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Abstract

In this paper we extend the procedure described for Bı̂lă and Niesen in [Bı̂lă N, Niesen J. On a new procedure for finding
nonclassical symmetries. J Symbol Comp 2004;38:1523–33], to obtain the determining equations of the nonclassical sym-
metries associated with a partial differential equation system, to a different case. We offer some examples of how our
method works. By using this procedure we obtain a new nonclassical symmetry for the 2 + 1-dimensional shallow water
wave equation.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The application of Lie transformations group theory for the construction of solutions of nonlinear partial
differential equations (PDEs) is one of the most active fields of research in the theory of nonlinear PDEs and
applications.

Motivated by the fact that symmetry reductions for many PDEs are known that are not obtained by using
the classical symmetries, there have been several generalizations of the classical Lie group method for symme-
try reductions. The notion of nonclassical symmetries was firstly introduced by Bluman and Cole [1] to study
the symmetry reductions of the heat equation. The description of the method can be found in [1,3,7]. In [4]
Clarkson and Mansfield proposed an algorithm for calculating the determining equations associated with
the nonclassical method: the PDE system is augmented with the invariant surface conditions, the nonclassical
symmetries are found by seeking the classical symmetries of the augmented system while demanding that the
symmetries operator be related to the invariant surface condition.

Bı̂lă and Niesen in [2] dropped this requirement. Their procedure consists in reducing the augmented PDE
system to its involutive form and then applying the classical Lie method to the reduced PDE system, but with
an arbitrary symmetry operator which is not related anymore to the invariant surface condition.
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In this paper we extend the procedure described in [2] to a different case. We apply the procedure to a
Cahn–Hilliard equation, to a Boussinesq equation and to a 2 + 1-dimensional shallow water wave equation.

2. Nonclassical symmetries

Bluman and Cole [1], in their study of symmetry reductions of the heat equation, proposed the called non-
classical method. The basic idea of the method applied to the general nth order PDE, with p independent vari-
ables, x = (x1, . . .,xp), and one dependent variables, u = u(x),
D � Dðx; u; uðlÞðxÞ; . . . ; uðnÞðxÞÞ ¼ 0; ð1Þ
where u(l)(x) denotes the set of all the partial derivatives of order l of u, is the following:
The PDE (1) is augmented with the invariance surface condition
W �
Xp

i¼1

niðx; uÞ
ou
oxi
� gðx; uÞ ¼ 0; ð2Þ
which is associated with the vector field
V ¼
Xp

i¼1

niðx; uÞ
o

oxi
þ gðx; uÞ o

ou
: ð3Þ
Let us consider the submanifold
SD ¼ fuðxÞ : D ¼ 0g; ð4Þ
i.e., the set of solutions of the system (1). In the nonclassical method one requires that the subset of SD given by
SD;W ¼ fuðxÞ : D ¼ 0;W ¼ 0g; ð5Þ

are invariant under the transformation with infinitesimal generator (3).

The application of the criterion for infinitesimal invariance to the equation (1) and the invariant surface
condition (2) require that
prðnÞV ðDÞD¼0;W¼0 ¼ 0; prðnÞV ðWÞD¼0;W¼0 ¼ 0; ð6Þ
and we obtain an overdetermined nonlinear system of equations for the infinitesimals. The number of deter-
mining equations arising in the nonclassical method is smaller than for the classical method, consequently the
set of solutions is, in general, larger than for the classical method [4].

• If np 5 0 Bı̂lă and Niesen proposed an algorithm for finding nonclassical symmetries which is based on
the following procedure: Since if V is a vector field then so is kV, for any function k = k(x,u), if np 5 0 we can
multiply V for 1

np
and the invariant surface conditions is,
ou
oxp
¼ gðx; uÞ �

Xp�1

i¼1

niðx; uÞ
ou
oxi

: ð7Þ
Substituting (7) and its derivatives with respect to x in (1) we obtain a new PDE
D0 � D0ðAmðx; uÞ; u½l�; . . . ; u½n�Þ ¼ 0; ð8Þ
for the unknown function u = u(x1, . . .,xp�1; xp) of x1, . . .,xp�1 (here xp is considered as a parameter); where
Amðx; uÞ are the coefficients of u[l], and u[l] denotes the set of all the partial derivatives of u with respect to
x = (x1,x2, . . .,xp�1) up to order N. Applying the classical Lie method to (8), if (8) is of maximal rank. Invari-
ance of (8) under a Lie group of point transformation, with infinitesimal generator
W ¼
Xp

i¼1

siðx; uÞ
o

oxi
þ rðx; uÞ o

ou
; ð9Þ
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leads to the determining equations. Substituting sp = 1, si = ni, i = 1, . . .,p � 2, r = g and the functions Am into
the determining equations we obtain the determining equations of the nonclassical symmetries of the original
PDE (1).

• The case for np = 0 has not been considered in [2] because the authors claim needs to be handled sepa-
rately. If np = 0 and at least two ni 5 0, i = 1, . . .,p � 1 we can procedure in a similar way to the one described
in [2] and we take np�1 = 1, without loss of generality. The vector field (3) can be expressed in the form
V ¼
Xp�2

i¼1

niðx; uÞ
o

oxi
þ o

oxp�1

þ gðx; uÞ o

ou
;

and the associated invariant surface condition is
up�1 ¼ gðx; uÞ �
Xp�2

i¼1

niðx; uÞ
ou
oxi

:

By substituting up�1 and its differential consequences in (1) we obtain a new PDE where the coefficients of u(n)

are functions which depends of (x,u),
X ¼ X x; uðnÞ
� �

: ð10Þ
To apply the classical Lie method to equation (10) with infinitesimal generator (9) we require that
prðnÞðW ÞðXÞjX¼0 ¼ 0;
where
prðnÞðW ÞðXÞ ¼
Xp

i¼1
siðx; uÞ

oX
oxi
þ rðx; uÞ oX

ou
þ
X

I
DI r �

Xp

i¼1

siui

 !
þ
Xp

i¼1

siuI;i

" #
oX
ouI

ð11Þ
with si ¼
os
oxi

, uI ;i ¼
ouI

oxi
, I = (i1, . . ., ik), 1 6 ik 6 p and 1 6 k 6 n. Substituting si = ni, for i = 1, . . .,p, and r = g

in (11) we obtain
prðnÞðW ÞðXÞ ¼
Xp�2

i¼1
niðx; uÞ

oX
oxi
þ np�1ðx; uÞ

oX
oxp�1

þ npðx; uÞ
oX
oxp
þ gðx; uÞ oX

ou

þ
X

I
DI g�

Xp�2

i¼1

niui � np�1up�1 � npup

 !
þ

" Xp�2

i¼1

niuI;i þ np�1uI;p�1 þ npuI ;p

#
oX
ouI

: ð12Þ
For np�1 = 1 and np = 0, since �DI(np�1up�1) + np�1uI,p�1 = 0, (12) gives
prðnÞðW ÞðXÞ ¼
Xp�2

i¼1
niðx; uÞ

oX
oxi
þ oX

oxp�1

þ gðx; uÞ oX
ou

þ
X

I

DI g�
Xp�2

i¼1

niui � up�1

 !
þ
Xp�2

i¼1

niuI;i þ uI ;p�1

" #
oX
ouI

:

As X is obtained from D, changing functions, so that the prolongation formula leads to a system which is
equivalent to the system obtained by the nonclassical method.

• If one generator is different from zero and p � 1 generators are equal to zero, without loss of generality,
we can set n1 = 1, and the invariant surface conditions for x1 = x becomes
ux ¼ g: ð13Þ
By substituting ux and its derivatives in (1) we obtain a new PDE where the coefficients of u(n) are functions
which depends of (x,u),
N ¼ Nðx; uðnÞÞ: ð14Þ

To apply the classical Lie method to equation (14) with infinitesimal generator (9) we require that
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prðnÞðW ÞðNÞjN¼0 ¼ 0;
where pr(n)(W) is given in (11). Substituting s1 = n1, si = 0 for i = 1, . . .,p, and r = g in (11) we obtain
prðnÞðW ÞðNÞ ¼ n1ðx; uÞ
oN
ox
þ gðx; uÞ oN

ou
þ
X

I

½DIðg� n1uxÞ þ n1uI ;x�
oN
ouI

: ð15Þ
This expression lead to the determining equations of the nonclassical symmetries.
In the following we consider different PDEs for which we have applied the procedure with n1 5 0 and

ni = 0, i = 2, . . .,p.
• Case in which (1) can be written, by using (13), in the equivalent form
ut ¼Aðx; t; uÞ; ð16Þ

where A is a arbitrary function which depend of x, t and u.

Invariance of Eq. (16) under a Lie group of point transformations with infinitesimal generator
V ¼ nðx; t; uÞ o

ox
þ sðx; t; uÞ o

ot
þ /ðx; t; uÞ o

ou
ð17Þ
leads, for n = 1, s = 0 and / = g, to the following determining equation:
Agu þ gt �Aug�Ax ¼ 0: ð18Þ

• In the case in which (1) can be written, by using (13), in the equivalent form
utt ¼Aðx; t; uÞ; ð19Þ

where A is a arbitrary function which depend of x, t and u.

Invariance of this equation under a Lie group of point transformations with infinitesimal generator (17)
leads, for n = 1, s = 0 and / = g, to the following determining equations:
guu ¼ 0;

gtu ¼ 0;

Agu þ gtt �Aug�Ax ¼ 0:

ð20Þ
• Case in which (1) can be written, by using (13), in the equivalent form
Aðx; y; t; uÞuy þ uty þBðx; y; t; uÞ ¼ 0; ð21Þ

where A and B are arbitrary functions which depend of x, y, t and u. We apply the classical Lie method to
(21). Invariance of this equation under a Lie group of point transformations with infinitesimal generator (9)
with p = 3 leads, for s1 = 1, s2 = s3 = 0 and r = g, to the following determining equations:
guy ¼ 0;

guu ¼ 0;

Augþ gtu þAx ¼ 0; ð22Þ
Agy �Bgu þ gty þBugþBx ¼ 0:
We observe that for any equation which can be expressed in the form (16), (19) or (21) the nonclassical
determining equations can be derived by substituting the corresponding functions A and B into (18), (20)
or (22).

3. Some examples

3.1. The Cahn–Hilliard equation

The Cahn–Hilliard equation
ut þ kuxxxx � f ðuÞuxx � f 0ðuÞu2
x ¼ 0 ð23Þ
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describes diffusion for decomposition of a one-dimensional binary solution. In [5,6] the authors have analyzed
the classical and nonclassical symmetries of (23).

In order to apply the nonclassical method to the equation (23) we consider a one-parameter group of trans-
formation generated by the vector field (3), which in our case is,
V ¼ n1ðx; t; uÞ
o

ox
þ n2ðx; t; uÞ

o

ot
þ gðx; t; uÞ o

ou
: ð24Þ
We can distinguish two cases:

Case (i): n2 5 0, we set n2(x, t,u) = 1. The equivalent form of (23), by reducing the initial system, using the
invariant surface condition ut = g � n1ux, is
kuxxxx � f ðuÞuxx � f 0ðuÞu2
x þA1ðx; t; uÞux þA2ðx; t; uÞ ¼ 0; ð25Þ
where A1 ¼ �n1 and A2 ¼ g. The classical method applied to (25) gives only rise to the classical symmetries
of (23).
Case (ii): n2 = 0, we may set n1 = 1, without loss of generality. Subsequently, we find the equivalent form of

(23) using the invariant surface condition (13) and its derivatives. This yields a new equation in the
form (16) where
Aðx; t; uÞ ¼ �kðgugxx þ 3gguugx þ 3guxgx þ ðguÞ
2gx þ g3guuu þ 3g2guux þ 4g2guguu

þ 3gguxx þ 5ggugux þ gðguÞ
3 þ gxxxÞ þ fug

2 þ f ðgx þ gugÞ: ð26Þ
Substituting (26) into (18) we obtain the determining equation for the infinitesimal g derived in [5,6].
3.2. The Boussinesq equation

We apply the new procedure to the Boussinesq equation
utt þ uuxx þ u2
x þ uxxxx ¼ 0: ð27Þ
The Boussinesq equation arises in several physical applications: propagation of long waves in shallow water,
one-dimensional nonlinear lattice-waves, vibrations in a nonlinear string and ion sound waves in a plasma. In
[3], symmetry reductions and exact solutions of this equation using the classical Lie method of infinitesimals,
the direct method due Clarkson and Kruskal and the nonclassical method due to Bluman and Cole were
derived.

In order to apply the new procedure to Eq. (27) we consider a one-parameter group of transformation gen-
erated by the vector field (24).

We can distinguish two cases:

Case (i): n2 5 0, we set n2(x, t,u) = 1. Substituting
utt ¼ uxn1n1;x þ 2ðuxÞ2n1n1;u � guxn1;u � uxn1;t þ uxxn
2
1 � 2guuxn1 � gxn1 þ ggu þ gt;
which is obtained from the invariant surface condition, in (27) we obtain that the equivalent form is
uxxxx þAðx; t; uÞuxx þBðx; t; uÞu2
x þ Cðx; t; uÞux þDðx; t; uÞ ¼ 0; ð28Þ
where A ¼ n2
1 þ u and B ¼ 2n1n1;u þ 1, C ¼ �2n1gu � gn1;u þ n1n1;x � n1;t and D ¼ �n1gx þ ggu þ gt.We apply

the classical Lie method to (28). Invariance of Eq. (28) under a Lie group of point transformations with infin-
itesimal generator (17). Substituting n = n1, s = 1, / = g and A, B, C and D we obtain the determining equa-
tions derived in ([3], Case 2.3.1).
Case (ii): n2 = 0, we may set n1 = 1, without loss of generality. The equivalent form of (27), using the invariant

surface conditions (13) and its derivatives, is given in (19) where
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Aðx; t; uÞ ¼ �ðgx þ gguÞu� gxxx � gugxx � 3gguugx � 3guxgx � ðguÞ
2gx � g3guuu

� 3g2guux � 4g2guguu � 3gguxx � 5ggugux � gðguÞ
3 � g2: ð29Þ
Substituting (29) in (20) we obtain the determining equations derived in ([3] Case 2.3.2).

3.3. The 2 + 1-dimensional shallow water wave equation

We apply the procedure described to the 2 + 1-dimensional shallow water wave equation
uyt þ auxuxy þ buyuxx þ uxxxy ¼ 0; ð30Þ
where a and b are arbitrary, nonzero, constants. Classical and nonclassical reductions of this equation are clas-
sified in [8].

In order to apply the new procedure to equation (30) to obtain the nonclassical symmetries we consider a
one-parameter group of transformations generated by the vector field
V ¼ n1ðx; y; t; uÞ
o

ox
þ n2ðx; y; t; uÞ

o

oy
þ n3ðx; y; t; uÞ

o

ot
þ gðx; y; t; uÞ o

ou
: ð31Þ
There are three cases to consider: (i) n3 � 1, (ii) n3 = 0 and n2 � 1 and (iii) n2 = n3 = 0 n1 � 1.

Case (i): the infinitesimals are equivalent to the classical infinitesimals [8].
Case (ii): n3 = 0 and n2 � 1. Substituting uyt = �n1,uutux � n1,tux � n1utx + guut + gt and uxy = �n1,xux �

n1,u(ux)2 � n1uxx + guux + gx, which are obtained from the invariant surface condition
uy = g � n1ux, in (30) we obtain
A1uxxxx þA2uxxx þA3uxuxxx þA4uxuxx þA5ux þA6ðuxxÞ2 þA7ðuxÞ2uxx þA8ðuxÞ2 þA9uxx

þA10ðuxÞ4 þA11ðuxÞ3 þA12uxt þA13ut þA14uxut þA15 ¼ 0; ð32Þ
where
A1 ¼ n1; A2 ¼ 3n1;x � gu; A3 ¼ 4n1;u;

A4 ¼ 9n1;ux þ ðbþ aÞn� 3guu; A5 ¼ agx þ 3guxx � nxxx � nt;

A6 ¼ 3nu; A7 ¼ 6n1;uu; A8 ¼ 3n1;uxx þ aðn1;x � guÞ � 3guux;

A9 ¼ bg� 3n1;xx � 3gux; A10 ¼ nuuu; A11 ¼ guuu � an1;u � 3n1;uux;

A12 ¼ �n1; A13 ¼ gu; A14 ¼ �n1;u; A15 ¼ �gxxx � gt:
We apply the classical Lie method to (32). Invariance of Eq. (32) under a Lie group of point transformations
with infinitesimal generator (9), p = 3, leads to the determining equations of the classical method. Substituting
s1 = n1, s2 = 1, s3 = 0 and Ai, i = 1, . . ., 15, we deduce the determining equations of the nonclassical method
obtained in [8].

Case (iii): n2 = n3 = 0 n1 � 1, we consider the equivalent form of (30) given in (21), where
A ¼ ðguu þ bÞgx þ g2guuu þ 2gguux þ 4gguguu þ guxx þ 3gugux þ ðguÞ
3 þ ðbþ aÞggu

� �
;

B ¼ ð2gguu þ 2gux þ ðguÞ
2 þ agÞgy þ gxxy þ gugxy þ guygx þ g2guuy þ 2gguguy þ 2gguxy :
Substituting A and B in (22) we obtain the determining equations for the infinitesimal g,
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guy ¼ 0;

guu ¼ 0;

bgxx þ ðbþ aÞgugx þ guxxx þ 3guguxx þ 3ðguxÞ
2 þ gðbgux þ ðbþ aÞðguÞ

2Þ
þ 3ðguÞ

2gux þ ðbþ aÞggux þ gtu ¼ 0;

� guðð2gux þ ðguÞ
2 þ agÞgy þ gxxy þ gugxyÞ þ ðbgx þ guxx þ 3gugux þ ðguÞ

3 þ ðbþ aÞgguÞgy

þ ðagx þ 2guxx þ 2guguxÞgy þ aggugy þ gxxxy þ gugxxy þ ð2gux þ ðguÞ
2 þ agÞgxy þ guxgxy þ gty ¼ 0:

ð33Þ
The complexity of this system is the reason why we cannot solve (33) in general. Thus we proceed, by mak-
ing ansatz on the form of g(x, t,u), to solve (33). If a + b = 0 one solution of the determining equations is
n1 ¼ 1; n2 ¼ n3 ¼ 0; g ¼ k1uþ k2xþ f ðyÞ þ gðtÞ:

It is easy to check that these generators do not satisfy Lie classical determining equations and that it is a new
nonclassical symmetry. Therefore we obtain the nonclassical symmetry reduction
z ¼ y; r ¼ t; u ¼ ek1xhðy; tÞ � k2

k1

x� 1

k1

ðgðtÞ þ f ðyÞÞ � k2

k2
1

;

where h(y, t) satisfies the PDE
hyt þ ðk3
1 þ bk2Þhy � bk1fyh ¼ 0:
4. Conclusions

Finding the nonclassical symmetries of PDEs involves a large amount of tedious calculations which can
become virtually unmanageable if attempted manually. Some authors have designed computer programs
for their obtaining. Bı̂lă and Niesen [2] developed a procedure to obtain the nonclassical symmetries of a PDEs
system. The authors claim that the case np = 0 needs to be handled separately.

In this work we have extended the algorithm described for Bı̂lă and Niesen to determine the nonclassical
symmetries of a PDE for this last case.

We observe that for any equation which can be expressed in the form (16), (19) or (21) the nonclassical
determining equation can be derived by substituting the corresponding functions A and B into (18), (20)
or (22).

We also apply the described algorithm to a Cahn–Hilliard equation, to a Boussinesq equation and to a
2 + 1-dimensional shallow water wave equation. For the 2 + 1-dimensional shallow water wave equation
the method yields a new symmetry reduction which is unobtainable by using Lie classical method.
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