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Abstract

In this paper we extend the procedure described for Bila and Niesen in [Bila N, Niesen J. On a new procedure for finding
nonclassical symmetries. J Symbol Comp 2004;38:1523-33], to obtain the determining equations of the nonclassical sym-
metries associated with a partial differential equation system, to a different case. We offer some examples of how our
method works. By using this procedure we obtain a new nonclassical symmetry for the 2 + 1-dimensional shallow water
wave equation.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The application of Lie transformations group theory for the construction of solutions of nonlinear partial
differential equations (PDEs) is one of the most active fields of research in the theory of nonlinear PDEs and
applications.

Motivated by the fact that symmetry reductions for many PDEs are known that are not obtained by using
the classical symmetries, there have been several generalizations of the classical Lie group method for symme-
try reductions. The notion of nonclassical symmetries was firstly introduced by Bluman and Cole [1] to study
the symmetry reductions of the heat equation. The description of the method can be found in [1,3,7]. In [4]
Clarkson and Mansfield proposed an algorithm for calculating the determining equations associated with
the nonclassical method: the PDE system is augmented with the invariant surface conditions, the nonclassical
symmetries are found by seeking the classical symmetries of the augmented system while demanding that the
symmetries operator be related to the invariant surface condition.

Bila and Niesen in [2] dropped this requirement. Their procedure consists in reducing the augmented PDE
system to its involutive form and then applying the classical Lie method to the reduced PDE system, but with
an arbitrary symmetry operator which is not related anymore to the invariant surface condition.
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In this paper we extend the procedure described in [2] to a different case. We apply the procedure to a
Cahn-Hilliard equation, to a Boussinesq equation and to a 2 + I-dimensional shallow water wave equation.

2. Nonclassical symmetries

Bluman and Cole [1], in their study of symmetry reductions of the heat equation, proposed the called non-
classical method. The basic idea of the method applied to the general nth order PDE, with p independent vari-
ables, x =(xy,...,X,), and one dependent variables, u = u(x),

A= A@x,u,u(x), ..., u"(x)) =0, (1)

where u'”(x) denotes the set of all the partial derivatives of order / of u, is the following:
The PDE (1) is augmented with the invariance surface condition

W:ié(xu)%f (x,u) =0 (2)
— - i I axi ’1 ) - Y
which is associated with the vector field

V= Zf, (e, u) — + nx, u) Gau' (3)

i=

Let us consider the submanifold

Sy ={ux) : 4 =0}, (4)
i.e., the set of solutions of the system (1). In the nonclassical method one requires that the subset of S, given by
Ssw={ulx):4=0,% =0}, (5)

are invariant under the transformation with infinitesimal generator (3).
The application of the criterion for infinitesimal invariance to the equation (1) and the invariant surface
condition (2) require that

pr'” V(A)Azoﬁwzo =0, pr(n)V('P)A:O,‘P:O =0, (6)

and we obtain an overdetermined nonlinear system of equations for the infinitesimals. The number of deter-
mining equations arising in the nonclassical method is smaller than for the classical method, consequently the
set of solutions is, in general, larger than for the classical method [4].

e If £, # 0 Bild and Niesen proposed an algorithm for finding nonclassical symmetries which is based on
the following procedure Since if V'is a vector field then so is AV, for any function 4 = A(x,u), if £, # 0 we can
multiply V' for and the invariant surface conditions is,

Ou =

o ; i) )
Substituting (7) and its derivatives with respect to x in (1) we obtain a new PDE

A = A (A (x,u),u L ul) =0, (8)
for the unknown function u = u(x;,.. .,xp,l, x,) of xy,...,x,_1 (here x,, is considered as a parameter); where

o/, (x,u) are the coefficients of «/, and u/”! denotes the set of all the partial derivatives of u with respect to
X =(X1,X2,...,X,_1) up to order N. Applying the classical Lie method to (8), if (8) is of maximal rank. Invari-
ance of (8) under a Lie group of point transformation, with infinitesimal generator

W:Zs(x u)iJrr(x u)aau, 9)

i—1 Ox;



M.S. Bruzon, M.L. Gandarias | Communications in Nonlinear Science and Numerical Simulation 13 (2008) 517-523 519

leads to the determining equations. Substituting s, = 1, s;,=¢;, i =1,...,p — 2, r = 5 and the functions ./, into
the determining equations we obtain the determining equations of the nonclassical symmetries of the original
PDE (1).

e The case for £, =0 has not been considered in [2] because the authors claim needs to be handled sepa-
rately. If {, = 0 and at least two &; # 0,i=1,...,p — 1 we can procedure in a similar way to the one described
in [2] and we take ¢,_; = 1, without loss of generality. The vector field (3) can be expressed in the form

V—ié(xu)iJr ¢ + (xu)g
- A ox; x, T 5

i=1 !

and the associated invariant surface condition is

22 Ou
upfl - 7’](x7 u) - Z é[(xv u)&

i=1
By substituting u,_; and its differential consequences in (1) we obtain a new PDE where the coefficients of u™
are functions which depends of (x,u),
Q=Q(x,u"). (10)
To apply the classical Lie method to equation (10) with infinitesimal generator (9) we require that

pr” (W)(2)]g_ =0,

where
0Q 0Q 2 2 0Q
(n) - P - - _ " ==
pr (W) (2) = > " si(x,u) a rlnu) =+ 1D <r > w,) + ;s,u,,, - (11)
with s; = a@_s’ up; = %, I=(i1,..,0), 1 <ip<pand 1 <k<n Substituting s; =&, fori=1,...,p,and r =1
X X
in (11) we obtain
. p—2 0Q 0Q 0Q 0Q
pr” (W)(Q) = -, Cilx,u) o, + & (x,u) o, + &p(x,u) o, + n(x,u) o
L &3 0Q
+ Z, D\ n— Z Citti — Cprthp—1 — Cpttp |+ Sty + Cpqttrp1 + Epltry o (12)
i=1 i=1 !

For ¢,_1=1and ¢, =0, since —D[&,_1u,_1) + &,_1uy,—1 =0, (12) gives

. ) 0Q  2Q 0Q
pr(W)(Q) = Zle &ilru)z—+3

+nx,u) —
o n(x, u)
+
i

0Q

am '

Ou
p=2 p=2
Dy <’7 - z Siup — upl) + Z Cittrj + uppy
=1 i=1

As Q is obtained from 4, changing functions, so that the prolongation formula leads to a system which is
equivalent to the system obtained by the nonclassical method.

o If one generator is different from zero and p — 1 generators are equal to zero, without loss of generality,
we can set &, = 1, and the invariant surface conditions for x; = x becomes

U, = 1. (13)
()

By substituting u, and its derivatives in (1) we obtain a new PDE where the coefficients of #' are functions

which depends of (x,u),
2= Z(x,u). (14)

To apply the classical Lie method to equation (14) with infinitesimal generator (9) we require that



520 M.S. Bruzon, M.L. Gandarias | Communications in Nonlinear Science and Numerical Simulation 13 (2008) 517-523

pr” (W)(5)|z_ = 0,
where pr”(W) is given in (11). Substituting s; = &, s;=0 for i=1,...,p, and r =5 in (11) we obtain

— —-
()

g 0= 0=
—+n(x7u)a+Z[D1(n—élux)+§1u1,x}—- (15)
1

(n) =) —
pr (W)('—’) - él(x’ Ll) ox aul

This expression lead to the determining equations of the nonclassical symmetries.
In the following we consider different PDEs for which we have applied the procedure with &; # 0 and

&=0,i=2,...,p.
e Case in which (1) can be written, by using (13), in the equivalent form

u, = o (x,t,u), (16)

where ./ is a arbitrary function which depend of x, 7 and u.
Invariance of Eq. (16) under a Lie group of point transformations with infinitesimal generator

0 0 5
V_é(x,t,u)a—l—‘f(x,t,u)&—k¢>(x,t,u)& (17)
leads, for ¢ =1, 1 =0 and ¢ =1, to the following determining equation:
oI, +n,—An— oL, =0. (18)

e In the case in which (1) can be written, by using (13), in the equivalent form
uy = oL (x,t,u), (19)
where .o/ is a arbitrary function which depend of x, ¢ and u.
Invariance of this equation under a Lie group of point transformations with infinitesimal generator (17)
leads, for ¢ =1, 1 =0 and ¢ =1, to the following determining equations:
'/qu = 07
Nu = 0, (20)
AN, +n, — Ay — A =0.
e Case in which (1) can be written, by using (13), in the equivalent form
o (x,y,t, u)uy + ty, + B(x,y,t,u) = 0, (21)
where .o/ and % are arbitrary functions which depend of x, y,  and u. We apply the classical Lie method to

(21). Invariance of this equation under a Lie group of point transformations with infinitesimal generator (9)
with p = 3 leads, for s; =1, s, =53 =0 and r =y, to the following determining equations:

My =0,
’/Iubl = 07
&71«’]+77m+&7x :Oa (22)

I, — B, +n, + B+ B =0.

We observe that for any equation which can be expressed in the form (16), (19) or (21) the nonclassical
determining equations can be derived by substituting the corresponding functions .« and % into (18), (20)
or (22).

3. Some examples

3.1. The Cahn—Hilliard equation

The Cahn—Hilliard equation
Uy + Ktte — f (W)t — f' ()12 = 0 (23)
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describes diffusion for decomposition of a one-dimensional binary solution. In [5,6] the authors have analyzed
the classical and nonclassical symmetries of (23).

In order to apply the nonclassical method to the equation (23) we consider a one-parameter group of trans-
formation generated by the vector field (3), which in our case is,

0 0 0
V= fl(xatvu)a"’fz(%ﬁ“)a‘*"’l(%ﬁ@@-

We can distinguish two cases:

(24)

Case (1): & # 0, we set &(x, t,u) = 1. The equivalent form of (23), by reducing the initial system, using the
invariant surface condition u, = n — &ju,, is

Kt — f (W)thgy — /()12 + 1 (x, 8, u)ty + 2 (x, t,u) = 0, (25)
where .«/; = —¢&, and .o/, = 5. The classical method applied to (25) gives only rise to the classical symmetries
of (23).

Case (ii): &, =0, we may set &; = 1, without loss of generality. Subsequently, we find the equivalent form of
(23) using the invariant surface condition (13) and its derivatives. This yields a new equation in the
form (16) where

A (x, 1) = —Kk( M + 300+ 30ty + (1)1 + 02y + 37 M + 40700,
+ 30 + SN+ 1(1,)° + M) + fult? + £ (1 + 1,1). (26)

Substituting (26) into (18) we obtain the determining equation for the infinitesimal # derived in [5,6].

3.2. The Boussinesq equation

We apply the new procedure to the Boussinesq equation
Uy + Uy, + uf + Uppr = 0. (27)

The Boussinesq equation arises in several physical applications: propagation of long waves in shallow water,
one-dimensional nonlinear lattice-waves, vibrations in a nonlinear string and ion sound waves in a plasma. In
[3], symmetry reductions and exact solutions of this equation using the classical Lie method of infinitesimals,
the direct method due Clarkson and Kruskal and the nonclassical method due to Bluman and Cole were
derived.

In order to apply the new procedure to Eq. (27) we consider a one-parameter group of transformation gen-
erated by the vector field (24).

We can distinguish two cases:

Case (1): & # 0, we set &x(x, 1,u) = 1. Substituting

Uy = uxélél‘x + Z(le)zé]é]‘u - ’/quél‘u - uxél,t + uxxi% - 2’7uux€1 - nxél + nm, + My
which is obtained from the invariant surface condition, in (27) we obtain that the equivalent form is
Uner + 7 (3, 1, U1ty + B(x, t,u)u> + C(x, t,u)u, + D(x, t,u) =0, (28)

where .o = & +uand B =28&,, + 1,6 = =2, — néy, + & &, — &, and 9 = =&, + nn, + n,.We apply

the classical Lie method to (28). Invariance of Eq. (28) under a Lie group of point transformations with infin-

itesimal generator (17). Substituting ¢ =&, 1 =1, ¢ =y and .o/, %, ¥ and & we obtain the determining equa-

tions derived in ([3], Case 2.3.1).

Case (i1): &, = 0, we may set &; = 1, without loss of generality. The equivalent form of (27), using the invariant
surface conditions (13) and its derivatives, is given in (19) where
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A (1) = = (0,0~ Ny = Nl = 3y = 3y = (1) 0 = 1
= 30 M = ANy = 3 = S = 1, = . (29)
Substituting (29) in (20) we obtain the determining equations derived in ([3] Case 2.3.2).
3.3. The 2 + 1-dimensional shallow water wave equation
We apply the procedure described to the 2 + 1-dimensional shallow water wave equation
Uy + Oy + PUyttyy + Uy = 0, (30)
where o and f are arbitrary, nonzero, constants. Classical and nonclassical reductions of this equation are clas-
sified in [8].

In order to apply the new procedure to equation (30) to obtain the nonclassical symmetries we consider a
one-parameter group of transformations generated by the vector field

0 0 0 0
V= él(x7y7 Z, u)a—i_ éZ(xaya Z, u)a_y+ 53(3@)/7 Z, u)a+ n(xvya Z u)a (31)

There are three cases to consider: (i) &3 =1, (ii) &3=0and & =1 and (iii)) &, =& =0 &, = 1.
Case (i): the infinitesimals are equivalent to the classical infinitesimals [8].
Case (ii): &3=0 and & = 1. Substituting u,, = =&y uaty — &ty — Sy T u,+ 1, and uy, = =& u, —
élﬂu(ux)2 — &y + nu,t+n,, which are obtained from the invariant surface condition

u, =1 — &y, in (30) we obtain

%luxxxx + %ZMXXX + %3uxuxxx + 52/4uxuxx + J2{51/lx + %6(1/‘):):)2 + &{7(ux)2uxx + %S(MX)Z + '52{97/!)0(

+ ef?ilo(ux)4 + &/11(1@)3 + oA oty + A 13Uy + o gy + A5 =0, (32)
where
o =&, &/2:351,)(—'7”7 &/32451#7
%4:951,10(""(/3"'_0‘)5_3'7;”47 %5 Zaﬂx+3”lm—5m—fu
e/0/6 = 36147 ‘Q{7 = 6él,uua &{8 = 351141)( + OC(él,x - ﬂu) - 317uux7
'52/9 = ﬁ”l - 351):): - 31/]ux7 '5%10 = éuuua %1] = N — ocil,u - 3él,uux7
JZZIZ - *517 '52{13 =Ny %14 = 761,147 J2{15 = "Ny — Ny

We apply the classical Lie method to (32). Invariance of Eq. (32) under a Lie group of point transformations
with infinitesimal generator (9), p = 3, leads to the determining equations of the classical method. Substituting
s1=¢,s,=1,s3=0and «/;,, i=1,...,15, we deduce the determining equations of the nonclassical method
obtained in [8].

Case (iii): £, = &3 =0 &, = 1, we consider the equivalent form of (30) given in (21), where
oA = ((HW B A 1 s+ 2+ 300, + M+ 300+ (1) + (B + a)nnu>7
B = (200, + 2+ ()7 + )N, + Ny + Mty + MM+ Wy + 200,y + 20y

Substituting o7 and 4 in (22) we obtain the determining equations for the infinitesimal #,
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Ny =0,
Nuw = 0,
Bt + (B + )10 + Mo + 3 M + 3(00)” + 1B + (B + ) (m,)°)
+ 301, e + (B + @)1 + 11, =0,
— (2 + (1) + o), + Ny + M) + (Bl + M + 30,00 + (0,)° + (B+ ), ),
(00 + 2+ 20,00, + Sy + My + Nty + (2 + (1) + ) + Nl + 1, = 0.

The complexity of this system is the reason why we cannot solve (33) in general. Thus we proceed, by mak-
ing ansatz on the form of #5(x,t,u), to solve (33). If « + § = 0 one solution of the determining equations is

G =1 & =¢&=0, n=kwu+kx+f(y) +g).
It is easy to check that these generators do not satisfy Lie classical determining equations and that it is a new
nonclassical symmetry. Therefore we obtain the nonclassical symmetry reduction

k 1 k
z=y, r=t, u:ek”‘h(yJ)——Zx——(g(t)—i—f(y))—k—g7
1

where /(y, t) satisfies the PDE
hy + (ki + Bk2)h, — By fyh = 0.

4. Conclusions

Finding the nonclassical symmetries of PDEs involves a large amount of tedious calculations which can
become virtually unmanageable if attempted manually. Some authors have designed computer programs
for their obtaining. Bila and Niesen [2] developed a procedure to obtain the nonclassical symmetries of a PDEs
system. The authors claim that the case £, = 0 needs to be handled separately.

In this work we have extended the algorithm described for Bila and Niesen to determine the nonclassical
symmetries of a PDE for this last case.

We observe that for any equation which can be expressed in the form (16), (19) or (21) the nonclassical
determining equation can be derived by substituting the corresponding functions ./ and 4 into (18), (20)
or (22).

We also apply the described algorithm to a Cahn-Hilliard equation, to a Boussinesq equation and to a
2 + 1-dimensional shallow water wave equation. For the 2 + 1-dimensional shallow water wave equation
the method yields a new symmetry reduction which is unobtainable by using Lie classical method.
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