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Abstract

We present some improvements on the error estimates obtained by J. Blasco and R. Codina for a viscosity-splitting in time
scheme, with finite element approximation, applied to the Navier–Stokes equations. The key is to obtain new error estimates for
the discrete in time derivative of velocity, which let us reach, in particular, an error of order one (in time and space) for the pressure
approximation. To cite this article: F. Guillén-González, M.V. Redondo-Neble, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Estimations optimales d’erreur d’une méthode de pas fractionnaire appliqué à des équations de Navier–Stokes 3D. On
présente quelques améliorations sur les estimations d’erreur obtenues par J. Blasco et R. Codina pour une discrétisation des équa-
tions de Navier–Stokes par un schéma de décomposition en temps et des éléments finis en espace. L’idée principale est l’obtention
de nouvelles estimations d’erreur de la dérivée discrète en temps de la vitesse, qui entraînent des estimations d’erreur d’ordre un
(en temps et en espace) pour l’approximation de la pression. Pour citer cet article : F. Guillén-González, M.V. Redondo-Neble,
C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the unsteady, incompressible Navier–Stokes equations in a bounded domain Ω ⊂ IR
3:

(P )

{
ut + (u · ∇)u − ν�u + ∇p = f, ∇ · u = 0 in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ), u|t=0 = u0 in Ω,

where u(x, t) is the fluid velocity at position x ∈ Ω and time t ∈ (0, T ), p(x, t) the pressure, ν > 0 the viscosity
(which is assumed constant) and f the external force.
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Fractional step methods are widely used to approximate the problem (P ). They allow us to separate the effects
of different operators appearing in the problem. The origin of these methods is the well known Chorin–Temam pro-
jection scheme, where the idea is to avoid the computation of the Stokes problem with a two step scheme: first step
is a Dirichlet-elliptic problem for an intermediate velocity and the second one is a free divergence projection step
equivalent to a Neumann-elliptic problem for the pressure.

Error estimates for projection methods can be seen in [6,7] for time discrete schemes and in [4] for a fully discrete
scheme.

In this Note, we will study a viscosity-splitting scheme, introduced and studied by J. Blasco and R. Codina [1–3].
It is a two-step scheme, where the main numerical difficulties of (P ) (namely, the treatment of nonlinear term (u · ∇)u
and the relation between incompressibility ∇ · u = 0 and pressure), are split into two different steps, considering the
diffusive terms in both steps.

Notice that both type of schemes, projection and viscosity-splitting schemes, can be jointly used, because the
second step of the viscosity-splitting scheme could be computed with a projection method.

We use a finite element approximation. Let Ω be a 3D polyhedron (or a 2D polygon) such that Stokes problem
in Ω has H2 × H 1 regularity for velocity and pressure respectively.

We consider a partition {tm = mk} with k = T/M of the time interval [0, T ], and a family of finite dimensional
spaces Vh ⊂ H1

0(Ω) and Qh ⊂ L2
0(Ω) defined from finite element methods of the domain Ω of mesh size h. Vh and

Qh are thus required to satisfy:

– the Brezzi–Babuska stability condition: infqh∈Qh\{0}(supv∈Vh\{0}
(qh,∇·vh)
‖vh‖ |qh| ) � β;

– the approximating properties:

1

h
inf

vh∈Vh

|u − vh| + inf
vh∈Vh

‖u − vh‖ + inf
qh∈Qh

|p − ph| � Ch
∥∥(u,p)

∥∥
H 2×H 1 .

We use the notation | · | and (·, ·) as the norm and the inner product in L2 and ‖ · ‖ as the norm in H 1
0 . The fully

discrete scheme is described as follows:
Initialization: Let u0

h ∈ Vh be an approximation of u0
Step of time m + 1:

Substep 1: Given um
h ∈ Vh, to compute um+1/2

h ∈ Vh such that,

(S1)
m+1
h

1

k

(
um+1/2

h − um
h ,vh

) + c
(
um

h ,um+1/2
h ,vh

) + (∇ um+1/2
h ,∇ vh

) = (
fm+1,vh

)
, ∀vh ∈ Vh

where c(w,u,v) = {(w · ∇u,v) − (w · ∇v,u)}/2.
Substep 2: Given um+1/2

h , to compute (um+1
h ,pm+1

h ) ∈ Vh × Qh such that,

(S2)
m+1
h

⎧⎨
⎩

1

k

(
um+1

h − um+1/2
h vh

) + (∇(
um+1

h − um+1/2
h

)
,∇vh

) − (
pm+1

h ,∇ · vh

) = 0, ∀vh ∈ Vh,(∇ · um+1
h , qh

) = 0, ∀qh ∈ Qh.

With respect to the effective computation of this scheme, in each time step, it will be necessary to compute (i) (S1)
m+1
h

as three discrete linear convection–diffusion equations (the system is uncoupled). (ii) (S2)
m+1
h as a discrete Stokes

problem.
Assuming the following regularity for the exact solution (u,p)

(R1) u ∈ L∞(
H2 ∩ V

)
, p ∈ L∞(

H 1), ut ∈ L∞(
L2) ∩ L2(H1), ut t ∈ L2(V′)

(here V = {v ∈ H1
0: ∇ · v = 0 in Ω, v = 0 on ∂Ω}), and the constraints h2 � Ck, the following error estimates

hold [1,3], ‖u(tm) − um
h ‖l∞(L2)∩l2(H 1) � C(k + h) and ‖p(tm) − pm‖l2(L2) � C

√
k (here, pm is the pressure of the

corresponding time discrete scheme). Moreover, the estimate ‖pm −pm
h ‖l2(L2) � Ch/

√
k can be obtained with similar

arguments.
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The objectives of this work are:

1. To improve the order of error estimate in pressure, from O(
√

k + h/
√

k ) to O(k + h).
2. To improve the norm of error estimates in velocity and pressure, concretely from l∞(L2) to l∞(H 1) in velocity

and from l2(L2) to l∞(L2) in pressure.
3. To improve the order of error estimate in velocity in norm L2(L2), from O(k + h) to O(k + h2).

The main result of this paper can be written as follows. Assuming additional regularity hypotheses:

(R2) pt ∈ L2(H 1), ut ∈ L∞(
H1) ∩ L2(H2), ut t ∈ L2(L2) ∩ L∞(

H−1), ut t t ∈ L2(V′),
√

tut t t ∈ L2(H−1)
then, ‖p(tm)−pm

h ‖l2(L2) � C(k +h), ‖u(tm)− um
h ‖l2(L2) � C(k +h2). Moreover, assuming the following hypothesis

for initial step:∣∣(u(t1) − u1) − (
u(t0) − u0)∣∣ � Ck2,

∣∣(u1 − u1
h

) − (
u0 − u0

h

)∣∣ � Ckh

then ∥∥u(tm) − um
h

∥∥
l∞(H1)

� C(k + h),
∥∥p(tm) − pm

h

∥∥
l∞(L2)

� C(k + h).

Therefore, we have that this scheme has the same analytical results than Euler’s type schemes, improving their nu-
merical treatment (since the main difficulties are split). In the following two sections, we will present an outline of the
proof (see [5] for a complete explanation of the results).

Unfortunately, in order to assure the additional regularity hypotheses (R2), it is necessary to assume that
ut (0) ∈ H1, which implies a nonlocal compatibility condition for the data u0 and f [8]. In this sense, we could re-
lax it approximating the first step with several auxiliary initial steps with a sufficiently small time step. Then, the
approximate solutions obtained from these preliminary steps could serve as initial data for our fractional step algo-
rithm at subsequent time steps.

2. Error estimates for the time discrete scheme

We decompose the total error in their temporal and spatial parts, introducing the corresponding time discrete
scheme (where the discrete spaces (Vh,Qh) must be changed by (H1

0,L
2
0)), which problems are denoted as (S1)

m+1

and (S2)
m+1 and the solutions are denoted as um+1/2 and (um+1,pm+1) respectively. We introduce the following

notations for the time discrete errors in t = tm+1:

em+1/2 = u(tm+1) − um+1/2, em+1 = u(tm+1) − um+1, em+1
p = p(tm+1) − pm+1,

and for the discrete in time derivatives of errors

δtem+1 = em+1 − em

k
, δtem+1/2 = em+1/2 − em−1/2

k
.

Finally, the problems verified by the errors em+1/2 and (em+1, em+1
p ) will be denoted by (E1)

m+1 and (E2)
m+1 re-

spectively, and (E3)
m+1 obtained by adding (E1)

m+1 and (E2)
m+1 (see the next section for the problems verified by

the space discrete errors).

Theorem 2.1. The following error estimate holds (for k small enough): ‖em+1
p ‖l2(L2) � Ck.

Proof. It is based on the following three steps:
(i) H 2 error estimates. Using the H 2 × H 1-regularity of Stokes problem verified by (em+1, em+1

p ) and the

H 2-regularity of the Poisson–Dirichlet problem verified by em+1/2, one has em+1/2, em+1 are bounded in l∞(H2).

(ii) Making (δt (E1)
m+1, δtem+1/2) + (δt (E2)

m+1, δtem+1), one gets∥∥δtem+1
∥∥

l∞(L2)∩l2(H1)
+ ∥∥δtem+1/2

∥∥
l∞(L2)∩l2(H1)

� Ck1/2.

(iii) Duality argument. Making (δt (E3)
m+1,A−1δtem+1), A being the Stokes operator, one has∥∥δtem+1

∥∥ ∞ ′ 2 2 � Ck

l (V )∩l (L )
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for k small enough (which becomes from to apply the generalized discrete Gronwall’s lemma). �
Theorem 2.2. Assuming |δte1| � C k, the following error estimates hold ‖em+1‖l∞(H1) � Ck and ‖em+1

p ‖l∞(L2) � Ck.

Proof. It is based on the error estimate ‖δtem+1‖l∞(L2)∩l2(H1) � C k, obtained by making (δt (S3)
m+1, δtem+1). �

3. Error estimates for the spatial discretization

We define the space discrete errors as: em+1
d = um+1 − um+1

h , em+1/2
d = um+1/2 − um+1/2

h , em+1
p,d = pm+1 −pm+1

h .

Then, the problems verified by the space discrete errors are:

(E1)
m+1
h

1

k

(
em+1/2
d − em

d ,vh

) + (∇ em+1/2
d ,∇ vh

) = NLm+1
h (vh), ∀vh ∈ Vh,

where NLm+1
h (vh) = c(em

d ,um+1/2,vh) − c(um
h , em+1/2

d ,vh), and

(E2)
m+1
h

⎧⎨
⎩

1

k

(
em+1
d − em+1/2

d ,vh

) + (∇(
em+1
d − em+1/2

d

)
,∇ vh

) − (
em+1
p,d ,∇ · vh

) = 0, ∀vh ∈ Vh,(∇ · em+1
d , qh

) = 0, ∀qh ∈ Qh.

Adding (E1)
m+1
h and (E2)

m+1
h , one has:

(E3)
m+1
h

(
δte

m+1
d ,vh

) + (∇ em+1
d ,∇ vh

) − (
em+1
p,d ,∇ · vh

) = NLm+1
h (vh),

(∇ · em+1
d , qh

) = 0.

Theorem 3.1. For k small enough, the following error estimate holds: ‖em+1
d ‖l2(L2) � C(k + h2)

Proof. It is based on the following steps: (i) Making (δt (E1)
m+1, δte

m+1/2
h ) + (δt (E2)

m+1, δte
m+1
h ), one can ar-

rives at ‖δte
m+1
d ‖l∞(L2)∩l2(H1) + ‖δte

m+1/2
d ‖l∞(L2)∩l2(H1) � C. (ii) Additional scheme estimates: um+1

h is bounded

in l∞(W1,3 ∩ L∞). (iii) Duality argument. Making ((E3)
m+1
h ,A−1

h em+1
h ), Ah being the discrete Stokes operator. �

Theorem 3.2. For k small enough, ‖em+1
p,d ‖l2(L2) � Ch.

Proof. It is based on the following estimate ‖δte
m+1
d ‖l2(L2) � Ch, obtained by making (δt (E3)

m+1
h ,A−1

h δte
m+1
h ). �

Theorem 3.3. Assuming |δte1
d | � Ch, then ‖em+1

d ‖l∞(H1) � Ch and ‖em+1
p,d ‖l∞(L2) � Ch.

Proof. It is based on the error estimate ‖δte
m+1
d ‖l∞(L2)∩l2(H1) +‖δte

m+1/2
d ‖l∞(L2)∩l2(H1) � Ch, obtained as in step (i)

of the proof of Theorem 3.1. �
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