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0 Introduction

Let f1, . . . , fn : Rn → R be germs of real analytic functions that form a regular sequence
as holomorphic functions and let

A := ARn ,0

( f1, . . . , fn)
(1)

be the quotient finite dimensional algebra, where ARn ,0 is the algebra of germs of real analytic
functions on Rn with coordinates x1, . . . , xn . The class of the Jacobian

J = det

(
∂ fi

∂x j

)
i, j=1,...,n

, JA := [J ]A ∈ A (2)

generates the socle (the unique minimal non-zero ideal) of the algebra A. A symmetric
bilinear form

〈, 〉LA : A × A
·→A

LA→R (3)

is defined by composing multiplication in A with any linear map LA : A −→ R sending JA
to a positive number. The theory of Eisenbud–Levine and Khimshiashvili asserts that this
bilinear form is nondegenerate and that its signature σA is independent of the choice of LA
(see [3,12]).

Let f ∈ A be an element in the maximal ideal. We define a flag of ideals in A:

Km := AnnA( f ) ∩ ( f m−1), m ≥ 1, 0 ⊂ K�+1 ⊂ · · · ⊂ K1 ⊂ K0 := A (4)

and a family of bilinear forms

〈, 〉LA, f,m : Km × Km → R, 〈a, a′〉LA, f,m =
〈

a

f m−1 , a′
〉

LA

, (5)

defined for m = 0, . . . , �+1.The division by f m−1 is defined up to elements in AnnA( f m−1),
but as a′ ∈ ( f m−1), the last expression in (5) is well defined. We call the form 〈, 〉LA, f,m , the
order m bilinear form on the algebra A, with respect to f . In Sect. 1 we prove:

Theorem 0.1 For m = 0, . . . , � + 1 the order m bilinear form 〈, 〉LA, f,m on Km induces a
non-degenerate bilinear form

〈, 〉LA, f,m : Km

Km+1
× Km

Km+1
−→ R, (6)

whose signature σA, f,m is independent of the linear map LA chosen.

In Sect. 2 we give a variational interpretation of Theorem 0.1. Consider germs of analytic
functions f, f1, f2, . . . , fn inRn such that f, f2, . . . , fn and f1, . . . , fn are regular sequences
as holomorphic functions. We consider the 1-parameter family of ideals ( f − t, f2, . . . , fn).

Choose a small neighborhood UC of 0 ∈ Cn and a small ε > 0 such that:
(1) The sheaf of algebras on UC defined by

BC := OUC

( f2, . . . , fn)

is the structure sheaf of a 1-dimensional complete intersection ZC ⊂ UC such that the map

f : ZC → �ε (7)
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Flags in zero dimensional complete intersection algebras and indices

to the disk �ε of radius ε in C is a finite analytic map, the sheaf f∗BC is a free O�ε -sheaf of
rank ν and f −1(0) = 0.

(2) f1|ZC−{0} is non-vanishing.
These conditions can be fulfilled due to the regular sequence hypothesis [4,10]. Denoting

by f∗B+ the sheaf on (−ε, ε) ⊂ R whose sections are the fixed points of the conjugation
map ¯ : f∗BC −→ f∗BC, we have that f∗B+ is a free A(−ε,ε)-sheaf of rank ν. Its stalk over
0 is

B := ( f∗B)+0 = ARn ,0

( f2, . . . , fn)
.

Hence B is a free AR,0-module of rank ν. Introduce the 1-parameter family of R-algebras
obtained by evaluation

Bt0 = f∗B+ ⊗R

R[t](t−t0)

(t − t0)
=

⎡
⎣ ⊕

p∈ZC∩ f −1(t0)

OCn ,p

( f − t0, f2, . . . , fn)

⎤
⎦

+
. (8)

B0 is a local algebra, Bt0 is a multilocal algebra and they form a vector bundle of rank ν over
(−ε, ε), whose sheaf of real analytic sections is f∗B+.

We define in the sheaf of sections f∗B+, a bilinear map

〈, 〉 : f∗B+ × f∗B+ ·−→ f∗B+ L−→A(−ε,ε), 〈a, b〉 = L(a · b),

obtained by first applying the multiplication in the sheaf of algebras f∗B+ and then applying
a chosen A(−ε,ε)-module map L : f∗B+ −→ A(−ε,ε) having the property that evaluating it
at 0 gives a linear map LB0 : B0 −→ R, verifying LB0([J ]B0) > 0. The evaluation of 〈, 〉 at
a fiber Bt is a bilinear form defined on Bt and denoted by 〈, 〉t .

This family of non-degenerate bilinear forms is the usual tool in the Eisenbud–Levine
and Khimshiashvili theory [3,12] to calculate the degree of the smooth map given by
( f, f2, . . . , fn) : (Rn, 0) → (Rn, 0).

Define a sheaf map by multiplication with f1

M f1 : f∗B+ −→ f∗B+ M f1(b) = f1b

and a family of bilinear maps, that we call relative:

〈, 〉rel : f∗B+ × f∗B+ −→ A(−ε,ε), 〈a, b〉rel = 〈M f1(a), b〉 (9)

〈, 〉rel
t : Bt × Bt −→ R, 〈[a]t , [b]t 〉rel

t = 〈M[ f1]t ([a]t ), [b]t 〉t . (10)

The bilinear forms 〈, 〉rel
t are non-degenerate, for t �= 0, having signature τ±, for ±t > 0.

The form 〈, 〉rel
t degenerates for t = 0 on AnnB0([ f1]B0) [5]. Expanding in Taylor series at

0 the family of relative bilinear forms we arrive at the setting in [11,14], where it is shown
how to obtain a flag of ideals

. . . ⊂ K̃r ⊂ . . . ⊂ K̃1 ⊂ K̃0 = B0 (11)

and bilinear forms in them and show how to reconstruct from the signatures τm of these
bilinear forms the signatures τ± (see Proposition 2.1). In our algebraic setting, the flag and
the bilinear forms have the algebraic description:

Theorem 0.2 For the family of bilinear forms 〈, 〉rel
t , in the family of algebras Bt (10) we

have

123



L. Giraldo et al.

(1) The set of b ∈ B such that the function t → 〈[b]t , [b′]t 〉rel
t vanishes at 0 up to order m,

for every b′ ∈ B is the quotient ideal

( f m : f1) := {b ∈ B / f1b ∈ ( f m)} ⊂ B
and

K̃m = ( f m : f1)

( f ) ∩ ( f m : f1)
⊂ B

( f )
= B0. (12)

(2) ( f ) ∩ ( f m : f1) = M f (( f m−1 : f1)).

(3) The bilinear form (b, b′) −→ LB0

([
f1b
f m b′

]
B0

)

( f m : f1) ⊕ ( f m : f1)

f1
f m ·

−→( f m : f1)
π̃0−→ B

( f )
= B0

LB0−→R, (13)

where π̃0 is the projection from B to B/( f ) = B0, vanishes on ( f ) ∩ ( f m : f1) and
induces Jantzen’s bilinear form

〈, 〉m : K̃m ⊗ K̃m −→ R 〈, 〉m =
〈

f1·
f m

, ·
〉

0

, (14)

giving the formula

τ+ =
∑
m≥0

τm, τ− =
∑
m≥0

(−1)mτm

In Sect. 3, we show

Theorem 0.3 There is an isomorphism ϕ : K̃1 → K1, induced by multiplication with the
function f1

f , which is sending the flag {K̃m}m≥1 in B0 in (12) to the flag {Km}m≥1 in A in (4)
and Jantzen’s bilinear forms (14) to the bilinear forms (6). Hence, for m ≥ 1, we have equal
signatures τm = σA, f,m and

τ+ = τ0 +
�+1∑
m=1

σA, f,m, τ− = τ0 +
�+1∑
m=1

(−1)mσA, f,m .

In Sect. 4 we apply these considerations for calculating indices of vector fields. If X =∑n
i=1 Xi ∂

∂xi
is a real analytic vector field with an algebraically isolated zero at 0 in Rn , then

the (Poincaré-Hopf) index of X at 0 is the signature of the bilinear form (3) constructed for
the finite dimensional algebra

B := ARn ,0

(X1, . . . , Xn)
, 〈, 〉LB : B × B

·→B
LB→R

where LB : B → R is a linear map with LB(JX ) > 0 (see [3,12]). Now assume further that
f : (Rn, 0) → (R, 0) is a real analytic function, that X is tangent to the fiber V0 := f −1(0),
giving the relation d f (X) = h f with h a real analytic function called the cofactor. If 0 is a
smooth point of V0 then the signature σB,h,0 of the order 0 bilinear form

〈, 〉L ,h,0 : B
AnnB(h)

× BR

AnnB(h)

·−→ B
AnnB(h)

L−→R

L : BR

AnnB(h)
−→ R, L

(
JB

h

)
> 0
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is the Poincaré-Hopf index at 0 of the vector field X |V0 , as can easily be deduced using the
implicit function theorem. If 0 is an isolated critical point of V0 and the dimension n of the
ambient space is even, in [7] it is proved that

I ndV+,0(X) = I ndV−,0(X) = σB,h,0 − σA,h,0. (15)

If n is odd, it is proved in [6] that

I ndV±,0(X) = σB,h,0 + K±. (16)

In the case of odd dimensional ambient space and for f a germ of a real analytic function
with an algebraically isolated singularity at 0, we calculate the constants K± by studying the
family of contact vector fields

Xt = ( f − t)
∂

∂x1
+

N∑
i=1

[
∂ f

∂x2i+1

∂

∂x2i
− ∂ f

∂x2i

∂

∂x2i+1

]
,

where f j := ∂ f
∂x j

. For t �= 0, the signatures of the relative bilinear forms correspond to
the sum of the Poincaré-Hopf indices of the restriction of Xt to Vt . Our transport from the
algebra B0 to the Jacobian algebra A is a local analogue of the Poincaré-Hopf Theorem
relating information of the singular point of X to invariants of the singularity of f .

Using these explicit computations for contact vector fields, we conclude the search for an
algebraic formula for the real GSV-index using local algebra by determining the values of
the constants K±:

Theorem 0.4 Let V be an algebraically isolated hypersurface singularity in R2N+1, then
the constants K± in (16) relating the GSV-index and the signature σB,h,0 are:

K+ =
∑
m≥1

σA, f,m, K− =
∑
m≥1

(−1)mσA, f,m .

1 Higher order signatures in A

We use the definitions and notations of Sect. 0. The algebra A has an intrinsic A-valued
bilinear map, which is the multiplication in A:

( , )A : A × A −→ A (a, b)A := ab. (17)

In terms of this pairing and the non-singular pairing 〈, 〉LA in (3), the orthogonal of an ideal
I ⊂ A is the annihilator ideal in the algebra A: I ⊥ = AnnA(I ). The process of taking the
orthogonal induces an involution in the set of ideals of A, which is reversing the natural
inclusions of sets in A. In particular, the orthogonal to the maximal ideal is the socle. It is
1-dimensional and the class of the Jacobian JA is a generator (see [3,4,12]).

Choose now an element f ∈ A in the maximal ideal. Consider the linear map induced in
A by multiplication with f :

M f : A −→ A M f (a) = f a.

For j ≥ 1, the maps M j
f are selfadjoint maps for the bilinear map (17):

(M j
f a, b)A = f j ab = a f j b = (a, M j

f b)A,
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and hence they are also selfadjoint maps for the bilinear form 〈, 〉LA . We have that

AnnA( f j ) = K er(M j
f ) and ( f j ) = I m(M j

f )

and each of these spaces is the orthogonal of the other in A , since M j
f is selfadjoint.

Consider the flag of ideals in A

0 ⊂ ( f �) ⊂ ( f �−1) ⊂ · · · ⊂ ( f 2) ⊂ ( f ) ⊂ A, (18)

where � is minimal with f �+1 = 0 and the orthogonal flag of ideals

0 ⊂ AnnA( f ) ⊂ AnnA( f 2) ⊂ · · · ⊂ AnnA( f �−1) ⊂ AnnA( f �) ⊂ A. (19)

The linear map M f : A −→ A is a nilpotent map M�+1
f = 0.

Lemma 1.1 For j = 1, . . . , � + 1, there are linear subspaces Pj of A, called primitive
subspaces, such that

A =
�+1⊕
j=1

⎡
⎣ j−1⊕

k=0

Mk
f Pj

⎤
⎦ , (20)

with M j−1
f : Pj −→ A injective and M j

f (Pj ) = 0. The mapping M f : A → A is in
Jordan canonical form in any basis obtained by choosing bases of each of the spaces Pj and
extending them to a basis of A by the action of M f as in (20).

Proof We recall how to choose a basis of A as a vector space over R that expresses M f in
Jordan canonical form. Inductively, let us begin by choosing linearly independent vectors
v1, . . . , vn�+1 generating a vector space P�+1 complementary to AnnA( f �) in A and choose
as first vectors of a basis of A the vectors

{v j , f v j , . . . , f �v j } j=1,...,n�+1 .

With P�+1 we construct the Jordan blocks of maximal size � of M f . Then, we choose linearly
independent vectors vn�+1+1, . . . , vn�+1+n�

generating a vector space P� with the property
that

AnnA( f �−1) ⊕ M f (P�+1) ⊕ P� = AnnA( f �).

We choose the next part of the basis by choosing the vectors

{v j , f v j , . . . , f �−1v j } j=n�+1+1,...,n�+1+n�

to construct the Jordan blocks of size � − 1, and so on. The space of 1-st primitive vectors
P1 is formed of vectors in A with the property that

M�
f (P�+1) ⊕ M�−1

f (P�) ⊕ · · · ⊕ M2
f (P3) ⊕ M f (P2) ⊕ P1 = AnnA( f ).

��

We call the vectors in Pj j th-primitive vectors, and we denote by n j the dimension of Pj .
Hence n j is also the number of Jordan blocks of size j in M f . It is convenient to present the
direct sum decomposition (20) by the matrix:

123



Flags in zero dimensional complete intersection algebras and indices

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 · · · P� P�+1

0 M f P2 M f P3 M f P4 · · · M f P� M f P�+1

0 0 M2
f P3 M2

f P4 · · · M2
f P� M2

f P�+1

· · ·
0 0 0 0 · · · M�−1

f P� M�−1
f P�+1

0 0 0 0 · · · 0 M�
f P�+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

meaning that an element of A has components in the form of an upper triangular matrix where
the (i, j)th-entry of the matrix is an arbitrary element in Mi−1

f (Pj ), with i, j = 1, . . . , �+1.
Each column is formed by equidimensional subspaces, until we reach the zero subspace, and
the map M f acts as a map preserving columns and descending one row. Hence, restricting
to a column in (21), the map M f is an isomorphism until it reaches the diagonal, where M f

is the zero map.
Using this representation for A and recalling the flag of ideals (4), we have

Lemma 1.2 (1) The ideal ( f m) is formed by the last � + 1 − m rows of the matrix (21).
(2) Its orthogonal AnnA( f m) is formed by the elements in a band of width m above the

diagonal in (21), including the diagonal.
(3) The ideal Km in (4) is formed by the lower � + 2 − m diagonal terms.
(4) The ideal K ⊥

m , orthogonal to Km is

K ⊥
m = ( f ) + AnnA( f m−1). (22)

Example 1.1 For � = 3 and m = 3, we have

( f 2)=

⎛
⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0

0 0 M2
f P3 M2

f P4

0 0 0 M3
f P4

⎞
⎟⎟⎟⎟⎠ AnnA( f 2)=

⎛
⎜⎜⎜⎜⎜⎝

P1 P2 0 0

0 M f P2 M f P3 0

0 0 M2
f P3 M2

f P4

0 0 0 M3
f P4

⎞
⎟⎟⎟⎟⎟⎠

K3=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 M2
f P3 0

0 0 0 M3
f P4

⎞
⎟⎟⎟⎟⎟⎠

; ( f )+AnnA( f 2)=

⎛
⎜⎜⎜⎜⎜⎝

P1 P2 0 0

0 M f P2 M f P3 M f P4

0 0 M2
f P3 M2

f P4

0 0 0 M3
f P4

⎞
⎟⎟⎟⎟⎟⎠

=K ⊥
3 .

Proof of Lemma 1.2 Since M f corresponds to going down 1 row in (21), parts 1, 2 and 3,
are clear. To prove part 4, note first that

( f ) + AnnA( f m−1) ⊂ K ⊥
m .

The ideal ( f ) is given by all the terms in (21), except for the first row. Since AnnA( f m−1) is
the band matrix above the diagonal of width m − 1, we obtain that the only contribution of
( f )+ AnnA( f m−1) to ( f ) is given by the first m −1 terms in the first row. On the other hand
Km = AnnA( f ) ∩ ( f m−1) consist of the last � + 2 − m terms in the diagonal. We observe
on using (21) that the ideals ( f ) + AnnA( f m−1) and Km have complementary dimensions
in A. Now (22) must hold, as the bilinear form 〈, 〉LA is non-degenerate. ��
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Proposition 1.1 For the bilinear forms in (5), we have

(1) 〈, 〉LA, f,0 = 〈 f ·, ·〉LA has K1 = AnnA( f ) as degeneracy locus and the induced non-
degenerate bilinear form in A

AnnA( f )
is obtained by choosing JA

f as generator of the 1

dimensional socle of A
AnnA( f )

and defining the bilinear form as multiplication followed

by a real valued map sending JA
f to a positive number.

(2) The bilinear form 〈, 〉LA, f,1 = 〈, 〉LA |K1×K1 has K2 as degeneracy locus.
(3) For m ≥ 2 the bilinear form 〈, 〉LA, f,m in (5) is well defined and has Km+1 as degeneracy

locus.

Proof (1) The inner product 〈 f ·, ·〉LA vanishes on AnnA( f ). If 〈 f a, a′〉L A = 0 for all a′,
then f a = 0, since (3) is a non-degenerate bilinear form on A [3,4,12]. Hence, 〈, 〉LA, f,0 has
K1 as degeneracy locus. The algebra A

AnnA( f )
has a one-dimensional socle generated by the

class of JA/ f (see [5] for more details).
(2) Note first that K2 = AnnA( f )∩( f ) = K1∩K ⊥

1 , by (4) and (22). Hence, given a ∈ K2

and any b ∈ K1, it follows that (a, b)A = 0, so K2 is contained in the degeneracy locus of
〈, 〉L , f,1. On the other hand, let a ∈ K1 − K2 = K1 − K ⊥

1 . Then aK1 is a non-zero ideal in A,
and so contains the socle of A. We obtain an expression JA = ac, for some c ∈ K1. Hence,
〈a, c〉LA = LA(ac) = LA(JA) > 0, so that a is not in the degeneracy locus of 〈, 〉L , f,1.

(3) Let m ≥ 2. We first show that the bilinear form 〈, 〉LA, f,m is well defined, i.e. is
independent of the division by f m−1 in Km . Let a, b be in Km = AnnA( f ) ∩ ( f m−1). Then
there exists a1 ∈ A such that a = a1 f m−1 and 〈a, b〉LA, f,m = 〈a1, b〉LA . Let also a =
a2 f m−1. Then 〈a1, b〉LA = 〈a2, b〉LA , because a1 − a2 ∈ AnnA( f m−1) and b ∈ ( f m−1).

If a ∈ Km+1, then a
f m−1 ∈ ( f ), and since b ∈ Km ⊂ AnnA( f ), we have a

f m−1 b = 0.
Hence, the form 〈, 〉LA, f,m degenerates on Km+1.

Let a ∈ Km − Km+1. In order to prove that the form 〈, 〉LA, f,m is non-degenerate on a,
we have to show that a

f m−1 �∈ K ⊥
m . Using the representation (21), and part (3) of Lemma 1.2,

the am,m entry in a is not zero, and am,m ∈ Mm−1
f Pm . Now a

f m−1 is obtained by lifting all
the elements in the representation by m − 1 rows, keeping the columns fixed. We observe
that a

f m−1 �∈ ( f ). It now suffices to show that a
f m−1 �∈ AnnA( f m−1). But by part (4) of

Lemma 1.2, the space AnnA( f m−1) is given by the band matrix of width m − 1, including
the diagonal. Hence, a

f m−1 is not an element of AnnA( f m−1). ��
Proof of Theorem 0.1 By Proposition 1.1, we have that Km+1 is the locus of the bilinear
form 〈, 〉LA, f,m , so that Km/Km+1 inherits a non-degenerate bilinear form. The linear forms
LA, verifying LA(JA) > 0 form an open connected set in the dual space Rn∗

. The signature
is an integer valued continuous function of LA, hence it is constant. ��
Corollary 1 For m ≥ 1, the mapping

Mm−1
f : Pm −→ Km/Km+1 (23)

is a well defined isomorphism. The pairing of m-primitive vectors

〈, 〉prim
LA,m : Pm × Pm −→ R, 〈a, b〉prim

LA,m := 〈Mm−1
f a, b〉LA

is a non-degenerate symmetric bilinear pairing, induced by the pairing (6) via the isomor-
phism (23).

Proof Using the representation (21) for the elements of A and the description of Km given
in part 3 of Lemma 1.2, we have that Mm−1

f : Pm −→ Km is injective, and hence (23) is a
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well defined isomorphism. The pull back of the non-degenerate bilinear form on Km/Km+1

via this last map is

〈b, b′〉LA,m = LA( f m−1 · b · b′) = LA

((
1

f m−1 · f m−1b

)
· f m−1b′

)

= 〈Mm−1
f (b), Mm−1

f (b′)〉LA, f,m .

��
Example 1.2 Let f be a germ of a real analytic function inRn , with an algebraically isolated
critical point. This means that the ideal generated by the partial derivatives of f in the ring of
germs of holomorphic functions has finite codimension. Let A = A( f ) be given by (1), with
fi := ∂ f

∂xi
and let � be as in (18). Let σ f,m = σA( f ), f,m, m = 0, . . . , � + 1, be the signatures

given by Theorem 0.1. These are invariants associated to the germ f . We call σ f,m the order
m signature of f .

2 The family of bilinear forms in B

In this section we construct a family of bilinear forms 〈, 〉rel , that we call relative, which is
constructed from the equations

f − t = f2 = · · · = fn = 0

which are non-degenerate for t �= 0. We do Taylor series expansion of 〈, 〉rel and determine
an algebraic procedure to compute the signatures for t �= 0 in terms of local linear algebra

in the ring
ARn ,0

( f2,..., fn)
via the first terms of the above Taylor series expansion.

Recall the setting and definitions of Sect. 0. Note in particular that since the map in (7) is a
finite analytic map, the inverse image f −1((−ε, ε)) is a finite union of curves (parameterized
by (−ε, 0] or [0, ε)), which come together at 0. The conjugation map permutes them, and
the fixed components correspond to Z := ZC ∩Rn . Hence Z consists either of 0 only or of a
finite number of these real curves all passing through 0, which is its only singular point. Note
that the degree of the covering map f : Z − {0} −→ (−ε, ε) − {0} may be distinct for t > 0
and t < 0. In the sheaf f∗B+ we have information about the points { f = t}t∈(−ε,ε) ∩ ZC in
UC, real or complex.

Lemma 2.1 The signature of the non-degenerate bilinear forms 〈, 〉t on Bt is independent
of t and it is equal to the sum of the signatures of the bilinear forms computed on the local
rings Bt,p for p ∈ Z ∩ f −1(t), for each t ∈ (−ε, ε).

Proof This is the usual procedure due to Eisenbud–Levine and Khimshiashvili [3,12]
to calculate the degree applied to the smooth map given by ( f, f2, . . . , fn) : (Rn, 0) →
(Rn, 0). In particular, the contribution to the signature coming from points in ZC − Z is
always 0. ��

Using a trivialization of f∗B+, we can transfer the relative forms 〈, 〉rel
t from Bt to B0. So

we have a family of bilinear forms that we denote by 〈, 〉t . We are interested in the Taylor
expansion of this family of bilinear forms at t = 0. We will use the following Proposition,
containing results from [11,14]:

Proposition 2.1 Let 〈, 〉t , t ∈ (−ε, ε), be an analytic family of forms on a finite dimensional
vector space B0. Assume that the forms 〈, 〉t are nondegenerate for t �= 0. Let K̃i , i = 0, . . . , r ,
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be the set of [b]0 ∈ B0, such that the functions t �→ 〈[b]0, [b′]0〉t vanish at 0 up to order i
for any b′ ∈ B. Then

(1) For i = 0, . . . , r, a bilinear form 〈, 〉i , is well defined on K̃i by

〈[b]0, [b′]0〉i = 1

i !
di

dti
〈b, b′〉t |t=0. (24)

(2) The bilinear form 〈, 〉i degenerates on K̃i+1, and induces a nondegenerate bilinear form
on K̃i/K̃i+1. Denote its signature by τi .

(3) The signatures τ+ and τ− of the forms 〈, 〉t on B0, for t > 0 and t < 0, respectively,
are given by

τ+ =
r∑

i=0

τi , τ− =
r∑

i=0

(−1)iτi . (25)

Proof of Theorem 0.2 (1) Let b ∈ B − {0}. Then, there is a unique integer j and c ∈ B with
[c]B0 �= 0 such that f1b = f j c. Since [c]B0 �= 0, and [J ]B0 is a generator of the socle of B0

we may find e0 ∈ B0 such that [c]B0 e0 = [J ]B0 . Choose any e ∈ B with the property that
[e]B0 = e0, so that L(ce)(0) = LB0([c]B0 e0) = LB0([J ]B0) �= 0. For any b′ ∈ B, we have
f1bb′ = f j cb′ ∈ ( f j ). Hence,

〈b, b′〉rel = L( f1bb′) = L( f j cb′) = t j L(cb′) ∈ (t j )

and

〈b, e〉rel = L( f1be) = L( f j ce) = t j L(ce) ∈ (t j ) − (t j+1).

Hence, if b is as in the statement of part (1), we have that j ≥ m and hence f1b ∈ ( f m), i.e.
b ∈ ( f m : f1). This proves the first assertion. The second assertion follows from the first by
evaluating it at t = 0 and using (8).

(2) Let b ∈ ( f ) ∩ ( f m : f1). Then b = c f and (c f ) f1 = e f m , so that c f1 = e f m−1.
Hence, c ∈ ( f m−1 : f1) and b = c f ∈ M f ( f m−1 : f1). The converse is obvious.

(3) Let b ∈ ( f ) ∩ ( f m : f1) and b′ ∈ ( f m : f1). Then(
f1b

f m

)
b′ = b

(
f1b′

f m

)
∈ ( f ),

since b ∈ ( f ). Hence [〈 f1b
f m , b′〉]B0 = 0 and the bilinear form in (13) vanishes on ( f )∩ ( f m :

f1). Taking the quotient by ( f ) ∩ ( f m : f1), we obtain by part (1) that it is a bilinear form
defined on K̃m and it has the same expression as Jantzen’s form, since f m = tm , so they
coincide. ��

3 Transporting the signatures to the algebra A

The aim of this section is to establish a relationship between the higher order bilinear forms
〈, 〉L A, f,m (5) and their signatures σA, f,m in the algebra A and Jantzen’s relative forms 〈, 〉m

(24) and their signatures τm in B0.
Define the isomorphism of B-modules

B B
∪ ∪

( f : f1)

−→ ( f1 : f )
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(b) = b f1

f
, 
−1(c) = c f

f1

Lemma 3.1 The isomorphism 
 induces isomorphisms of B-modules, for m ≥ 1:


 : ( f m : f1) −→ ( f1 : f ) ∩ ( f m−1) (26)


 : ( f m) −→ ( f m−1 f1)

ϕ : K̃1 = AnnB0( f1) −→ K1 = AnnA( f ).

Proof If b ∈ ( f m : f1), then there exists c ∈ B such that b f1 = c f m . Hence


(b) = b f1

f
= c f m−1 ∈ ( f1 : f ) ∩ ( f m−1).

Conversely, if c = d f m−1 ∈ ( f1 : f ), then

d f m = c f = e f1 ⇒ e = 
−1(c) ∈ ( f m : f1).

This proves the first assertion. The second one is just 
(b f m) = b f m−1 f1. The third assertion
is obtained by taking the quotient of the first assertion in the Lemma by the second relation
in the case m = 1. ��

Let f2, . . . , fn be a regular sequence of holomorphic functions, denote the volume form
by dV ol = dx1 ∧ · · · ∧ dxn , and let ZC be the complete intersection f2 = . . . = fn as in
Sect. 2. For any holomorphic function g define the Jacobian of g by

dg ∧ d f2 ∧ . . . ∧ d fn := Jac(g) dV ol, Jac(g) =

∣∣∣∣∣∣∣∣∣∣

∂g
∂x1

· · · ∂g
∂xn

∂ f2
∂x1

· · · ∂ f2
∂xn· · · · ·

∂ fn
∂x1

· · · ∂ fn
∂xn

∣∣∣∣∣∣∣∣∣∣
.

Recall the construction of the generator of the Rosenlicht differentials (see [13]) or dualizing
module, which is a rational differential form ω0 on ZC having the property

ω0 ∧ (d f2 ∧ . . . ∧ d fn)|ZC
= dV ol|ZC

∈ �n
Cn

( f2, . . . , fn)�n
Cn

.

The dualizing module on ZC is then OZC
ω0, and it consists of all rational differential forms

σ on ZC that have the property that the residue at 0 of hσ is 0, for any holomorphic function
h on ZC. Recall also that the residue of a differential form σ at 0 ∈ ZC is the sum of the
residues of the rational differential form ν∗σ at ν−1(0), where ν is the normalization map
of ZC. Directly from the definitions above, one obtains that for any holomorphic function g
on Cn

d(g|ZC
) = Jac(g)|ZC

ω0.

Note that the logarithmic derivative of g|ZC
is Jac(g)

g ω0 and its residue at 0 is the sum of the

vanishing orders of the function g ◦ ν at ν−1(0), and hence a positive integer.

Lemma 3.2 Let f, f1, . . . , fn , and ϕ be as in Sect. 2. Let JB0 and JA be the Jacobians of
( f, f2, . . . , fn) and ( f1, . . . , fn) respectively. Then there exists a positive constant c = c( f )

such that ϕ(JB0) = cJA.
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Proof Since ([ f ]A) � A, then taking orthogonal of this relation, we obtain that the ideal K1

is not the 0-ideal, and hence K1 contains the socle. Since ϕ : K̃1 −→ K1 is an isomorphism of
non-zero ideals, each containing its corresponding 1-dimensional socle, the map ϕ sends the
socle ideal to the corresponding socle ideal. Hence ϕ sends the Jacobian of B0 to a non-zero
multiple of the corresponding Jacobian of A.

Thus we know that there is a non-zero real number c with the property
[

f1 Jac( f )

f

]
A

= c[Jac( f1)]A.

Hence there is a holomorphic function h on ZC with the property

f1 Jac( f )

f
− cJac( f1) = h f1

Dividing by f1 and multiplying by ω0 we obtain

Jac( f )

f
ω0 − c

Jac( f1)

f1
ω0 = hω0

Taking residues at 0 we obtain that

n1 + · · · + nr − c(m1 + · · · + mr ) = 0

where the ni and m j are the vanishing orders of the functions f ◦ ν and f1 ◦ ν at ν−1(0),
respectively. Hence c is a positive rational number. ��

The real valued bilinear forms on A and on B0 depended on the choice of real valued
linear functions LA : A −→ R and LB0 : B0 −→ R which have the property of sending
the corresponding Jacobians to a positive number. Having chosen L and hence LB0 , we will
choose LA subject to the compatibility condition

LB0 |K̃1
= LA ◦ ϕ. (27)

Proof of Theorem 0.3 Let m ≥ 1 and consider the commutative diagram:

( f m : f1) ⊕ ( f m : f1)

f1 ·
f m ·

−→ ( f m : f1)
π̃0−→ K̃1

L B0−→ R


 ⊕ 
 ↓ ↓ 
 ↓ ϕ ↓ I d

( f1 : f ) ∩ ( f m−1) ⊕ ( f1 : f ) ∩ ( f m−1)

1·
f m−1 ·
−→ ( f1 : f ) ∩ ( f m−1)

π0−→ K1
LA−→ R

.

Here the mapping f1·
f m · acts on a couple

(a, b) ∈ ( f m : f1) ⊕ ( f m : f1) by (a, b) −→ a f1

f m
b,

and similarly for 1·
f m−1 ·. The mapping π0 is obtained by reducing mod ( f1). The vertical maps

are isomorphisms, so we may interpret the commutative diagram as providing a conjugation
of the top bilinear form into the bottom bilinear form. We reduce the first row by ( f ) and the
second row by ( f1). This is possible since 
( f ) = f1 and both bilinear forms degenerate
in the submodules in the denominator of the quotient. We thus obtain that the mth Jantzen’s
bilinear form is being conjugated by ϕ : K̃m −→ Km to the bilinear form 〈, 〉LA, f,m . ��
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4 The index of contact vector fields

4.1 The GSV-index I ndV0,±(X |V0) and the signature function Sgn f,0(X)

Let f : R2N+1 → R be a germ of a real analytic function with an algebraically isolated
singularity at 0. Denote also by f its extension to a germ in C2N+1 and let Vt and V C

t be
the germs of real or complex analytic varieties defined by f = t . In this section we prove
Theorem 0.4.

We know that both the GSV-index I ndV0,±(X |V0) and the signature function Sgn f,0(X)

verify the law of conservation of numbers (see (29) and similarly for the signature function
Sgn f,0(X) [6]). They also coincide in smooth points of the variety. Hence, the two indices
differ by a constant K+ or K− depending only on the function f (and not on the vector field)
and on the positive or negative sign chosen in the GSV-index. Given a function f as above,
in order to determine these constants K±, it is sufficient to calculate both indices for one
vector field X0 tangent to V0.

Proof of Theorem 0.4 In order to prove Theorem 0.4, we have to study the index of a family
of vector fields tangent to the smoothening f = t of the singular variety f = 0. When the
ambient space is even dimensional, this was done [7] using the Hamiltonian vector field
associated to f . Here, we study the odd-dimensional ambient space R2N+1 and we use the
vector fields

Xt = ( f − t)
∂

∂x1
+

N∑
i=1

[
∂ f

∂x2i+1

∂

∂x2i
− ∂ f

∂x2i

∂

∂x2i+1

]
,

which we call the contact vector fields. The vector field Xt is tangent to Vt , for any t , since
D( f − t)Xt = ∂ f

∂x1
( f − t), where ∂ f

∂x1
is the cofactor. For almost all linear hyperplanes

through 0 in C2N+1 the projection to this hyperplane gives a description of V C

0 as a branched

finite analytic cover [10]. Set f j := ∂ f
∂x j

, with j = 1, . . . , 2N + 1. After perhaps a generic
rotation, we may assume that 0 is the only point in its neighborhood that satisfies the equations
f = f2 = · · · = f2N+1 = 0, or equivalently such that f, f2, . . . , f2N+1 is a regular sequence
[4]. Hence, the vector field X0 has an algebraically isolated zero at the origin. The functions
f1, . . . , f2N+1 form a regular sequence, since f has isolated singularities. The hypotheses
of the previous part of this paper are satisfied and we apply Sects. 1, 2 and 3 to this situation.
Choose a small neighborhood UC of 0 ∈ C

2N+1 and a small ε > 0, as in Sect. 2.1. The
derivative of Xt is

DXt :=
(

f1 f2 . . . f2N+1

∗ ∂( f3,− f2,..., f2N+1,− f2N )
∂(x2,...,x2N+1)

)
. (28)

Denote by Yt := Xt |V C
t

the restriction of Xt to V C

t or to Vt . The singularities of Xt are

always contained in V C

t , and hence Xt and Yt have the same singularities: ZC ∩ V C

t .
By definition (see [2,8]), the GSV-index I ndV±,0(Y0) is the sum of the indices of Yt at the

points pt ∈ Vt , ±t > 0 small:

I ndV0,±(Y0, 0) =
∑

pt ∈ U ∩ Vt , Yt (pt ) = 0
±t > 0

I ndVt (Yt , pt ). (29)
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Note that Vt is smooth, so the signatures I ndVt (Yt , pt ) can be calculated using the usual
Eisenbud–Levine, Khimshiashvili formula, on the smooth variety Vt . That is, instead of
using the Jacobian J (Xt ) as the generator of the socle, one uses the relative Jacobian J (Yt ).
In the localization of the algebra Bt in pt , we have

J (Xt ) = f1 J (Yt ). (30)

Hence, the signature of the bilinear form 〈, 〉rel
t (10) gives the GSV-index:

I ndV±,0(X0) = τ±. (31)

On the other hand, by definition [6], the signature function Sgn f,0(X) is given by the signature
of the form 〈, 〉rel

t , for t = 0. That is,

Sgn f,0(X0) = τ0 (32)

It now follows from Jantzen’s Proposition 2.1 that the constants K± in Theorem 0.4 are

K+ =
∑
m≥1

τm, K− =
∑
m≥1

(−1)mτm . (33)

The Theorem 0.4 finally follows from (33) applying Theorem 0.3, which asserts that τm =
σA, f,m . ��
Corollary 2 Let σA be the signature of the Jacobian algebra A in (3), and let σA, f,m, m =
0, . . . , � + 1, be defined as above. Then

σA = χ+ − χ−
2

=
∑

m=odd

σA, f,m .

Proof By Arnold’s formula [1], 2σA equals χ+ − χ−. Now, by the Poincaré-Hopf index
theorem, χ+ − χ− equals I ndV0,+(X) − I ndV0,−(X), where X is a real vector field having
an algebraically isolated singularity at the origin tangent to V . The Corollary now follows
from Theorem 0.4. ��
4.2 Examples

Example 4.1 Let f be a quasi-homogeneous real analytic function with an algebraically
isolated singularity, i.e. [ f ]A = 0 ∈ A. In this case, AnnA( f ) = A, M f = 0 and σ f,1 = τ1

is the only non-zero Jantzen signature of order higher than 0 and it is equal to σA. Hence
K± = χ± = ±σA.

Example 4.2 Let f = (x2 + y3)(x3 + y2) + z2 and V = f −1(0) ⊂ R
3. This example is

not a quasi-homogeneous singularity. All calculations have been done using the Computer

algebra system Singular [9]. The local algebra A = A
R3,0

( fx , fy , fz)
has dimension 11, AnnA( f ) is

the maximal ideal of dimension 10 and ([ f ]A) is the 1-dimensional socle ideal. We thus have
that M f has nine one-dimensional Jordan blocks and one two-dimensional Jordan block. The
Hessian [Hess( f )]A generating the socle equals −220[ f ]A in A. The filtration (4) is given
by

( f ) ⊂ AnnA( f ) ⊂ A.

The signature σ1 is the signature of 〈, 〉LA on the 9 dimensional space isomorphic to AnnA( f )
( f )

.

This signature is equal to 1. The signature σ2 is given by the the sign of LA(
f · f
f ) = LA( f ) <

0, so σ2 = −1. This gives by Theorem 2 that K+ = 0, K− = −2.
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