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Abstract. This paper proposes a novel Independent Component Analysis algo-
rithm based on the use of a genetic algorithm intended for its application to the 
problem of blind source separation on post-nonlinear mixtures. We present a 
simple though effective contrast function which evaluates individuals of each 
population (candidate solutions) based on estimating the probability densities of 
the outputs through histogram approximation. Although more sophisticate 
methods for probability density function approximation exist, such as kernel-
based methods or k -nearest-neighbor estimation, the histogram presents the 
advantage of its simplicity and easy calculation if an appropriate number of 
samples is available. 

1   Introduction 

The guiding principle for ICA is statistical independence, meaning that the value of 
any of the components gives no information on the values of the other components. 
This method differs from other statistical approaches such as principal component 
analysis (PCA) and factor analysis precisely in the fact that is not a correlation-based 
transformation, but also reduces higher-order statistical dependencies. The extensive 
use of ICA as the statistical technique for solving blind source separation (BSS), may 
have lead in some situations to the erroneous utilization of both concepts as equiva-
lent. In any case, ICA is just the technique which in certain situations can be sufficient 
to solve a given problem, that of blind source separation. In fact, statistical independ-
ence insures separation of sources in linear mixtures, up to the known indeterminacies 
of scale and permutation. However, generalizing to the situation in which mixtures 
are the result of an unknown transformation (linear or not) of the sources, independ-
ence alone is not a sufficient condition in order to accomplish blind source separation 
successfully. Indeed, in [5] it is formally demonstrated how for nonlinear mixtures, an 
infinity of mutually independent solutions can be found that have nothing to do with 
the unknown sources. Thus, in order to successfully separate The observed signals 
into a wave-preserving estimation of the sources, we need additional information 
about either the sources or the mixing process. 

This paper is structured as follows: Section 2 introduces the post-nonlinear model 
as an alternative to the unconstrained pure nonlinear model. Afterwards, in Section 3, 
the basis of the genetic algorithm is described: independence measure, probability 
density function estimation and evolutionary method depiction. Some experiments are 
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shown in Section 4, using speech and synthetic signals. Finally, a few conclusion 
remarks and future lines of research terminate this paper. 

2   Nonlinear Independent Component Analysis 

2.1   Post-non-linear Model 

The linear assumption is an approximation of nonlinear phenomena in many real 
world situations. Thus, the linear assumption may lead to incorrect solutions. Hence, 
researchers in BSS have started addressing the nonlinear mixing models, however a 
fundamental difficulty in nonlinear ICA is that it is highly nonunique without some 
extra constraints, therefore finding independent components does not lead us neces-
sarily to the original sources [5]. 

Blind source separation in the nonlinear case is, in general, impossible. Taleb and 
Jutten [11] added some extra constraints to the nonlinear mixture so that the nonlin-
earities are independently applied in each channel after a linear mixture (see Fig.1). In 
this way, the indeterminacies are the same as for the basic linear instantaneous mixing 
model: invertible scaling and permutation. 

The mixture model can be described by the following equation: 

( )( ) ( )t t= ⋅x F A s
 

(1) 

 

 

Fig. 1. Post-nonlinear model. 

The unmixing stage, which will be performed by the algorithm here proposed is 
expressed by Equation (2): 

( )( ) ( )t t= ⋅y W G x
 

(2) 

The post-nonlinearity assumption is reasonable in many signal processing applica-
tions where the nonlinearities are introduced by sensors and preamplifiers, as usually 
happens in speech processing. In this case, the nonlinearity is assumed to be intro-
duced by the signal acquisition system. 

3   Genetic Algorithm for Source Separation 

3.1   Mutual Information Approximation 

The proposed algorithm will be based on the estimation of mutual information, value 
which cancels out when the signals involved are independent. Mutual information I 
between the elements of a multidimensional variable y is defined as: 
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where H(x) is the entropy measure of the random variable or variable set x.  
For Eq. 5, in the case that all components y1 ….. yn  are independent, the joint en-

tropy is equal to the sum of the marginal entropies. Therefore, mutual information 
will be zero. In the rest of the cases (not independent components), the sum of mar-
ginal entropies will be higher than the joint entropy, leading thus to a positive value of 
mutual information. 

In order to exactly compute mutual information, we need also to calculate entro-
pies, which likewise require knowing the analytical expression of the probability 
density function (PDF) which is generally not available in practical applications of 
speech processing. Thus, we propose to approximate densities through the discretiza-
tion of the estimated signals building histograms and then calculate their joint and 
marginal entropies. In this way, we define a number of bins m that covers the selected 
estimation space and then we calculate how many points of the signal fall in each of 
the bins ( 1,...,iB i m= ). Finally, we easily approximate marginal entropies using the 

following formula: 
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(4) 

where Card(B) denotes cardinality of set B, n is the number of points of estimation y, 
and Bj is the set of points which fall in the jth bin.  

The same method can be applied for computing the joint entropies of all the esti-
mated signals: 
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(5) 

where p is the number of components which need to be approximated and m is the 
number of bins in each dimension. 

Therefore, substituting entropies in Eq.5 by approximations of Eqs.6 and 7, we ob-
tain an approximation of mutual information (Eq. 8) which will reach its minimum 
value when the estimations are independent: 
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(6) 

where Est(X) stands for “estimation of x”. 
Next section describes an evolution based algorithm that minimizes the contrast 

function defined in Eq. 8, escaping from local minima.  
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3.2   Proposed Genetic Algorithm 

A genetic algorithm (GA) evaluates a population of possible solutions and generates a 
new one iteratively, with each successive population referred to as a generation. 
Given the current generation at iteration t, G(t), the GA generates a new generation, 
G(t+1), based on the previous generation, applying a set of genetic operations. Aside 
from other aspects regarding genetic algorithms, the key features that characterize a 
genetic algorithm are the encoding scheme and the evaluation or fitness function. 

First of all, it should be recalled that the proposed algorithm needs to estimate two 
different mixtures (see Eq. 4): a family of nonlinearities g which approximates the 
inverse of the nonlinear mixtures f and a linear unmixing matrix W which approxi-
mates the inverse of the linear mixture A [9,10]. This linear demixing stage will be 
performed by the well-known FastICA algorithm by Hyvärinen and Oja [4]. To be 
precise, FastICA will be embedded into the genetic algorithm in order to approximate 
the linear mixture. 

Therefore, the encoding scheme for the chromosome in the post-nonlinear mixture 
will be the coefficients of the odd polynomials which approximate the family of 
nonlinearities g . Fig. 2 shows an example of polynomial approximation and encoding 
of the inverse non-linearities. 

 

 

Fig. 2. Encoding example for p=2 signals and polynomials up to grade 5. 

The fitness function is easily derived from Eq. 8 which is precisely the inverse of 
the approximation of mutual information, so that the genetic algorithm maximizes the 
fitness function, which is more usual in evolution programs literature.  

1( ) .
( ( ))

Fitness
Est I

=y
y  

(7) 

Expression (7) obeys to the desired properties of a contrast function [2], that is, a 

mapping ψ  from the set of probability densities { }, N
xp x to∈" " satisfying the 

following requirements: 

i. ( )xpψ does not change if the components of xi are permuted. 

ii. ( )xpψ  is invariant to invertible scaling. 

iii. If x has independent components, then ( ) ( ),Ax xp p Aψ ψ≤ ∀  invertible. 

Regarding other aspects of the genetic algorithm, the population (i.e. set of chro-
mosomes) was initialized randomly within a known interval of search for the poly-
nomial coefficients. The genetic operators involved were “Simple One-point Cross-
over” and “Non-Uniform Mutation” [8].  Selection strategy is elitist, keeping the best 
individual of a generation for the next one. 
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Fig. 3. Genetic algorithm scheme for post-nonlinear blind separation of sources. 

4   Simulations 

This section illustrates the validity of the genetic algorithm here proposed and inves-
tigates the accuracy of the method. We combined voice signals and noise nonlinearly 
and then try to recover the original sources. In order to measure the accuracy of the 
algorithm, we evaluate it using the Mean Square Error (MSE) and the Crosstalk in 
decibels (Ct): 
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4.1   Two Voice Signals 

This experiment corresponds to a “Cocktail Problem” [] situation, that is, separating 
one voice from another. Two voice signals corresponding to two persons saying the 
numbers from one to ten in English and Spanish were non-linearly according to the 
following matrix and functions: 

[ ]1 2

1 0.87
, ( ) ( ) tanh( ) .

-0.9 0.14
f x f x x

 
= = = = 
 

A F
 

(9) 

Then the genetic algorithm was applied (population size=40, number of itera-
tions=60). Polynomials of fifth order were used as the approximators for g=f –1. Per-
formance results and a plot of the original and estimated signals are briefly depicted 
below (Figure 5.b, right). 

MSE(y1, s1) = 0.0012   Crosstalk(y1, s1)  (dB) =  -17.32 dB, 

MSE(y2, s2) = 0.0009   Crosstalk(y2, s2)  (dB) =  -19.33 dB.           

As can be seen, estimations (y) are approximately equivalent to the original 
sources (s) up to invertible scalings and permutations. E.g. estimation y1 is scaled and 
inverted in relation to s1. 
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Fig. 4. Sources, mixtures and estimations (along time and scatter plots in the bottom line) for 
two voice signals. 

4.2   Three Image Signals 

In this experiment, source signals correspond to three image signals (“Lena”, “Cam-
eraman”, “University of Granada emblem”). They were mixed according to the PNL 
scheme (Fig.  1) with the following values: 

1

2

3

0.9 0.3 0.6 ( ) tanh( ),
0.6 -0.7 0.1 , ( ) tanh(0.8 ), .
-0.2 0.9 0.7 ( ) tanh(0.5 )

f x x
A f f x x

f x x

=   
   = = = ⋅   
   = ⋅     

(10) 

In this case, the simulation results draw a slightly worse performance than the for-
mer case, due to the increase of the dimensionality from to two to three sources: 

MSE(y1, s2) = 0.0006   Crosstalk(y1, s2)  (dB) =  -16.32 dB, 

MSE(y2, s1) = 0.0010   Crosstalk(y2, s1)  (dB) =  -12.12 dB.           
MSE(y3, s3) = 0.0011   Crosstalk(y3, s3)  (dB) =  -11.58 dB.           

Original images can be clearly distinguished through the estimations, although 
some remains of the other images interfere. Also note that an inversion in the signal 
results obviously in the negative estimation of the source (e.g. the cameraman). 

5   Concluding Remarks 

In this work, an specific case of nonlinear source separation problem has been tackled 
by an ICA algorithm based on the use of genetic algorithms. As the separation of 
sources through the independence basis only is impossible in nonlinear mixtures, we 
assumed a linear mixture followed by a nonlinear distortion in each channel (Post-
Non-Linear model) which constraints the solution space. Experimental results showed 



764      Fernando Rojas Ruiz et al. 

promising results, although future research will focus on the adaptation of the algo-
rithm for higher dimensionality and stronger nonlinearities. 
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