
Communications in Nonlinear Science and Numerical Simulation 13 (2008) 508–516

www.elsevier.com/locate/cnsns
Nonclassical symmetry reductions for an
inhomogeneous nonlinear diffusion equation

M.L. Gandarias *, M.S. Bruzón
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Abstract

In this paper we consider a class of generalised diffusion equations which are of great interest in mathematical physics.
For some of these equations model, fast diffusion nonclassical symmetries are derived. We find the connection between
classes of nonclassical symmetries of the equation and of an associated system. These symmetries allow us to increase
the number of solutions. Some of these solutions are unobtainable by classical symmetries and exhibit an interesting
behaviour.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider a mathematical model for diffusion processes which is the generalised inhomoge-
neous nonlinear diffusion equation
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E-m
f ðxÞut ¼ ½gðxÞunux�x: ð1Þ

The diffusion processes appear in many physics processes such as plasma physics, kinetic theory of gases, solid
state, metallurgy and transportation in porous medium [2,16,19].

In [19] Rosenau presented a number of remarkable features of the fast diffusion processes: for f(x) = 1,
g(x) = 1 and �2 6 n 6 �1, the family of fast diffusion (1) coexists with a subclass of superfast diffusions where
the whole process terminates within a finite time. The special case with n = �1 emerges in plasma physics and
reveals a surprising richness of new physics-mathematical phenomena.
704/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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In (1), u(x, t) is a function of position x and time t and may represent the temperature, f(x) and g(x) are
arbitrary smooth functions of position and may denote the density and the density-dependent part of thermal
diffusion, respectively.

There is no existing general theory for solving nonlinear partial differential equations and the methods of
point transformations are a powerful tool. One of the most useful point transformations are those which form
a continuous group. Lie classical symmetries admitted by nonlinear partial differential equations (PDE’s) are
useful for finding invariant solutions.

Motivated by the fact that symmetry reductions for many PDE’s are known and are not obtained by using
the classical Lie method, there have been several generalizations of the classical Lie group method for symme-
try reductions.

Bluman and Cole [5] developed the nonclassical method to study the symmetry reductions of the heat equa-
tion. The basic idea of the method requires that the N order PDE
D ¼ Dðx; t; u; uð1Þðx; tÞ; . . . ; uðNÞðx; tÞÞ ¼ 0; ð2Þ

where ðx; tÞ 2 R2 are the independent variables, u 2 R is the dependent variable and u(l)(x, t) denote the set of
all partial derivatives of l order of u and the invariance surface condition
nux þ sut � / ¼ 0; ð3Þ
which is associated with the vector field
v ¼ nðx; t; uÞox þ sðx; t; uÞot þ /ðx; t; uÞou; ð4Þ
which are both invariant under the transformation with infinitesimal generator (4). Since then, a great number
of papers have been devoted to the study of nonclassical symmetries of nonlinear PDE’s in both one and sev-
eral dimensions.

An obvious limitation of group-theoretic methods based local symmetries, in their utility for particular
PDE’s, is that many of these equations does not have local symmetries. It turns out that PDE’s can admit
nonlocal symmetries whose infinitesimal generators depend on integrals of the dependent variables in some
specific manner.

Krasil’shchik and Vinogradov [14,15,20] gave criteria which must be satisfied by nonlocal symmetries of a
PDE when realized as local symmetries of a system of PDE’s which ‘covers’ the given PDE. Akhatov et al. [1]
gave nontrivial examples of nonlocal symmetries generated by heuristic procedures.

In [6,7] Bluman introduced a method to find a new class of symmetries for a PDE. By writing a given PDE,
denoted by R{x, t,u} in a conserved form, a related system denoted by S{x, t,u,v} as additional dependent
variables is obtained. Any Lie group of point transformations admitted by S{x, t,u,v} induces a symmetry
for R{x, t,u}; when atleast one of the generators of the group depends explicitly on the potential, then the cor-
responding symmetry is neither a point nor a Lie–Bäcklund symmetry. These symmetries of R{x, t,u} are
called potential symmetries.

Knowing that an associated system to the Boussinesq equation has the same classical symmetries as the
Boussinesq equation, Clarkson [9] proposed as an open problem, an auxiliary system of the Boussinesq equa-
tion possesess more or less nonclassical symmetries than the equation itself. Bluman claims [4] that the ansatz
to generate nonclassical solutions of the associated system could yield solutions of the original equation which
are neither nonclassical solutions nor solutions arising from potential symmetries.

However as far as we know these new class of potential symmetries, which we have called nonclassical

potential symmetries, were first derived in [11] for the Burgers equation and in [10] for the porous medium
equation. After that we have derived nonclassical potential symmetries, in different ways for some interesting
equations.

In [18], Sophocleous has classified the nonlocal potential symmetries of (1). He obtained that potential sym-
metries exist only if the parameter n takes the values �2 or � 2

3
and also certain relations must be satisfied by

the functions f(x) and g(x).
In [12], we have derived nonclassical potential symmetries for the special case of (1), with f(x) = 1 and

g(x) = 1
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ut ¼ ½u�1 ux�x: ð5Þ

In [17] connection between classes of nonclassical symmetries of (5), and of nonclassical symmetries of an
associated system as well as some new generators have been found.

The aim of this paper is to obtain nonclassical symmetries for (1), with n = �1, and for the associated sys-
tem given by
vx ¼ f ðxÞu;
vt ¼ gðxÞu�1ux;

ð6Þ
as well as the connection between these symmetries. These symmetries lead to new solutions, some of these
solution exhibit an interesting behaviour.

2. Nonclassical symmetries

2.1. Nonclassical symmetries of the PDE (1)

The basic idea of the method is that the PDE (1) is augmented with the invariance surface condition (3)
which is associated with the vector field (4). By requiring that both (1) and (3) are invariant under the trans-
formation with infinitesimal generator (4) one obtains an overdetermined, nonlinear system of equations for
the infinitesimals n(x, t,u), s(x, t,u) and /(x, t,u). The number of determining equations arising in the nonclas-
sical method is smaller than for the classical method, consequently the set of solutions is in general, larger than
for the classical method as in this method one requires only the subset of solutions of (1) and (3) to be invari-
ant under the infinitesimal generator (4). However, the associated vector fields do not form a vector space.

To obtain nonclassical symmetries of (1), with n = �1, we apply the algorithm described in [8,9] for calcu-
lating the determining equations. We can distinguish two different cases:

In the case s 5 0, without loss of generality, we may set s(x, t,u) = 1. The corresponding determining equa-
tions give rise to
n ¼ nðx; tÞ;
/ ¼ aðx; tÞu;
where n(x, t), a(x, t), f(x) and g(x) are related by the following conditions:
� naþ n2 g0

g
� f 0

f

� �
� 2nnx � nt ¼ 0; ð7Þ

� n
g00

g
� g02

g2

� �
� nx

g0

g
þ nxx ¼ 0; ð8Þ

axx þ
g0

g
ax ¼ 0; ð9Þ

2anx � an
g0

g
� f 0

f

� �
þ at þ a2 ¼ 0: ð10Þ
By solving these equations we obtain
a ¼ dðtÞðuðxÞ þ k1Þ; ð11Þ
n ¼ �gðxÞdðtÞðk3uðxÞ � k1k2Þ; ð12Þ
where
uðxÞ ¼
Z

1

gðxÞ dx; ð13Þ



M.L. Gandarias, M.S. Bruzón / Communications in Nonlinear Science and Numerical Simulation 13 (2008) 508–516 511
and f can be derived from the following condition
f 0

f
¼ u0d0 þ d2ðk3ðuu00 � 2u02Þ þ k1ðu02 � k2u00Þ þ uu02Þ

d2u0ðk3u� k1k2Þ
: ð14Þ
As f depends only on x, f = f(x), d must adopt one of the following forms:
d ¼ k
t

or d ¼ k:
These generators can be obtained by Lie classical method and consequently the nonclassical method with
s 5 0 applied to (1) gives only rise to the classical symmetries.

In the case s = 0, without loss of generality, we may set n = 1 and by applying the extended version of Bı̂lǎ
and Niesen procedure [3,8] the surface condition (3) is written as
ux ¼ /:
By substituting this expression into the PDE (1) we get
f ðxÞut ¼Aðx; t; uÞ; ð15Þ

where
Aðx; t; uÞ ¼ gðxÞðð/x þ /u/Þun þ n/2un�1Þ þ g0/un: ð16Þ

Since in (15) the coefficients Aðx; t; uÞ can be viewed as arbitrary functions, we can apply the Lie classical
method to this equation, and setting s = 0 and n = 1 we obtain the following PDE linear in /
fA/u þ f 2/t �Auf /þ f 0A� fAx ¼ 0: ð17Þ

If we substitute the expression of A (16) given above we get that the nonclassical determining equation for the
infinitesimal / is
uðnþ2Þðfg/xx þ 2fg0/x � f 0g/x þ fg/2/uu þ 2fg//ux þ fg0//u � f 0g/u þ fg00/� f 0g0/Þ
þ n/uðnþ1Þð3fg/x þ fg//u þ 2fg0/� f 0g/Þ þ fgðn� 1Þn/3un � f 2/tu

2 ¼ 0: ð18Þ
The complexity of this equation is the reason why we cannot solve (18) in general. Thus we proceed, by
making an ansatz on the form of /(x, t,u), to solve (18) for n = �1. In this way we found, choosing
/ = a(x, t)u2 + b(x, t)u, after substituting into the determining equation and splitting with respect to u we
obtain an overdetermined system for the functions a and b. So, for Eq. (1) with n = �1, we obtain the infin-
itesimal generator
v ¼ ox þ ðaðx; tÞu2 þ bðx; tÞuÞou;
where f, g, a and b satisfy the system
fg0a2 � fgaax þ f 2at ¼ 0;

f 0g0a� fg00a2 þ ðfg0 þ f 0gÞabþ ðf 0g � 2fg0Þax þ fgðabx � axb� axxÞ þ f 2bt ¼ 0;

f bbx � fgbxx þ f 0gbx ¼ 0;

bðf 0g0 � fg00Þ þ bxðf 0g � 2fg0Þ þ b2fg0 þ fgðbbx � bxxÞ ¼ 0:

ð19Þ
2.2. Nonclassical symmetries of the system (6)

We now consider the associated auxiliary system (6) augmented with the invariance surface condition
nvx þ svt � w ¼ 0; ð20Þ

which is associated with the vector field
w ¼ nðx; t; u; vÞox þ sðx; t; u; vÞot þ /ðx; t; u; vÞou þ wðx; t; u; vÞov: ð21Þ
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By requiring both (6) and (20) to be invariant under the transformation with infinitesimal generator (21) one ob-
tains an over determined, nonlinear system of equations for the infinitesimals n(x, t,u,v), s(x, t,u,v), /(x, t,u,v),
w(x, t,u,v). When atleast one of the generators of the group depend explicitly on the potential, that is if
n2
v þ s2

v þ /2
v 6¼ 0; ð22Þ
then (21) yields a nonlocal symmetry of (1).
A nonclassical potential symmetry of (1) is a nonclassical symmetry of the associated potential system (6)

that satisfies (22).
We are considering s 5 0, and without loss of generality, we set s = 1. The nonclassical method, with

s 5 0, applied to (6), gives rise to nonlinear determining equations for the infinitesimals.
If we require that nu = wu = 0, we obtain that
/ ¼ �f nvu
2 þ wv �

fxn
f
� nx

� �
uþ wx

f
; ð23Þ
and f(x), g(x), n(x, t,v) and w(x, t,v), must satisfy the following equations:
gnvv � nnv ¼ 0; ð24Þ
�fgnnx þ 2fg2nvx þ fgwnv þ 2f 0g2nv � fgnt þ fg0n2 � fgwvn� fg2wvv ¼ 0; ð25Þ
f 2g2nxx þ f 2gwnx þ ff 0g2nx � f 2gwxn� f 2g0wnþ ff 00g2n� f 02g2n� 2f 2g2wvx þ f 2gwwv þ f 2gwt ¼ 0;

ð26Þ
� fgwxx þ f wwx þ f 0gwx ¼ 0: ð27Þ
We can distinguish the following cases:
If nv 5 0 by solving (24) and substituting into (25)–(27) leads to generators for which (22) is satisfied, con-

sequently they are nonclassical potential generators and have been considered in [13].
If n does not depend on v, by substituting n = n(x, t) in (25) and (26) we obtain that
w ¼ v �nx �
nt

n
þ g0n

g

� �
þ g

nx

n
þ nt

n2

� �
� g0 þ hðx; tÞ; ð28Þ
By substituting (28) into (27) we obtain that
w ¼ dðtÞ v� g
n

� �
þ hðx; tÞ: ð29Þ
By substituting into (23) we get that /v = 0. We observe that in this case condition (22) is not satisfied,
consequently
w ¼ nðx; tÞox þ ot þ dðtÞ � fxn
f
� nx

� �
uþ wx

f

� �
ou þ wov; ð30Þ
is not a nonclassical potential generator.

2.3. Connection between symmetries of the PDE (1) and of the system (6)

If we assume that n and w do not depend on v, the system (24)–(27) becomes
�gnnx � gnt þ g0n2 ¼ 0;

f 2g2nxx þ f 2gwnx þ ff 0g2nx � f 2gwxn� f 2g0wnþ ff 00g2n� f 02g2nþ f 2gwt ¼ 0;

�fgwxx þ f wwx þ f 0gwx ¼ 0:

ð31Þ
It is easy to check that denoting a ¼ � f
g n, b ¼ w

g, systems (19) and (31) coincides. Consequently we can
state:
w ¼ nðx; tÞox þ ot þ wðx; tÞov �
f 0

f
nuþ wx

f

� �
ou;
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is a generator for system (6) if and only if
v ¼ ox þ � f
g

nu2 þ w
g

u
� �

ou;
is a generator for Eq. (1).

3. Some exact solutions

In this section we derive some exact solutions by using some generators:
(1) From generator
n ¼ k4

ffiffiffi
x
p
; w ¼ 0; ð32Þffiffip
for f ¼ k3k4

2
ffiffi
x
p e

k1k4 x
k2 and g ¼ 2k2

ffiffi
x
p

k4
, and the surface condition we obtain the similarity variable and similarity

solution
z ¼ k4t � 2
ffiffiffi
x
p
; v ¼ hðzÞ;
and the ODE
2k2h00 þ k1k4h0 þ k2
4h02 ¼ 0:
The solution is
h0 ¼ k1e
k1k4z
2k2
þk1k4k5

2k2 þ k1k4

e
k1k4z

k2
þk1k4k5

k2 � k2
4

:

From (6) we obtain for (1) the exact solution
u ¼ 2k1

k3k4 k4e
k1k4
ffiffi
x
p

k2 � e
k1k2

4
t

2k2
þk1k4k5

2k2

 ! : ð33Þ
We observe that the solution (33), for x ¼ ðk4tþk5Þ2
4

, blows up at a parabola. In Fig. 1 we plot (33) with ki = 1,
i = 1, . . . , 5.

(2) From generator
0

1

2

3

-2

0

2

4

6

-2

0

2

4

0

1

2

Fig. 1. Solution (33) for f ¼ 1
2
ffiffi
x
p e

ffiffi
x
p

and g ¼ 2
ffiffiffi
x
p

.
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n ¼ k; w ¼ �2

xþ kt
;

for g = 1, f = ex and the surface condition we obtain the independent variable
z ¼ x� kt;
and the similarity solution
v ¼ hðzÞ � 1

k
logðxþ ktÞ: ð34Þ
By introducing (34) into (6) we have h satisfying h00 + kh 02 = 0, consequently a solution of (1) is given by
u ¼ e�x 1

x� t þ k1

� 1

xþ t

� �
: ð35Þ
We observe that solution (35) blows up into two straight lines x � t + k1 = 0 and x + t = 0. In Fig. 2 we plot
(35) with k1 = 1.

(3) From generator
n ¼ 1

f
; w ¼ �2k1 tanh k1 t þ

Z
f ðxÞdx

� �� �
;

for g ¼ 1
f , and the surface condition we obtain the independent variable
z ¼
Z

f ðxÞdx� t;
and the similarity solution
v ¼ hðzÞ � 2 log cosh k1 t þ
Z

f ðxÞdx
� �� �� �

: ð36Þ
By introducing (36) into (6) we have that a solution of (1) is given by
u ¼ h0ðzÞ � k1 tanh k1 t þ
Z

f ðxÞdx
� �� �

: ð37Þ
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Fig. 2. Solution (35) for f = ex, g = 1.
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Fig. 3. Solution (38) for g ¼ 1
f , f(x) = x.
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By introducing (37) into (1) we arrive at a reduced equation for the dependent similarity variable, and, for
k1 = 1, an explicit solution of (1) is the bounded solution
u ¼ �k1 tanh k1 t þ
Z

f ðxÞdx
� �� �

� k1 tanh k1t �
Z

f ðxÞdx
� �� �

: ð38Þ
In Fig. 3 we plot (38) which represents two front waves that evolve changing their shape with opposite veloc-
ities with f(x) = x, k1 = 1.

It was pointed out in [18] that the transformation
x0 ¼
Z

dx
gðxÞ ¼ GðxÞ; t0 ¼ t; u0 ¼ u; ð39Þ
connects Eq. (1), and the PDE
gðG�1ðx0ÞÞf ðG�1ðx0ÞÞu0t0 ¼ ½u0nu0x0 �x0 ; ð40Þ
where G�1 is the inverse function of G.
It is clear that we can equivalently use an equation of the form
f ðx0Þu0t0 ¼ ½u0nu0x0 �x0 ; ð41Þ
and then transform the results for Eq. (1) by using the corresponding point transformation.
We also observe that the transformation
x0 ¼ x; t0 ¼ t; u0 ¼ u
f
; ð42Þ
connects Eq. (41), and the PDE (5) when f ¼ k2ek1x and n = �1.
Consequently, it is clear that we can equivalently use for the subsequent analysis an equation of the form

(5), which appear in [12] and then transform the results for equation (1) by using the transformations (39) and
(42).

4. Concluding remarks

We have considered some inhomogeneous diffusion equations (1). If these equations are written in a con-
served form, then a related system (6) may be obtained. Classical potential symmetries for these equations
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have been derived in [18]. In this paper, for n = �1 we have derived nonclassical symmetries for (1) and for (6).
We have proved that the nonclassical method with s 5 0 applied to (1) gives only rise to classical symmetries.
For s = 0 we have applied an extension [8] of the Bı̂lǎ and Nielsen procedure [3]. We found the connection
between classes of nonclassical symmetries of (1) and classes of nonclassical symmetries of (6). We have
proved that (1), when the parameter n takes the value �1, that is when the equation model has fast diffusion,
admits nonclassical symmetries that yield new solutions. Some of these solutions are unobtainable by classical
symmetries an exhibit and interesting behaviour.
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