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Abstract

Strain mapping is defined as a numerical image-processing technique that measures the local shifts of image details around a crystal

defect with respect to the ideal, defect-free, positions in the bulk. Algorithms to map elastic strains from high-resolution transmission

electron microscopy (HRTEM) images may be classified into two categories: those based on the detection of peaks of intensity in real

space and the Geometric Phase approach, calculated in Fourier space. In this paper, we discuss both categories and propose an

alternative real space algorithm (Peak Pairs) based on the detection of pairs of intensity maxima in an affine transformed space

dependent on the reference area. In spite of the fact that it is a real space approach, the Peak Pairs algorithm exhibits good behaviour at

heavily distorted defect cores, e.g. interfaces and dislocations. Quantitative results are reported from experiments to determine local

strain in different types of semiconductor heterostructures.

r 2007 Elsevier B.V. All rights reserved.

PACS: 68.37.�d; 68.55.�a

Keywords: Strain mapping; High-resolution transmission electron microscopy (HRTEM); Data processing/image processing
1. Introduction

Due to the increasing importance of the quantitative
stress and strain measurements at atomic scale, a large
amount of research has been carried out to speed up
techniques over the last decade. The development of
nanotechnology has been stimulated by the microelectro-
nics industry, which has pursued the optimisation and
miniaturisation of devices. Since the device properties
depend on composition control in three dimensions, the
structural characterisation by high-resolution transmission
electron microscopy (HRTEM) constitutes a potential
front matter r 2007 Elsevier B.V. All rights reserved.
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breakthrough to optimise heteroepitaxial systems, allowing
quantitative measurements at subnanometric level.
Recent advances in digital imaging and image-processing

techniques, together with improved point-to-point resolution
of microscopes have offered the possibility of locally
determining the elastic strain of materials at subnanometric
scale using HRTEM images. However, the reliability of strain
mapping determination relies on the assumption of a constant
spatial relationship between the intensity maxima in the
HRTEM micrograph and the relative positions of the atomic
columns in the specimen. Due to some known effects, such as
thin foil relaxation, local crystal tilts and thickness and/or
composition variation across the material, the reliability of
these strain measurements is somewhat problematical [1,2].
A detailed analysis of the impact of such effects on the

accuracy of lattice-distortion analysis in the case of the
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InP/GaInP QDs is given in Ref. [3]. Additionally, the
microscope transfer function affects the phases of the
diffracted beams differently depending on their position in
Fourier space which can give rise to strain artefacts [4]. In
the case of strained heterostructures, the effect of column
bending needs to be carefully considered. As can be shown
by simulations, which take into account most of these
effects, the average strain of thicker layers can be
determined with sufficient accuracy [5]. In order to
determine strain field mapping, several methodologies have
been described in the literature, which are based mainly on
two different approaches, Peak Finding and Geometric

Phase Analysis.
Peak-finding (PF) methods [6–13] work in real space,

superimposing a two-dimensional reference lattice extra-
polated from a non-distorted region of the material to the
experimental one, built up from the set of intensity maxima
in the HRTEM image, and calculating the local discrete
displacement field at each node. Subsequently, by derivat-
ing the calculated displacement field, the strain field is
obtained.

On the other hand, Geometric Phase (GP) methodology
[14] works in Fourier space, and consists of filtering the
image with an asymmetric filter centred on a Bragg spot in
the Fourier transform of an HRTEM lattice image and
performing an inverse Fourier transform. The phase
component of the resulting complex image gives informa-
tion about local displacements in a direction corresponding
to the normal to lattice fringes corresponding to position of
the Bragg spot. Local strain field components are
calculated by derivation of the displacement obtained from
two non-collinear Fourier components. As well symmetric
and rotation components of distortion can be simply
calculated from these derivates.

Peak-finding approaches have some advantages, such as
less demanding memory and CPU requirements, given that
bidimensional complex Fourier transforms are not needed
at all. This is not true in the case when noise reduction is
made in Fourier space. On the other hand, Geometric

Phase has shown to be very useful when determining strain
mapping in areas containing defects, such as dislocations
[4,14].

Since both methods are noise sensitive, noise reduction
usually improves the accuracy in subsequent strain
determination. Low signal-to-noise ratios may produce
undesired effects in any case. Peak-finding methods
might have problems because noise may even prevent
the lattice from being built, while the Geometric Phase
method cannot stand over-sampling, which results in Bragg
spots being too close to the zero frequency for adequate
filtering.

Even when the intensity maxima can be easily detected in
the case of highly deformed areas, local amorphisation or
local contrast problems (for example due to local thickens
variation) in Peak Pairs (PP) algorithm the automatic
image girding usually fail and need human intervention to
construct correctly continuous lattice.
In this paper, we introduce a real space approach, PP,
which is based on the detection of pairs of intensity
maxima in the affine transformed space dependant on the
reference area. Despite it is a real space approach, the PP
algorithm has been successfully applied to areas containing
defects, and therefore, it is an appropriate approach in the
real space to obtain strain field mapping not only in
pseudomorphical heterostructures but also at interfaces in
plastically relaxed systems and defective regions, such as
dislocated areas and areas with inverse contrasts that occur
usually in experimental images due to local foil thickness
changes or narrow chemical gradients. In this paper, we
will only discuss performance of PP image-processing
algorithms in relation to the GP method on arduous
images and not absolute distortion field present in the
sample which needs additional modelling steps.

2. PP approach

As a preliminary step, the reduction of noise is a very
important issue, allowing us to improve the resolution limit
by a factor of 2–4 [8], and Wiener filtering [15] can be a
good approach. The Wiener filter is a type of linear filter
that is applied to an image adaptively, tailoring itself to the
local image variance, and preserving edges and other high-
frequency parts of the image, assuming Gaussian white
additive noise. It applies a low-pass filter to the image using
neighbourhoods of size m-by-n to estimate the local image
mean and standard deviation, creating a pixel-wise Wiener
filter with these estimates. Excellent results are obtained by
fairly rough estimates of the filter, because the optimal
filter results from a minimisation method, and therefore,
the quality of the results differs only from the true
optimum by an amount that is second order, with the
precision to which the filter is determined [16].
In order to obtain a fringe image instead of the dot

pattern, a Bragg filter is applied to the Fourier-transformed
image. Bragg filtering consists of placing a mask around one
or more Bragg peaks in the Fourier transform of the image
and then apply an inverse Fourier transform. The size of the
kernel mask determines the range of frequencies that are
removed by the filter. Although Bragg filtering is easy to
carry out, it may, in the case of low signal-to-noise images,
induce artefacts which mostly depend on the diameter of the
filtering mask that is applied. If the mask used for the filtering
is too small, relevant information such as local non-periodic
details may be lost. In particular, the information from the
strongly deformed but small areas can be cut off by filtering
because signal is weak in the Fourier space from such zones
blurred in the noise coming from the whole image. On the
other hand, larger masks produce noisy images.
The first stage in the procedure consists of the detection

of local intensity maxima in the filtered image. Local
maxima are defined as the pixels of a given intensity (I0)
whose external boundary pixels all have a value lower than
I0, i.e. using an 8-connected neighbourhood. Local maxima
are identified on a pixel basis on the Bragg-filtered image,
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so its maximum resolution is 1� 1 pixel. In order to obtain
subpixel resolution, we consider initially two approaches:
2D interpolation (linear, spline, polynomial) and function
maximisation. 2D interpolation requires a sampling of the
image at fractional locations, generating matrices of values
at subpixel resolution, at which to interpolate the data. The
higher the required precision, the higher the dimension of
the matrices will be, thus increasing the computational
requirements to process a given image. Once the image has
been interpolated, it is easy to determine the coordinates of
the maximum intensity at subpixel resolution. The second
approach requires less computational effort, but it assumes
that the local shape of grey values around a peak follows a
2D parametric function. We propose to fit a 2D quadratic
function using an 8-connected neighbourhood of two
pixels around each local maximum: zðx; yÞ ¼ ax2 þ by2þ

cxyþ dxþ eyþ f . Once the quadratic function has been
fitted to the neighbourhood of a peak, the maximum of this
function is easily determined by setting derivatives to 0 as
follows:

qz

qx
¼ 0;

qz

qy
¼ 0 )

2a c

c �2b

����
���� xmax

ymax

�����
����� ¼ �d

�e

����
����.

This allows us to determine precisely the peak (xmax,
ymax) at subpixel resolution. This approach is more
sensitive to noise, but it has shown to be much faster than
interpolation, achieving enough precision in the experi-
ments. If a higher precision is desired at the cost of
increasing the time taken for calculations, bicubic inter-
polation [16] may be a good approach.

The second step is to determine two non-collinear basis
vectors that will define the position of the peaks of
maximum intensity in the reference area, by selecting three
points, A, B and C, that will define vectors ~a ¼ AB ¼
ðax; ayÞ and ~b ¼ AC ¼ ðbx; byÞ, as shown in Fig. 1. There-
Fig. 1. Basis vectors ~a ¼ ðax; ayÞ and ~b ¼ ðbx; byÞ defined in the reference

area by points A, B and C. (a) [1 1 0] HRTEM image of CdTe, showing the

chosen pair of basis vectors (magnitude ¼ 5x). (b) Affine transformed

intensity maxima, showing transformed basis vectors and a dislocation in

the x direction.
fore, in the reference area, intensity maxima are supposed
to be located at positions Aþm �~aþ n � ~b, with m and n

denoting integers. These vectors will be used as the
reference at which the strains of the specimen are
determined. The reference area should be taken on the
same image, but far away from deformed regions.
An affine transformation maps variables (e.g. pixel

intensity values located at position (x, y) in an input
image) into new variables (x0, y0). The main advantage of
affine transformations is that lines and parallelism are
preserved, and therefore are well suited to the transforma-
tion of crystalline images. An affine transformation is
defined as a linear combination of four primitives:
translation, rotation, scaling and reflection, and may be
described mathematically as

x0

y0

" #
¼

a b c

d e f

" # 1

x

y

2
64
3
75.

In order to determine precisely the transformation
matrix, we must have at least three non-collinear control
points, because three points provide six values, which can
be used to solve the six unknowns (i.e. a, b, c, d, e and f).
We define the following control points: coordinates of
point A should be transformed into (0, 0), vector (ax, ay)
into (1, 0) and vector (bx, by) into (0, 1). The solution of the
resulting linear system is the desired solution, calculated as
follows:

0 1 0
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and therefore, the transformation matrix is easily obtained:

a b c

d e f
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¼
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0 0 1
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.

In the case of a non-distorted material, this transforma-
tion would generate a perfectly square grid, where the
maxima of the reference area will be located at integer
coordinate values in the affine transformed space. In an
experimental image, we obtain a near-square grid where it
is easy to identify deviations with respect to the grid defined
by the basis vectors, being therefore very easy to identify
defects in the material. Fig. 2a shows a Bragg-filtered
HRTEM image of a dislocation in CdTe, as well as the
chosen basis vectors (magnitudes have been multiplied by
5) that define the affine transformation to be applied. Once
the intensity maxima in the Bragg-filtered HRTEM image
are identified, their corresponding coordinates are affine
transformed. Fig. 2b shows the peaks’ positions in the
transformed space, clearly revealing the presence of a
dislocation in the material (i.e. extra-plane of maxima can
be easily observed in the figure, indicating the position of
the dislocation in the material).
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Fig. 2. (a) HRTEM image of a dislocation inside the CdTe material (b) Affine transformation defined by reference vectors ~a (ax, ay) and ~b (bx, by).

Fig. 3. Affine transformation defined by reference vectors ~a (ax, ay) and ~b
(bx, by). This transformation allows the use of Euclidean distance when

searching the optimal ‘‘partner’’ of a given peak.

Fig. 4. (a) HRTEM image of a CdTe/GaAs interface (see Fig. 5) showing

three different areas of interest containing different types of dislocations.

(b) Pair identification using PP around different dislocations: two along

the interface (1 and 2) and another one inside the CdTe material (3).
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The next step in the procedure is the identification of
Pairs of Peaks using the chosen basis vectors and the
intensity maxima set in the image. For each intensity
maximum (x, y), we look for its associated peaks in the
direction of the basis vectors (~a and ~b) and at a distance of
j~aj and j~bj, respectively. In the transformed space, this
corresponds to locating the nearest peaks to (x0+1, y0),
(x0�1, y0), (x0, y0�1), (x0, y0+1), and considering them as
neighbours of (x0, y0), given that transformed reference
vectors correspond to orthogonal unit vectors, as shown in
Fig. 3.

The intensity maxima coordinates in the transformed
space allow us to use the Euclidean distance in order to
determine the most probable ‘‘partner’’ of a given
maximum of intensity in the peak pair’s identification
stage, assuming Gaussian probability distributions centred
at the peaks and considering equal covariance matrices.

By connecting pairs of neighbours by single lines,
different types of dislocations have been detected both
along the CdTe/GaAs interface (Figs. 4b-1 and b-2) and
inside the CdTe material (Fig. 4b-3).

The identification of pairs of peaks along two non-
collinear directions enables us to determine precisely the
strain field. Let us consider a pair of neighbours in the
direction of vector~a, formed by peaks Peak0 ¼ (x0, y0) and
Peak1 ¼ (x1, y1). From these vectors, it is easy to calculate
displacements in the material, using ux ¼ x1�x0�ax and
uy ¼ y1�y0�ay. The same calculations apply to the
calculation of vx and vy, but considering the second basis
vector (~b). A diagram showing these relationships is shown
in Fig. 5.
The strain field components can be calculated by solving

the following set of linear equations:

ux ¼ axexx þ ayexy

uy ¼ ayeyy þ axeyx

vx ¼ bxexx þ byexy

vy ¼ byeyy þ bxeyx

9>>>>=
>>>>;
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Fig. 5. Diagram of the calculation of distortions u ¼ (ux, uy) and v ¼

(vx, vy) from two non-collinear pairs.
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where (ux, uy) and (vx, vy) are the coordinates of the
displacement with respect to reference vector ~a ¼ (ax, ay)
and ~b ¼ (bx, by), respectively, and exx, exy, eyy and eyx are
defined as follows:

exx ¼
qu

qx
; exy ¼

qu

qy
; eyy ¼

qv

qy
; eyx ¼

qv

qx
.

Once the lattice strain tensor for each maximum is
calculated, the continuous distortion field can be deter-
mined at any point using a 2D interpolation process.

The essential difference in the whole procedure with
respect to ‘‘standard’’ peak finding is that PP measures
strain using pairs of peaks detected in the affine trans-
formed space, instead of fitting a distorted lattice to a set of
peaks and compare it with respect to a reference lattice.
This different approach has several advantages. First, the
errors introduced in fitting a regular lattice to a deformed
set of peaks are avoided. This is especially important in the
presence of dislocations, where the fit is not easy, and any
error may be propagated across the lattice. On the other
hand, PP measures local distortions with respect to the
reference basis vectors. Any error keeps local, and is not
propagated because no lattice is deployed. Second, strain
around defects can be determined without user’s interven-
tion. The determination of neighbours in the affine
transformed space provides a significant reduction of
errors in detecting adjacent peaks in the direction of basis
vectors in heavily distorted areas.

A technical constraint of the proposed technique is that
the strain field can be determined by interpolation
exclusively in the convex hull formed by all the peaks
detected in the image. Outside this area, usually close to the
borders, strain values are not valid.
3. Experimental details

HREM cross-section specimens were prepared from a
thick CdTe film grown by molecular beam epitaxy (MBE)
on (1 0 0) GaAs 21 misoriented substrate. The high-
resolution electron microscopy was performed by using a
Philips CM 20UT microscope operating at 200 kV with a
point resolution of 0.19 nm. For HRTEM observation, an
aperture of 11 nm�1 (including nine beams: 000, 4� 111,
2� 220, 2� 200) was used for image formation. The
thickness of the foil for which the images were analysed
was uniform and estimated to be below 15 nm. Simulated
images of GaAs and CdTe crystals along the [1 1 0] zone
axis show that close to Scherzer defocus and for foil
thicknesses between 5 and 15 nm the simple contrast
condition when the bi-atomic column positions are
represented by white or black dots can be easily
achieved. In practice, the defocus value was slightly tuned
to keep homogeneous contrast (with bright dots on a dark
background) for GaAs and CdTe crystal in the whole-
observed area.
In order to improve the signal-to-noise ratio, in the

2048� 2048 pixels HREM experimental image shown in
Fig. 6, a Wiener filter was applied, followed by a Bragg
filter designed using a Gaussian-shaped mask kernel
(size ¼ 35� 35 pixels) centred at 1̄ 1̄ 1 and 1 1̄ 1 ‘‘structural
reflections’’.
4. Comparison of PP and GP techniques

In order to test the PP algorithm, HRTEM micrographs
corresponding to different nanostructures, both in pseu-
domorphical growth and containing structural defects,
have been analysed. Strain mapping results have been
compared with those obtained using GP, as it is
the most widely used approach to strain mapping from
HRTEM images in the presence of defects. Experimental
results for GP have been obtained using GP scripts by
Hÿtch [14]. For PP, we have developed a specific software
package, called Strain Determination Software. This
package works under MATLAB [17], and it is available
from our web page [18].
Dislocations have always been an obvious and fruitful

field of application for strain mapping. The PP procedure
was first applied to an HRTEM image of a CdTe/GaAs
interface along the [1 1 0] zone axis containing an array of
misfit dislocations, shown in Fig. 6. The automatically
reconstructed lattice from PP and GP analysis are shown in
Fig. 7.
The dislocation on this interface was previously analysed

by the dislocation core distribution method derived from
GPA in [19]. Although PP algorithm works in real space
and GP in the reciprocal one, both methods provide similar
strain maps. A previous real space approach for strain
mapping around defects was published by Rosenauer [20],
but neighbouring peaks at the interface were not auto-
matically determined. PP procedure is, to our knowledge,
the first real space strain mapping algorithm providing
comparable results to GP in the presence of defects without
the need of user’s intervention. Because of space limita-
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Fig. 7. CdTe/GaAs interface strain maps obtained by PP and GP from the HRTEM image in Fig. 5. (a) PP-exx (b) GP-exx (c) PP-exy (d) GP-exy.

Fig. 6. [1 1 0] HRTEM image of a CdTe/GaAs interface.
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tions, only strain maps exx and exy are shown, but those
corresponding to eyy and eyx, give equally similar results.

Both, GP and PP strain maps were calculated using the
1̄ 1̄ 1 and 1 1̄ 1 ‘‘structural reflections’’. Let us note that
these two reflections are enough to produce a spot pattern
in real space. However, in PP we could have used
additional reflections, such as 2̄ 0 0. This would have
produced a similar spot pattern where peak positions
better fit the original image. We may even increase the
number of reflections considering those with higher spatial
frequency, such as 2 0 0 and 0 2 2. This generates a spot
pattern with more information as compared to two
reflections approach. However, this also produces an
increment of noise and these higher frequency periodicities
can introduce information which can be more affected by
electron optics due to their higher spatial frequencies.
Generally it is difficult to choose conditions where many
reflections are in the relatively flat region of the Phase
Transfer Function and their use it is not recommended.
Given that GP only uses two reflections, we have used the
same set of reflections in both algorithms (GP and PP) in
order to be able to compare their results.

In deformation measurement by image processing the
most important factor is the global averaging which
depends on the diameter of the mask in GP method and
‘‘the force’’ of the Wiener Filter which depends mainly on
the noise estimator. In PF and PP algorithms, the global
averaging of deformation is only imposed by Wiener filter
because the whole area of Fourier space, where we can
expect useful information even far away from Bragg peaks,
can be considered in the filtered image. In GP, the size of
the mask is limited by the distances between Bragg peaks.
Results from Fig. 7 show that the distortion around defect
looks similar for both methods.

Without simulation, taking into account ‘‘real world’’
effects, we cannot prove that the shown distributions
correspond to real deformations of the crystal for
complicated configurations with the presence of Ga,
As, Zn, Cd, Te atoms and possible misalignment of the
microscope and/or the sample, surface non-homogeneous
relaxation, etc., but these aspects are not the object
of the current work. The minor differences between
results obtained by GP and PP method are attributed
to the differences in the spatial frequencies and their
information content and the interpolation algorithms
used in PP.

5. Discussion

Experimental results allow us to conclude that PP
algorithm is an alternative method to GP. Let us note that
both algorithms fail in the determination of strain near the
borders of the image. In the case of GP, the border effects
are due to spectral leakage. On the other hand, PP is based
in the determination of strain at a finite set of points,
followed by an interpolation process. Therefore, outside
the region where peaks lay, strain values are extrapolated
and may be inaccurate. However, in experimental images,
this problem is negligible, given that areas of interest, such
as dislocations, interfaces and so on, might be centred in
the middle of the image.
From the analysis when comparing GP and PP, we

conclude that:
�
 Both algorithms give similar results in the proximity of
defects. This property is very interesting in the analysis
of defective nanostructures.

�
 PP works in real space. This property leads to some

advantages, such as reduced memory and CPU require-
ments, given that bidimensional complex Fourier trans-
forms are not needed at all. This allows the calculation
of strain maps of greater images, that is to say, wider
areas and/or higher resolution. Noise reduction will
usually be in this case the most demanding procedure of
the whole strain mapping process.

�
 PP allows us to use more than two beams in order to

determine the strain. However, we should be careful,
because as the number of beams increases, so it does the
noise in the associated image.

�
 PP fail when lattice peaks are not easily detected, as it

happens in the case of the appearance of sublattices in
the HRTEM image. In this case, it is possible to apply
some filtering to the original HRTEM image, but this
may produce undesirable errors in strain determination.
In these cases, GP Phase is recommended.

�
 PP is based in the location of peaks, and a filtering

process is necessary to determine precisely their posi-
tions, while in the GP approach this filtering stage is
implicit, given that a finite size window is applied in
Fourier space. In both cases, researchers should be
careful because local non-periodic details may be
removed at this stage.

6. Conclusion

In this paper we have introduced the PP algorithm, a
new real space procedure for strain mapping. While a
number of algorithms working on real space have been
considered, this is, to our knowledge, the first time a real
space approach is useful for strain mapping around defects
without user’s intervention. Basically, it works on a Bragg-
filtered image, locating pairs of peaks along a predefined
direction and distance in the affine transformed space
defined by a pair of basis vectors. This transformation
greatly reduces potential errors in the determination of
partners of a given peak. It offers the advantages of a real
space approach and its behaviour is unaltered in the
presence of defects as well as in the strain mapping of non-
homogeneous surfaces. Nevertheless, we consider that both
algorithms, GP and PP are useful for strain determination,
each having different properties, advantages and pitfalls,
and should be considered as complementary tools in strain
mapping.
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