the
alidation data series. Individually, the best estimates in the
alidation process were obtained with ARIMA model (1 1 1)
0 1 1)23. This model had the smallest error magnitudes in five
f the seven error terms considered. In this case, the determi-
ation coefficient (R2) as well as the medium absolute error
MAE) were slightly worse than that obtained for the ARIMA
odel (1 1 1) (1 1 1)23.
With respect to the persistence index (PI), except in four

ases, the PI values were very close to zero, with a mean
alue of −0.15 ± 0.7, which means a naı̈ve overall behaviour.

PI value closer to one was observed for the ARIMA model
1 1 1) (0 1 1)23 (PI = 0.428), which was significantly better
han the second best result (ARIMA model (1 1 0) (0 1 1)23;
I = 0.361).

Table 2 shows the estimators calculated for the two best
odels. In both cases the autoregressive parameters were

on-significant. However, in the autocorrelation analysis of
he residuals, none of the 24 autocorrelation coefficients
as statistically significant, indicating that the residuals

ime series can be considered as similar to white noise
Fig. 2).

Results slightly worst were obtained when the ARIMA model
ere calibrated with Census X12 method. The best estima-

ion was obtained with ARIMA(1,1,1) (0,1,1)23. In this case,
he explained variance in the independent validation phase
R2 = 0.12) was lower than obtained with ARIMA classical cal-
bration method. Also, worst values of the rest of accuracy

easures were obtained (Fig. 3).

.2. ANN models

The same cases used for validation of the ARIMA models
ere considered with the ANNs. Different network archi-

ectures, meaning different numbers of nodes in the hidden
ayer, have been tested. Table 3 shows the goodness of fit
or all the trained ANN models. The proportion of variance
xplained was more than 37%, reaching a maximum proportion
f 91% (R2 = 0.910; ANN 3:5s:1l). Globally, the percent stan-
ard error of prediction (%SEP) was around 16% which implied

PUE mean variations of 14 kg/standard skate. Moreover, the
oodness-of-fit of the models was corroborated by the values
btained for E2 and ARV terms in the validation phase. How-
ver the PI term results indicated, in some cases, that the model
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Table 1
Results of ARIMA models in the independent validation phase

Model Error terms

R2 RMSE MAE %SEP E2 ARV PI

NFI 0.472 53.009 37.316 50.120 −0.056 1.056 0
(0 0 1) (0 0 1)23 0.195 93.177 82.197 103.888 −3.316 4.316 −2.612
(0 0 1) (0 1 1)23 0.301 44.687 37.071 49.824 0.007 0.993 0.169
(0 0 1) (1 1 1)23 0.291 45.736 37.969 50.994 −0.040 1.040 0.130
(0 0 1) (1 1 0)23 0.154 45.379 34.127 50.595 −0.024 1.024 0.143
(0 0 1) (1 0 0)23 0.307 61.162 48.738 68.193 −0.859 1.859 −0.556
(0 1 1) (0 0 1)23 0.097 50.568 40.962 56.381 −0.271 1.271 −0.064
(0 1 1) (0 1 1)23 0.302 42.664 35.429 47.569 0.095 0.905 0.243
(0 1 1) (1 1 1)23 0.312 41.819 34.942 46.626 0.131 0.869 0.272
(0 1 1) (1 1 0)23 0.176 43.447 32.708 48.442 0.062 0.938 0.215
(0 1 1) (1 0 0)23 0.148 49.722 40.255 55.437 −0.229 1.229 −0.028
(1 1 1) (0 0 1)23 0.164 42.531 32.211 47.420 0.101 0.899 0.248
(1 1 1) (0 1 1)23 0.326 37.082a 31.134 41.344a 0.317a 0.683a 0.428a

(1 1 1) (1 1 1)23 0.398a 40.174 30.971a 44.792 0.198 0.802 0.329
(1 1 1) (1 1 0)23 0.169 46.550 35.132 51.902 −0.077 1.077 0.099
(1 1 1) (1 0 0)23 0.208 42.149 32.027 46.994 0.117 0.883 0.261
(1 1 0) (0 0 1)23 0.099 49.607 39.939 55.309 −0.223 1.223 −0.024
(1 1 0) (0 1 1)23 0.324 39.184 33.123 43.688 0.237 0.763 0.361
(1 1 0) (1 1 1)23 0.323 39.390 33.177 43.918 0.229 0.771 0.355
(1 1 0) (1 1 0)23 0.192 44.214 33.922 49.297 0.028 0.972 0.187
(1 1 0) (1 0 0)23 0.139 49.459 39.770 55.144 −0.216 1.216 −0.018
(1 0 0) (0 0 1)23 0.203 73.608 62.268 82.069 −1.693 2.693 −1.254
(1 0 0) (0 1 1)23 0.305 44.189 36.695 49.268 0.029 0.971 0.188
(1 0 0) (1 1 1)23 0.293 45.600 37.828 50.841 −0.034 1.034 0.135
(1 0 0) (1 1 0)23 0.163 44.538 33.808 49.658 0.014 0.986 0.175
(1 0 0) (1 0 0)23 0.204 71.807 61.055 80.061 −1.563 2.563 −1.145

In NFI row the benchmark values for each accuracy terms are indicated.
a Best results.

Fig. 2. Residual autocorrelations of ARIMA(1 1 1) (0 1 1)23 and ARIMA(1 1 1)
(1 1 1)23 in the independent validation phase.
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ad a naı̈ve behaviour. For example, the ANN 3:3s:1l (second
epetition) presented a determination coefficient close to 0.87
nd good values for RMSE, MAE, %SEP, E2 and ARV, but PI
alue was close to zero.

The best estimate was obtained when the CPUE values of
he three preceding sets of 5 days were used as inputs, with five
odes in the hidden layer. In this case, all the error magnitudes
ere significantly better than those obtained for the two best
RIMA models. Fig. 3 shows the best regressions of the ARIMA

nd ANN models in the validation phase. It can be seen that

he ARIMA models presented a higher dispersion around the
egression line than the ANN model, which was more fitted to
he 1:1 line.

able 2
arameter values and significant levels of two best ARIMA models

arameters Value Significant level

RIMA(1 1 1) (0 1 1)23

φ −0.00001 p = 0.832
θ 0.678 p < 0.001
Θ 0.805 p < 0.001

RIMA(1 1 1) (1 1 1)23

φ −0.00007 p = 0.520
θ 0.690 p < 0.001
Θ 0.00008 p = 0.523
Φ 0.807 p < 0.001
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Fig. 3. (a) CPUE observed and estimated variation and linear regressions of the best ARIMA model [ARIMA(1 1 1) (0 1 1)23] calibrated with a procedure of
minimization of the sum of squared residuals in the independent validation phase, (b) CPUE observed and estimated variation and linear regressions of the best
ARIMA model [ARIMA* (1 1 1) (0 1 1)23] calibrated with X12 method in the independent validation phase and (c) CPUE observed and estimated variation and
linear regressions of the best ANN model (3:5s:1l) in the independent validation phase.

Table 3
Results of ANNs in the independent validation phase with CPUE of three previous sets of 5 days

Model Repetition Error terms

R2 RMSE MAE %SEP E ARV PI

NFI – 0.472 53.009 37.316 50.120 −0.056 1.056 0
3:3s:1l 1 0.752 19.656 16.201 21.786 0.534 0.466 −1.486
3:3s:1l 2 0.874 12.435 9.319 13.783 0.814 0.186 0.005
3:3s:1l 3 0.573 20.713 14.335 22.958 0.483 0.517 −1.760
3:3s:1l 4 0.908 10.813 7.940 11.985 0.859 0.141 0.248
3:3s:1l 5 0.887 11.470 9.003 12.713 0.841 0.159 0.154
3:5s:1l 1 0.101 33.119 24.935 36.708 −0.323 1.323 −6.057
3:5s:1l 2 0.900 10.834 8.078 12.008 0.858 0.142 0.245
3:5s:1l 3 0.901 10.561 8.145 11.705 0.865 0.135 0.282
3:5s:1l 4 0.910a 9.108a 6.552a 10.095a 0.900a 0.100a 0.466a

3:5s:1l 5 0.906 14.469 11.432 16.037 0.747 0.253 −0.347
3:7s:1l 1 0.896 9.569 6.884 10.606 0.890 0.110 0.411
3:7s:1l 2 0.372 24.404 18.740 27.048 0.282 0.718 −2.831
3:7s:1l 3 0.893 14.212 11.364 15.752 0.756 0.244 −0.299
3:7s:1l 4 0.652 17.605 13.048 19.513 0.626 0.374 −0.994
3:7s:1l 5 0.791 15.259 12.376 16.912 0.719 0.281 −0.498
3:9s:1l 1 0.788 16.702 13.715 18.512 0.664 0.336 −0.795
3:9s:1l 2 0.908 9.230 7.218 10.230 0.897 0.103 0.452
3:9s:1l 3 0.903 9.452 6.689 10.477 0.892 0.108 0.425
3:9s:1l 4 0.878 10.387 7.950 11.513 0.870 0.130 0.306
3:9s:1l 5 0.834 15.924 12.764 17.649 0.694 0.306 −0.631

In NFI row the benchmark values for each accuracy terms are indicated.
a Best results.



1 ries R

4

t
f
w
T
s
R
d
f
f
w
p
a
i
p
o
e

d
(
t
r
g
h
s
R
e
i

c
e
c
o
t
1
b
t
i
w
P
B
m
v
t
u
t
t
c
a
s

a
t
i
o

b
n
m
c
e
o
b
s
c
C
o
i
m
b
fi
p
t
m

w
t
c
o
i
w
p
i
v

a
h
t
u
t
r
f
v
w
t

C
s
i
7
m
h
b
p
t
p
i
w
c

26 I.A. Czerwinski et al. / Fishe

. Discussion

In this paper, the capacity of two types of model (one linear,
he other non-linear approaches) to produce accurate forecasts
or Pacific halibut CPUE were compared. In total, 70 models
ere constructed (50 ARIMA models and 20 ANN models).
he goodness of fit was tested using the seven accuracy mea-
ures most frequently used according to the bibliography (R2,
MSE, MAE, %SEP, E2, ARV, PI). The complementary use of
ifferent measures is highly recommended when two or more
orecasting models are compared because most measures suf-
er certain limitation (Stergiou et al., 1997). This way, a model
hich one explain a high level of variance (R2) in the validation
hase can has associated a high value of absolute (RMSE, MAE)
nd relative (%SEP) error. In the case of time series forecast-
ng, the persistence index (PI) is a very useful measure because
rovides a measure of comparison with a naı̈ve model which
ne may provides explained variances and absolute and relative
rror statistically acceptable.

In many studies, ARIMA models are compared with other tra-
itional statistical techniques, such as multiple linear regression
MLR), non-linear regression (NLR), seasonal time varia-
ion regression models (TVS), smoothing models, dynamic
egression (DREG), harmonic regression (HREG), autore-
ression vector (VAR), generalized autoregressive conditional
eteroscedasticity (GARCH), Thomas–Fiering models or Gau-
ian autoregressive models (Stergiou, 1991; Stergiou et al., 1997;
omilly, 2005). These studies show that ARIMA validation
rrors are significantly lower, hence better than classic forecast-
ng techniques.

The results showed that the ARIMA models produced fore-
asts with explained variances close to 40% and percent standard
rror prediction around 41%. These results, although statisti-
ally acceptable, differed significantly from those obtained by
ther authors for other fisheries. Stergiou et al. (1997) reported
hat the ARIMA models for forecasts of monthly captures of
6 species in the Hellenic marine waters were characterized
y unbiased fits and forecasts, by a low level in all of the error
erms used, and determination coefficient very close to 0.9. Sim-
lar results were found for forecasts of monthly landings of
alleye pollock Theragra chalcogramma (Gadidae) in Korea.
hillips (1983) used univariate modelling techniques based on
ox–Jenkins methodology to forecast the CPUE of anchovy and
ackerel in the San Pedro fishery (USA). His models, in the

alidation phase, explained variances of 42 and 18%, respec-
ively, which are similar to the results presented in this study
sing the same methodology. Also, Lloret et al. (2000) reported
hat the models did not explain the data variability in a satisfac-
ory way for non-target demersal and pelagic species. Similar
onclusions were obtained by Punzón et al. (2004) analysing
mackerel Scomber scombrus (Scombridae) fishery with time

eries of longline catches.
CPUE is an index of fish abundance that assumes proportion-
lity between abundance and stock size. However, it is known
hat there are many parameters (including economics, geograph-
cal distributions, availability of fish to capture, vulnerability
f fish and efficiency of the fishing gear), which affect CPUE

a
c
r
t

esearch 86 (2007) 120–128

ut do not represent changes in abundance and which introduce
on-linearity factors into the data series. Taking this in account,
odels like ARIMA, which assume the linearity of the process,

an give statistically acceptable but insufficiently satisfactory
stimations. Moreover, the accuracy of the model forecast is not
nly strongly influenced by the data quality used in the cali-
ration phase and the kind of relationship between the original
eries data, but also by the quantity of the data available for the
alibration and validation phases. Thus, the characteristics of the
PUE data series used in this study explain the lack of accuracy
f the ARIMA models tested. This effect can be more important
n the case of the ARIMA model calibrated with Census X12

ethod. In this case the model is calibrated with smoothing data
y means of a linear, symmetric and centred moving average
lter and validated with an original data series. This filtering
rocess leads to very severe reduction of non-linear features in
he original data series which ones cannot be recognised by the

odel in the validation phase.
In these conditions, methods like artificial neural networks,

ith the capacity to combine linear and highly non-linear rela-
ionships between variables, may be more appropriate for the
haracterisation and forecasting of Pacific halibut CPUE. More-
ver, the design of the ANN allows each input variable to act
ndependently but also in parallel with all the other variables,
ith the information being held in a network of weights. This
rovides the neural network with great flexibility for represent-
ng at the same time several non-linear relationships, which are
ery problematic for linear models.

As shown, non-linear methods such as ANNs are more
ppropriate for describing the univariate relationships of Pacific
alibut CPUE. Thus, the proportions of variance explained and
he forecast capacity are significantly higher than those obtained
sing ARIMA models. Gutiérrez-Estrada et al. (2004) showed
he potential of autorregresive ANN models versus multiple
egressions, classical smoothing models and ARIMA models,
or forecasting the ammonia concentration in an intensive culti-
ation system for eels. These authors reported that ANN models
ere extremely capable of generalising from exceptional situa-

ions.
The autoregressive terms at time set t23 indicate that the

PUE (based on 5-day sets) exhibited a strongly cyclical sea-
onal character. Pacific halibut CPUE increased from a minimum
n the first set (May 29–Jun 2) to a maximum in set 15 (August
–11) and declined thereafter. It can be hypothesised that this
arked seasonal cycle is due to the critical habitat of Pacific

alibut during summer months being defined, at least partially,
y water temperature (Loher and Seitz, 2006). This way, this
ersistence may indicate that the CPUE is linear dependent of
he environmental conditions, catches and other factors of the
revious fishing period. Forecasting accuracy is higher for data
n 5-day sets than for monthly data, and improves considerably
hen annual fishing period forecasts are estimated from set fore-

asts. From non-linear point of view, the autoregressive terms

t t − 1, t − 2 and t − 3 also indicates a high relationship with
aptures in a short time in the same fishing period. This may be
elated with catch-sharing and catch limits plan established by
he IPHC for this fishery.
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In spite of the good results obtained with ANNs, it is nec-
ssary to put the utility of the model (its forecasting capacity
nd/or it biological/oceanographic significance) in the context of
short-medium term time period. In this framework, the model
ay be useful for estimating the CPUE value when the real

alue cannot be obtained (for example, if fishing effort values
re unknown), for estimating interpolated data between two con-
ecutives samples, and for simulating different fishery scenarios.
lso, the model may be useful for detecting significant changes

n the fishing effort, stock response or abundance related to vari-
us different factors (environmental, anthropogenic, etc.), since
lack of fit between observed and estimated data will indicate

hat a new CPUE pattern must be incorporated in the model;
herefore the model must be calibrated and validated again.
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uégan, J.F., Lek, S., Oberdorff, T., 1998. Energy availability and habitat het-
erogeneity predict global riverine fish diversity. Nature 391, 382–384.

utiérrez-Estrada, J.C., Pulido-Calvo, I., Prenda-Marı́n, J., 2000. Gonadoso-
matic index estimates of an introduced pumpkinseed (Lepomis gibbosus L.
1758) population in a Mediterranean stream, using computational neural

networks (CNNs). Aquat. Sci. 62, 350–362.

utiérrez-Estrada, J.C., de Pedro-Sanz, E., López-Luque, R., Pulido-Calvo, I.,
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