
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Math. Meth. Appl. Sci. 2007; 30:2091–2100
Published online 20 June 2007 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/mma.907
MOS subject classification: 35Q 35; 76M60

Classical and nonclassical symmetries for
a Kuramoto–Sivashinsky equation with dispersive effects
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SUMMARY

We apply the Lie-group formalism and the nonclassical method due to Bluman and Cole to deduce
symmetries of the generalized Kuramoto–Sivashinsky equation with dispersive effects. We make a full
analysis of the symmetry reductions and we prove that the nonclassical method applied to the equation
leads to new reductions, which cannot be obtained by Lie classical symmetries. Some new solutions can
be derived. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Kuramoto–Sivashinsky (KS) equation has been studied by many authors [1–3]. There have
been several generalizations of the KS equation such as the generalized KS (GKS) with dispersive
effects:

ut + f (u)x + �uxx + �(u)xx + �uxxx + �uxxxx = g(u) (1)

where �, � and � are constants, f (u), �(u) and g(u) are functions.
In order to obtain analytical solutions, several methods have been applied for some particular

cases of (1). In this sense, for f (u) = u2/2, � constant and g= 0, Equation (1) is KS equation, and
in [1] exact travelling wave solutions are obtained using trigonometric functions expansions method.
In [4, 5], the authors have analysed the classical and nonclassical symmetries of Equation (1) with
� = k, � = �= 0, g(u) = 0, f (u) constant and �u = F(u). In this case, Equation (1) is known as
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the Cahn–Hilliard equation and describe diffusion for decomposition of a one-dimensional binary
solution.

If � = 1, g(u) = 0, �(u) = (�2/2)u2 + (�3 − �)u + �4 and f (u) = (�1/2)u2 + �u + �5, with �i
constants these equations include the Korteweg-de Vries equations supplements by additional terms
of the KS and describing nonlinear convection and the input of energy produced by Marangoni
forces on the long scales together with energy dissipation on short scales. In [6], the authors have
obtained classical and nonclassical symmetries of the equation and have reduced the equation to
ordinary differential equations (ODEs).

The application of Lie transformations group theory for the construction of solutions of nonlinear
partial differential equations (PDEs) is one of the most active fields of research in the theory of
nonlinear PDEs and applications. Classical and nonclassical symmetries of nonlinear PDEs may
be used to reduce the number of independent variables of the PDEs; in particular, we might reduce
the PDEs to ODEs. The ODEs may also have symmetries that allow us to reduce the order of the
equation, and we can integrate to find exact solutions.

Motivated by the fact that symmetry reductions for many PDEs are unobtainable by using
classical symmetries, there have been several generalizations of the classical Lie group method
for symmetry reductions. The notion of nonclassical symmetries was firstly introduced by Bluman
and Cole [7] to study the symmetry reductions of the heat equation. The description of the method
can be found in [8, 9]. Clarkson and Mansfield [10] proposed an algorithm for calculating the
determining equations associated with the nonclassical method. Bı̂lă and Niesen [11] proposed
a new procedure for finding nonclassical symmetries. In [12, 13], we extended the procedure
described in [11] to a different case.

In this paper, we make a full analysis of the symmetry reductions of Equation (1) with � = 1.
By using the algorithm described in [12, 13], we prove that the nonclassical method applied to the
GKS equation (1) leads to new reductions.

2. CLASSICAL SYMMETRIES OF GKS EQUATION

We consider the classical Lie group symmetry analysis of Equation (1). Invariance of Equation
(1) under a Lie group of point transformations, with infinitesimal generator

V = �(x, t, u)
�
�x

+ �(x, t, u)
�
�t

+ �(x, t, u)
�
�u

(2)

leads to a set of 10 determining equations for the infinitesimals �(x, t, u), �(x, t, u) and �(x, t, u),

using the MACSYMA program symmgrp.max [14]. Solving this system we obtain

� = x

4
�t + �(t), � = �(t), � =

(
−�x

16
�t + 	(t)

)
u + 
(x, t)

where �, �, 	 and 
 are related by the following conditions:

��t�uuuux + ��t�uux − 16�uuu	u − 16�uuu
 − 16�uu	 − 8�t�uu = 0

��t�uuux − 16�uu	u − 16�uu
 − 8�t�u + 3�2�t − 8��t = 0
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��t guux − ��t t ux − ��t gx + 16	t u − 16gu	u − ��t fuu + 16
xxxx + 16�
xxx

+16�u
xx + 16�
xx + 16 fu
x + 16
t − 16gu
 + 16g	 − 16�t g= 0

��t fuuux + 4�t t x − 16 fuu	u + 2��t�uuu − 32�uu
x − 16 fuu
 + 16�t + 2��t�u

−12�t fu + 2���t = 0

The solutions of this system depend on �, �, f (u), �(u) and g(u). For �, �, f (u), �(u) and
g(u) arbitrary, the only symmetries admitted by (1) are the group of space and time translations,
which are defined by the infinitesimal generators:

V1 = �
�x

, V2 = �
�t

The functional forms of f (u), �(u) and g(u) and the constants �, �, for which Equation (1) has
the following extra symmetries.

Case 1: If f = �2 exp((3�1/2)u) + �3u + �4, �= �5 exp(�1u) − �u + �6, g= �7 exp(2�1u) and
�= 0,

V 1
3 = (x + 3�3t)�x + 4t�t − 2

�1
�u

We observe that for � = �2 = �3 = �6 = �7 = 0, V 1
3 is symmetry of the Cahn–Hilliard equation,

obtained in [4, 5].
Case 2: If f = (u + 1) ln(u + 1) + �1u + �2, �= �3u + �4 and g= (u + 1)[�5 ln(u + 1) + �6]
• For �5 = 1:

V 2
3 = et�x + et (u + 1)�u

• For �5 = 0:

V 3
3 = t�x + (u + 1)�u

Case 3: If f = �0(�1u+�2)
3n
2 +1 +�3u+�4, �= �7(�1u+�2)m +�5u+�6 and g= (�8u+�9)k

the new symmetries are:

• For n �= 0, m = n + 1, k = 2n + 1, �= 0, �5 = −�, �8 = �1 and �9 = �2:

V 4
3 = (x + 3�3t)�x + 4t�t − 2

�1n
(�1u + �2)�u

We observe that for � = �5 = �6 = �7 = �8 = �9 = 0, V 4
3 is symmetry of the Cahn–Hilliard

equation obtained in [4, 5]. For n = �1 = 1 and �0 = �7 = �8 = �9 = 0, V 4
3 is a symmetry of

the dissipation-modified Korteweg–de Vries equation, which was obtained in [6].
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• For n = 2
3 , k = 1, �1 = 1, �2 = 0, �7 = 0 and

◦ �8 �= 0:

V 5
3 = e�8t�x + �8

2�0
e�8t�u

◦ �8 = 0:

V 6
3 = t�x + 1

2�0
�u

◦ �8 = 0, �= 0, �5 =−�:

V 7
3 = V 6

3 = t�x+ 1

2�0
�u, V 1

4 =
(
x

4
+ 7

4
�0�9t

2
)

�x+t�t+
(

−3

4
u+7

4
�9t−3�3

8�0

)
�u

• For k = 1, �0 = 0 and �7 = 0,

◦ If �9 = 0:

V 8
3 = u�u, V 2

4 = �(x, t)�u

where�(x, t)must satisfy equation�xxxx+��xxx+(�+�5)�xx+�3�x+�t−�8�+�9 = 0.
◦ If �5 = ( 38�

2 − �) and �9 = 0:

V 9
3 = V 8

3 = u�u

V 3
4 =

[
x

4
+

(
3

4
�3 − 3

64
�3

)
t

]
�x + t�t +

[
− �

16
x +

( �3
16

� + �8
)
t

]
u�u

V5 = �(x, t)�u

where �(x, t) must satisfy equation �9�k2x−�3�9�k2t−16�8�9k2t−16�xxxx−16��xxx−
6�2�xx−16�3�x−16�t+16�8�−16�9k1+16�9k2 = 0, with k1 and k2 arbitrary constants.

For the sake of completeness, we next provide the generators of the nontrivial one-dimensional
optimal system:

For �, �, f (u), �(u) and g(u) arbitrary,

〈V1〉, 〈
V1 + V2〉, 
 ∈ R

The new subalgebras, of the nontrivial one-dimensional optimal system, which are obtained for
the different cases, are:

Case 1:

{〈V1
3〉}
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Table I. The similarity solutions.

j U j z j u j

1 
V1 + V2 x − 
t h(z)

2 V 1
3 (x − �3t)t

− 1
4 h(z) − ln(t

1
2�1 )

3 V 2
3 t ex h(z) − 1

4 V 3
3 t e

x
t h(z) − 1

5 V 4
3 (x − �3t)t

− 1
4 h(z)t− 1

2n − �2
�1

6 V 6
3 t x

2�0t
+ h(z)

7 
V1 + V 5
3 t �8eb1 t x

2�0(e�8t+
)
+ h(z)

8 
V1 + V 3
4

4

4√t

+ x
4√t

+ �3t3/4

16 − �3t3/4 t
�

4 he−

64� 4√t z+(−�4−256�8)t
256

9 
V2 + V 1
4

32�9
2+8�9t
+3x−3�9t2

3
√
2 4√
+t

−(
+t)3/4(8
√
2�9
−6

√
2�9t+3

√
2�3)−3h

6
√
2(
+t)3/4

10 
V1 + �V2 + V 8
3 �x − 
t e

t
� h(z)

Table II. ODEs.

j ODE j

1 h′′′′ + �hh(h
′)2 + �hh

′′ − 
h′ + �h′′′ + �h′′ + fhh
′ − g= 0

2 h′′′′ + �1(
3
4�3 − 3

64�3)e�1hh′′ + �21(
3
4�3 − 3

64�3)e�1h(h′)2 + 3�1
2 (

�3
16� + �8)e

3�1h
2 h′

− z
4h

′ − �7e2�1h − 1
2�1

= 0

3 h′ + (� + � − �6 + �3 + �1 + 2)h = 0

4 z4h′ + z3h ln(h) + (−�6z4 + (�1 + 1)z3 + (� + �3)z2 + �z + 1)h = 0

5 h′′′′ + �n+1
1 �7(n + 1)hnh′′ + �n+1

1 �7(n2 + n)hn−1(h′)2 − z
4h

′ + �0(
3n
2 + 1)�

3n+2
2

1 h
3n
2 h′

−�2n+1
1 h2n+1 − h

2n = 0

6 zh′ + h − �9z + �3
2�0

= 0

7 (e�8z + 
)h′ + (
�3�8
2�0

− �9)e�8z − �8
h − �9
= 0

8 4h′′′′ − zh′ + �
h = 0

9 h′′′′ + 2hh′ − zh′ − 3h = 0

10 �5h′′′′ + ��4h′′′ + (�5 + �)�3h′′ + (�3� − 
)�h′ + (1 − �8�)h = 0

Case 2:

{〈V3
3〉, 〈
V1 + V2

3〉, 
 ∈ R}
Case 3:

{〈V4
3〉, 〈V6

3〉, 〈
V1 + V5
3〉, 〈
V1+V3

4〉, 〈
V2+V1
4〉, 〈
V1+�V2+V8

3〉, 
, �∈R}
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Having determined the infinitesimals, the similarity solutions z j and u j , which are found by solving
the invariant surface conditions:

�(x, t, u)ux + �(x, t, u)ut − �(x, t, u) = 0 (3)

are listed in Table I.
In Table II we list the ODEs to which (1) is reduced.

3. NONCLASSICAL SYMMETRIES OF GKS EQUATION

To obtain nonclassical symmetries of (1) for � �= 0, we apply the algorithm described in [11]. If
� �= 0, without loss of generality, we may set � = 1. The equivalent form of (1), by reducing the
initial system using the invariant surface condition ut = � − �ux , is

uxxxx + �uxxx + A1(x, t, u)uxx + A2(x, t, u)(ux )
2 + A3(x, t, u)ux + A4(x, t, u) = 0 (4)

where A1 =�u + �, A2 =�uu , A3 = fu − � and A4 = � − g.
Invariance of (4) under a Lie group of point transformations, with infinitesimal generator (2)

leads to the determining equations. Substituting �= 1 and Ai , with i = 1, . . . , 4, into the de-
termining equations we obtain the determining equations of the nonclassical symmetries of the
original PDE Equation (1). The classical method applied to (4) gives only rise to the classical
symmetries of (1).

The case for �= 0 has not been considered in [11]. For � = 0 we can set � = 1, without loss of
generality. In this case, the invariant surface condition (3) becomes

ux = � (5)

Substituting (5) into (1) we obtain

ut =A(x, t, u) (6)

where

A= −�xxx−�u�xx − 3��uu�x − 3�ux�x − (�u)
2�x − �3�uuu − 3�2�uux − 4�2�u�uu

−3��uxx − 5��u�ux − �(�u)
3 − ��xx − ��u�x − �u�x − ��x − ��2�uu − 2���ux

−��(�u)
2 − �u��u − ���u − �uu�

2 − fu� + g (7)

Invariance of Equation (6) under a Lie group of point transformations with infinitesimal generator
(2) leads to two determining equations:

A�u + �t = 0

A�u + �t − Au� − A2�u − A�t − At� − Ax� = 0
(8)

Substituting � = 1 and �= 0 in (8), we obtain the equation

A�u + �t − Au� − Ax = 0 (9)

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:2091–2100
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Table III. The constants, functions and infinitesimals.

i �i (u) fi (u) gi (u) �i (x, t, u)

1 k6 �= 0 k6u
3 + k5u + k4 k3u

2 + k2 k1u
u

x+x0
2 k6 �= 0 k6 ln u − �u + k4 u ln u + k3u + k2 k1u

u
t+t0

3 k6 �= 0 k6 ln u + k5u + k4 k3u + k2 u(ln u + k1) et u

4 k6 �= 0 k6u
2 + k5u + k4 −6k6k3u + k2 k1

x
6k6(t+t0)

+ k3

5 k3 �= 0 k6u
2 + k5u + k4 k3u

2 + k2u + k1 0 1
2k3t

Table IV. ODEs.

i z ui ODE′
i

1 t (x + x0)h(z) h′ + 6k6h
3 + 2k3h

2 − k1h = 0

2 t h(z)e
x

t+t0 (z + t0)
4h′ + (z + t0)

3h log h + (−k1t
4
0 + (−4k1z + k3 + 1)t30

+(3(k3 + 1)z − 6k1z
2)t20 + (−4k1z

3 + 3(k3 + 1)z2 + �)t0
− k1z

4 + (k3 + 1)z3 + �z + 1)h = 0
3 t h(z)ee

t x he4z + �he3z + k5he
2z + �he2z + k3he

z + h′ − h log h − k1h = 0

4 t x2
12k6(t0+t) + k3x + h(z) 6k6(z + t0)h

′ − 6k6(4k
2
3k6 + k1)(z + t0) + 2k6h

+ k5 + �= 0
5 t x

2k3t
+ h(z) 2k23z

2h′ + 2k23zh + k2k3z + k6 = 0

Substituting (7) in (9), we obtain the determining equation for the infinitesimal �:

�xxxx + 4��uu�xx + 4�ux�xx + 3�uu(�x )
2 + 6�2�uuu�x + 12��uux�x + 10��u�uu�x + 6�uxx�x

+4�u�ux�x + �4�uuuu + 4�3�uuux + 6�3�u�uuu + 6�2�uuxx + 12�2�u�uux + 4�3(�uu)
2

+12�2�ux�uu+7�2(�u)
2�uu+4��uxxx+6��u�uxx+8�(�ux )

2+4�(�u)
2�ux+��xxx+�u�xx

+��xx+3���uu�x+3��ux�x+3�uu��x+ fu�x+��3�uuu+3��2�uux+3��2�u�uu+�u�
2�uu

+��2�uu+3���uxx+3���u�ux+2�u��ux+2���ux+2�uu�
2�u+g�u+�t+�uuu�

3+ fuu�
2

−gu� = 0 (10)

The complexity of this equation is the reason why we cannot solve (10) in general, Thus, we
proceed, by making ansatz on the form of �(x, t, u), to solve (10). In Table III, we list the
functional forms of f (u), g(u) and �(u) for which we obtain nonclassical symmetries and the
corresponding infinitesimals.

In Table IV we list the transformations and ODEs (ODE′
i ) to which (1) is reduced.

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:2091–2100
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4. ANALYSIS OF SOME REDUCED EQUATIONS

Integrating ODEi , and ODE′
i we obtain the function h(z) and, substituting into the similarity

solution u j , we obtain the following exact solutions of (1):

• ODE1, for � = � = f ′ = g= 0, can be reduced to

h′′′ + �′h′ − 
h = k1 (11)

Equation (11) admits the generator X = d/dz. Making the change of variables y = h, w = z
and, denoting � = dw/dy, Equation (11) is reduced to

�
d2�

dh2
− 3

(
d�

dh

)2

+ (
h + k1)�
5 + �′(h)�4 = 0

• For �′ = h, f = 
h + a and � = g= 0, integrating ODE1 twice with respect to z it can be
reduced to the following ODE:

h′′ + 1
2h

2 + �h = Az + B (12)

By solving Equation (12) for A= B = 0, we get

u(x, t) =−3� sech2
[√

−�

4
(x − 
t)

]

• From ODE3:

u(x, t) = k ex+(−�−�+�6−�3−�1−2)t − 1

• From ODE4:

u(x, t) = e− k
t −�1−1 (e

x
t + �6t

2 + �
t2

+ 1
2t3 − t

�
t +

�3
t e

k
t +�1+1)

t
�
t +

�3
t

• From ODE6:

u(x, t) = x

2�0t
+ �9

2
t + k

t
− �3

2�0

• From ODE7:

u(x, t) = 1

2�0(
 + e�8t )

[(
((2�0�9 − �3�8)t + 2�0k − (log �0 + log 2)�3)

+ 2�0(log �0 + log 2)�9

)
e�8t − 2�0

�9
�8


 + �8 e
�8t x

]

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:2091–2100
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• From ODE10:

u(x, t) = 1

2�0�8(e�8t + 
)
((�28x + (�8t + log(2�0))(2�1�9 − �3�8) + 2�0�8k)e

�8t − 2
�0�9)

• From ODE′
1, for 6k1k6 + k23 = a2, we obtain the solution in implicit form:

(
6k6h + k3 − a

6k6h + k3 − a

)k3
(6k6h

2 + 2k3h − k1)
a = e−(z+c)2ak1h2a

• From ODE′
1, for 6k1k6 + k23 =−a2, we obtain the solution in implicit form:

2k3 arctan

(
6k6h + k3

a

)
+ log

(
6k6h2 + 2k3h − k1

h2

)a

=−2ak1(z + c)

• From ODE′
2:

u(x, t) = e
x

t+t0
+
(t)

with


(t)= 2k1t t30+(5k1t2+(−2k3−2)t−2k7)t20+(4k1t3+(−4k3−4)t2−4k7t+2�)t0+k1t4+(−2k3−2)t3−2k7t2+2�t+1
2(t+t0)3

• From ODE′
3:

u(x, t) = ee
t x− e4t

3 − � e3t

2 −k5 e2t−� e2t−k3t et−k7 et−k1

• From ODE′
4:

u(x, t) = x2

12k6(t + t0)
+ k3x + k7

3
√
3 3
√
t + t0

+ 3k23k6(t + t0) + 3k1(t + t0)

4
− k5 + �

2k6

• From ODE′
5:

u(x, t) = k3x − k6 log t + 2k23k7

2k23 t
− k2

2k3

5. CONCLUDING REMARKS

In this paper, the complete Lie-group classification for the GKS equation (1) has been obtained.
We have constructed the optimal system and have derived the corresponding reduced equations.
In [12] we have extended an algorithm described by Bı̂lă and Niesen to determine nonclassical
symmetries. By using this algorithm, we have derived nonclassical symmetries for Equation (1)
that yield to new solutions.
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2100 M. S. BRUZÓN, M. L. GANDARIAS AND J. C. CAMACHO

ACKNOWLEDGEMENTS

The support of DGICYT project MTM2006-05031, Junta de Andalucı́a group FQM201 and project
P06-FQM-01448 are gratefully acknowledged.

REFERENCES

1. Fu Z, Liu S. New exact solutions to the KdV–Burguers–Kuramoto equation. Chaos, Solitons and Fractals 2005;
23:609–616.

2. Guo BL. Some problems of the generalized Kuramoto–Sivashinsky type equations with dispersive effects. Research
Reports in Physics. Springer: Berlin, 1990; 236–241.

3. Yang TS. On traveling-wave solutions of the Kuramoto–Sivashinsky equation. Physica D 1997; 110:25–42.
4. Gandarias ML, Bruzón MS. Nonclassical symmetries for a family of Cahn–Hilliard equations. Physics Letters A

1999; 263:331–337.
5. Gandarias ML, Bruzón MS. Symmetry analysis and solutions for a family of Cahn–Hilliard equations. Reports

on Mathematical Physics 2000; 46(1–2):89–97.
6. Bruzón MS, Gandarias ML. Symmetry reductions for a disipation-modified KdV equation. Applied Mathematical

Letters 2003; 16:155–159.
7. Bluman GW, Cole JD. The general similarity solutions of the heat equation. Journal of Mathematics and

Mechanics 1969; 18:1025–1042.
8. Clarkson PA. Nonclassical symmetry reductions of the Boussinesq equation. Chaos, Solitons, Fractals 1995;

5:2261–2301.
9. Levi D, Winternitz P. Nonclassical symmetry reduction: example of the Boussinesq equation. Journal of Physics

A 1989; 22:2915–2924.
10. Clarkson PA, Mansfield EL. Algorithms for the nonclassical method of symmetry reductions. SIAM Journal on

Applied Mathematics 1994; 55:1693–1719.
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