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Abstract We show how to obtain functions that are universal for the ball of H∞(Ω), where
Ω ⊂ C

n . The existence of our functions will follow from universality criteria, but we also
show how to construct them. Then we study the connection between certain interpolating
sequences, runaway automorphisms, and the existence of universal functions on domains
in C

n .
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0 Introduction

The study of universal functions began in 1929 when Birkhoff [4] proved that there exists
an entire function f such that the set of translates of f is dense, with respect to the topology
of uniform convergence on compact subsets of C, in the space of entire functions. Universal
functions have been studied in various contexts, but an underlying common theme is that
the domain has a sequence of automorphisms (φn) and these automorphisms have the prop-
erty that there exists a function f such that { f ◦ φn : n ∈ N} is dense in an appropriate
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746 P. Gorkin et al.

topological space. The function f is called a universal function. Stated in operator theoretic
terms, universality looks like the following: given a sequence, (Tn), of bounded linear oper-
ators on a topological vector space X , a vector x is called universal if the set {Tn x : n ∈ N}
is dense in X . The connection between these two concepts becomes apparent if the operators
Tn are chosen to be composition operators Cφn where Cφn ( f ) = f ◦ φn .

Some of the existence theorems obtained thus far are constructive, but they depend on
properties particular to the domain (see, for example, [3,5,11,15,20,21]). Most results are
nonconstructive and the existence of a universal vector comes about because of a universality
theorem based on a Baire-type argument. Gethner and Shapiro’s paper [9] is not constructive;
the importance of their paper comes from the fact that it unifies many of the existing theo-
rems. We will refer to theorems of the type discovered by Gethner and Shapiro as universality
criteria.

The setting in this paper is the following. We let Ω ⊆ C
N be a domain, and denote by

H(Ω) the space of holomorphic functions on Ω . Throughout this paper we assume that
H∞(Ω), the space of all bounded holomorphic functions on Ω , is not trivial. We consider
universal functions for H(Ω) relative to self-maps, φn , of Ω , as well as universal functions
for the closed unit ball B = { f ∈ H∞(Ω) : || f ||∞ ≤ 1} of H∞(Ω): a function f ∈ B is
universal for B or B-universal with respect to (φn) if { f ◦ φn : n ∈ N} is dense in B in the
compact open topology. In this paper, the first two sections contain preliminary information
as well as the universality theorems that we will need. In Sect. 3, we will establish the exis-
tence of B-universal functions as a consequence of our universality criteria. In Sect. 4, we
will show how to construct such universal functions. For domains in which peak functions
are easily obtainable, this construction is quite explicit. We will also relate our results to the
current state of affairs.

Thus far, proofs of existence of universal functions for H(Ω) have focused on a notion of
convergence to the boundary, which we now describe. A sequence of automorphisms, (φ j ),
is said to be runaway ([3,20], [2, p. 24]) if for every compact set K ⊂ Ω , there exists a natural
number n = n(K ) such that K ∩φn(K ) = ∅. Working with an exhaustion sequence of com-
pact sets in Ω and passing to a subsequence, if necessary, we see that if we have a runaway
sequence of automorphisms (φ j ), we can choose a subsequence of (φ j ) that has the property
that for each compact set K , there exists an integer n = n(K ) such that φm(K )∩ K = ∅ for
all m ≥ n.

In this paper we show that the existence of B-universal functions is closely related to a
certain kind of interpolation: In previous work, Gorkin and Mortini [10] considered asymp-
totic interpolating sequences of type one; we recall that a sequence (zn) ∈ ΩN is called
an asymptotic interpolating sequence of type one for H∞(Ω) if for every (an) ∈ �∞ with
sup |an | ≤ 1 there exists f in the unit ball B of H∞(Ω) such that | f (zn) − an | → 0.
Sequences (wn) in Ω for which there exist f ∈ B such that | f (wn)| → 1 and | f (wn)| < 1
play an important role in interpolation theory. In [10], for example, it was shown that every
such sequence contains an asymptotic interpolating sequence of type one for H∞(Ω). Con-
versely, every asymptotic interpolating sequence (wn) of type one has the property that there
exists a function f ∈ H∞(Ω) of norm one such that | f (wn)| < 1 and | f (wn)| → 1 (see
[10]). Asymptotic interpolating sequences of type one are always plentiful in spaces in which
a point of the boundary is a peak point. In Sect. 4, we shall show that asymptotic interpolating
sequences of type one admit not only the possibility of approximating sequences of complex
numbers by elements in B (that is, | f (zn) − an | → 0), but they allow approximation of
functions; in other words, there exists a function F ∈ H∞(Ω) such that for any sequence
of bounded analytic functions h j ∈ B we have |F ◦ φk j − h j ◦ φk j | → 0 uniformly on
compacta, where φ j are holomorphic self-maps of Ω such that (φ j (z0)) j∈N contains an
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Bounded universal functions 747

asymptotic interpolating subsequence of type one. We discuss the relationship between run-
away sequences of automorphisms and a sequence of automorphisms (φ j ) such that there
is a point z0 ∈ Ω for which (φ j (z0)) contains an asymptotic interpolating sequence of type
one.

At this point an interesting question is what the existence of a runaway sequence of auto-
morphisms of a domain implies about the domain. We provide some examples of infinitely
connected domains that have runaway sequences of automorphisms. Our examples are slight
modifications of those that appeared in the recent survey article of Kim and Krantz [18]. The
relevant theorems for domains in C

N are provided in this article as well.

1 The universality criterion

Let X be an F-space; that is, a complete metrizable topological vector space. A vector x ∈ X
is called a universal vector for the sequence (Tn) of continuous linear operators on X if the
set {Tn x : n ∈ N} is dense in X . If Tn is the n-th iterate (or n-th power) of a single operator,
T, then x is called a hypercyclic vector and T is called hypercyclic also.

Let d be a translation invariant distance function inducing the metric topology of the
F-space X . If, in addition, X is locally convex and therefore a Fréchet space, we will also
consider a countable system {pn : n ∈ N} of seminorms generating the topology of X . To
simplify our notation, we let || f || = d( f, 0). As usual, Bd(y, δ) = {x ∈ X : d(x, y) < δ} is a
d-ball. A basic open neighborhood of the origin will be of the form B = {x ∈ X : ||x || < ε0}
or B = ⋂N

j=1{x ∈ X : p j (x) < ε j } for some ε j > 0.

Definition 1.1 Let B be a basic open neighborhood of the origin in X and let (Tn) be a
sequence of continuous linear operators on X such that B is an invariant set for each Tn ; that
is, Tn(B) ⊆ B for n ∈ N. Then a vector x ∈ B is called B-universal for (Tn) if {Tn x : n ∈ N}
is dense in B.

We note that if x is a Bd(0, δ)-universal vector for the sequence of powers of an operator
T , then T is supercyclic; that is, {λT n : λ ∈ C, n ∈ N} is dense in X .

The following is a version of the classical universality criterion of Gethner and Shapiro
([9, p. 283]) and Kitai [19]. For the reader’s convenience, we present the proof, which is a
slight modification of that in [9].

Theorem 1.2 (Universality criterion, first version) Let X be a separable F-space, B a basic
open neighborhood of the origin in X, M a closed subset of X and (Tn) a sequence of
continuous linear operators on X. Suppose that for each n the operator Tn has a right
inverse Sn(not necessarily linear or continuous). In addition, suppose that there are two sets
D1 and D2, D1 dense in B, D2 dense in M, such that Tn → 0 on D1 and Sn → 0 on D2. Then
there exists a Gδ-set U that is dense in B, consisting of vectors x such that M is contained
in the closure of {Tn x : n ∈ N}.

We note that this theorem yields the existence of sets Gn , that are open in X , such that
U = ⋂

(Gn ∩ B).

Proof In case X is a Fréchet space, we let ||| · ||| be one of the seminorms {p j : j ∈ N} used
to generate the topology of X . Without loss of generality, we may assume that B = {x ∈ X :
|||x ||| < 1}. (The cases B = ⋂N

j=1{x ∈ X : p j (x) < ε j } and B = {x ∈ X : ||x || < 1} work
in the same fashion.) Note that, as an open subset of X , the set B is a Baire space again. We
follow the proof of Gethner and Shapiro [9].
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748 P. Gorkin et al.

Fix a countable dense subset {y j : j ∈ N} of M . For j, N , k ∈ N let

V ( j, N , k) = {x ∈ B : ||Tn x − y j || < 1/k for some n ≥ N }.
Each of these sets, being a union of sets of the form B ∩ T −1

n (Bd(y j , 1/k)), is open in B.
Since

U =
⋂

j

⋂

N

⋂

k

V ( j, N , k), (1.1)

if we show that each V ( j, N , k) is dense in B, we may use the Baire category theorem to
obtain the desired conclusion.

To establish density, fix V = V ( j, N , k). Let z ∈ B. Choose δ > 0 so that δ < 1 − |||z|||.
We shall show that V ∩ Bd(z, δ) �= ∅. Since the set D1 is dense in B and D2 dense in
M , we can choose z0 ∈ D1 and y0 ∈ D2 with min{|||z − z0|||, ||z − z0||} < δ/2 and
||y j − y0|| < 1/(2k). Since the sequences Tn and Sn converge pointwise to 0 on D1 and D2,
respectively, we may choose m ∈ N, m > N , such that simultaneously ||Tm z0|| < 1/(2k)
and ||Sm y0|| < δ/2. Write x = Sm y0 + z0. Then x ∈ B, since

|||x ||| ≤ δ/2 + |||z0||| ≤ δ/2 + |||z − z0||| + |||z||| < δ/2 + δ/2 + 1 − δ = 1,

and x ∈ Bd(z, δ), since

d(x, z) = ||x − z|| ≤ ||x − z0|| + ||z − z0|| = ||Sm y0|| + ||z − z0|| < δ/2 + δ/2.

Moreover, since Tm Sm is the identity map on X we have

||Tm x − y j ||=||Tm Sm y0 + Tm z0 − y j ||≤||y0 − y j || + ||Tm z0|| < 1/(2k)+ 1/(2k)=1/k.

So x ∈ V .

We turn to a variant of the universality criterion. We call a set of the form U , given in Eq.
(1.1) above, a Gδ-set of (B,M)-universal vectors.

Theorem 1.3 (Universality criterion, second version) Let X be a separable F-space, B a
basic open neighborhood of the origin in X, M a closed subset of X and (Tn) a sequence
of continuous linear operators on X. Let {tn,m : n,m ∈ N} be a doubly-indexed sequence
in B and {qm : m ∈ N} a countable dense subset of M. Suppose that Tn converges to 0 on
a dense subset of B and that for each m we have tn,m → 0 as n → ∞ and Tntn,m → qm

as n → ∞. Then there exists a Gδ-set that is dense in B, consisting of (B,M)-universal
vectors for (Tn).

Proof Let yn,m = Tntn,m and

W (N , k,m) = {x ∈ B : ||Tn x − yn,m || < 1/k for some n ≥ N }.
Then, as before, it can be shown that W (N , k,m) is a dense open subset of B (just write

x = tn,m + z0 in place of Sn y0 + z0). Now the set of (B,M)-universal vectors equals the set
⋂

m

⋂

N

⋂

k

W (N , k,m),

which, by Baire’s theorem, is a dense Gδ-subset of B.

Of course, Theorems 1.2 and 1.3 are true when B and M are replaced by X .
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Bounded universal functions 749

2 Universality theorems for H(Ω) and H∞(Ω)

In this section, we consider the case in which the set X in the universality theorem above
is the space H(Ω) of all holomorphic functions on a domain Ω ⊆ C

N endowed with the
compact open topology. Before we turn to the special universality theorems, we isolate some
results that we will use repeatedly.

A translation invariant metric d on H(Ω) inducing the compact-open topology is given
by

d( f, g) =
∞∑

n=1

1

2n

|| f − g||n
1 + || f − g||n , (2.1)

where || f ||n = max{| f (z)| : z ∈ Kn} for some sequence (Kn) of compact sets satisfying
Kn ⊆ K ◦

n+1 and ∪n Kn = Ω . All topological notions in this paper refer to the topology
induced by d .

We will be interested, primarily, in the space H∞(Ω) of all bounded holomorphic func-
tions onΩ . For f ∈ H(Ω) let‖ f ‖∞ = supz∈Ω | f (z)| and letB ={ f ∈ H(Ω) : || f ||∞ ≤ 1}.
Using special versions of the universality criteria above, we shall give a necessary and suffi-
cient condition on the holomorphic maps φn for there to exist B-universal functions relative
to the compact open topology. Our results depend on the fact presented below. Since we were
unable to locate a reference for it, we include the short proof here.

Proposition 2.1 LetΩ be a domain in C
N . Then the sets H(Ω) and H∞(Ω) are separable

in the compact open topology.

Proof Consider Ω as a subset of R
2N and H(Ω) as a subspace of C(Ω), the space of

continuous, complex-valued functions on Ω . Using the Stone Weierstrass theorem, we can
approximate a continuous function uniformly on a compact subset K ⊆ Ω by a polynomial
in 2N real variables with coefficients in Q+iQ. By exhaustingΩ with an increasing sequence
of compact subsets, we see that C(Ω) is separable in the compact open topology. Since this
topology is given by a metric, the subspaces H(Ω) and H∞(Ω) are separable as well.

What is new to our approach to universal functions is the concept of asymptotic interpo-
lating sequence of type one introduced in [10].

Definition 2.2 A sequence (zn) in a domainΩ ⊆ C
N is said to be an asymptotic interpolating

sequence of type one if for every sequence (an) of complex numbers with supn |an | ≤ 1 there
exists a function f in the unit ball B of H∞(Ω) such that

| f (zn)− an | → 0.

The following lemma [10, Proposition 4.1], is essential to what follows.

Lemma 2.3 Suppose that H∞(Ω) is non-trivial. Let (zn) be a sequence in Ω . Then (zn)

contains an asymptotic interpolating subsequence of type one if there exists F ∈ H∞(Ω)
such that ||F ||∞ = 1, |F(zn)| < 1 and |F(zn)| → 1. Conversely, if (zn) is an asymptotic
interpolating sequence of type one, then there exists such a function F.

Note that any subsequence of an asymptotic interpolating sequence of type one is an
asymptotic interpolating sequence of type one, too.

In what follows we let D = {z ∈ C : |z| < 1} denote the open unit disk and we let
ρΩ(z, w) = sup{| f (z)| : f ∈ B, f (w) = 0} denote the pseudohyperbolic metric in the
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750 P. Gorkin et al.

algebra H∞(Ω). (The reader is referred to [6] for general properties of the pseudohyperbol-
ic metric.) We note that if H∞(Ω) does not separate points, then ρ is a semimetric. This is
the case, for example, if Ω = C × D.

Lemma 2.4 ([8,10]) (a) Let (a, b) ∈ D × D and (α, β) ∈ ∂D × ∂D. Then there is a unique

Möbius transformation ψ(z) = eiθ z0 − z

1 − z0z
with ψ(a) = b and ψ(α) = β.

(b) Let (a j , b j ) ∈ D × D satisfy ρD(a1, a2) = ρD(b1, b2). Then there exists a Möbius
transformation Ψ such that Ψ (a j ) = b j for j = 1, 2.

Lemma 2.5 Let (zn) be an asymptotic interpolating sequence of type one in a domainΩ ⊆
C

N . Then for any a ∈ Ω and η ∈ D there exists f ∈ B such that f (a) = η and f (zn) → −1.

Proof Since (zn) is an asymptotic interpolating sequence of type one, there exists a non-
constant function h ∈ B such that h(z2n) → 1 and h(z2n+1) → −1. Then g := −h2 is a
nonconstant function in B and g(zn) → −1. By composing on the left with a Möbius trans-
formation ψ that satisfies ψ(−1) = −1 and ψ(g(a)) = η, we obtain the desired function
f = ψ ◦ g.

Lemma 2.6 Let (zn) be a sequence in Ω such that for some a ∈ Ω , ρΩ(zn, a) → 1. Then
there exists a sequence ( fn) in B such that fn(zn) → −1 and fn(a) → 1.

Proof Fix n and choose gn ∈ B so that gn(a) = 0 and ρ′
n := |gn(zn)| > ρΩ(zn, a)

(
1 − 1

n

)
.

By rotating gn we may assume that gn(zn) = ρ′
n . Now chooseηn ∈ ]0, 1[ such that 2ηn

1+η2
n

= ρ′
n .

Then ηn → 1 and ρ′
n = ρD(ηn,−ηn). By Lemma 2.4, for each n, there exists a Möbius trans-

formation Ψn such that Ψn(0) = ηn and Ψn(ρ
′
n) = −ηn . The function fn = Ψn ◦ gn now

satisfies fn(a) = ηn → 1 and fn(zn) = Ψn(ρ
′
n) = −ηn → −1.

In the following, let Cφn be the composition operator associated with the symbol φn .
We are interested in B-universal vectors for (φn). Note that Theorem 1.2 cannot be applied
directly, because B = { f ∈ H(Ω) : supz∈Ω | f (z)| ≤ 1} is not a basic open neighbor-
hood of the origin. One of our tools will be Birkhoff’s transitivity criterion (for example see
[13, p. 348]).

Birkhoff’s Criterion If (Tn) is a sequence of continuous maps on a second-countable Baire
space X, then there exists a dense set of points x ∈ X for which {Tn(x) : n ∈ N} is dense in X
if and only if for every pair of open sets U and V in X there exists n such that Tn(U )∩V �= ∅.

Note that the set U of such points, called universal elements, is given by U = ⋂
k
⋃

n T −1
n (Uk),

where {Uk : k ∈ N} is a basis for the topology of X .

Theorem 2.7 (Y universality criterion) Let (Cφn ) be a sequence of invertible composition
operators on H(Ω).

(a) Let Y = H(Ω). Suppose that there are two dense sets D1 and D2 in Y such that
Cφn → 0 on D1 and C−1

φn
→ 0 on D2. Then there exists a Gδ-set that is dense in Y ,

consisting of Y -universal functions for (φn) and (φ−1
n ).

(b) Let Y = B. Suppose that there are two dense sets D1 = {dn : n ∈ N} and D2 = {d̃ j :
j ∈ N} in B and functions dn,m ∈ B with lim

m
dn,m = 1, such that Cφn → 0 on D1 and

C−1
φn

→ 0 on D2. Suppose further that

{dn + (d̃ j dn,m) ◦ φ−1
m : j,m, n ∈ N} ⊆ B.
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Bounded universal functions 751

Then there exists a Gδ-set that is dense in B, consisting of B-universal functions for
(φn) and (φ−1

n ).

We note that the set of universal functions that we find are functions h ∈ Y for which
{h ◦ φn : n ∈ N} is locally uniformly dense in Y .

Proof Note that both H(Ω) and B are Baire spaces with respect to the compact open topol-
ogy. The case Y = H(Ω) follows from Theorem 1.2 by setting B = M = Y .

Now we consider Y = B. The proof proceeds in the usual way but, in addition, requires
Birkhoff’s criterion stated above. Recall that || f ||d = d( f, 0), where d is the usual distance
(2.1) in H(Ω) and that d has the property that ||p f ||d ≤ || f ||d whenever ||p||∞ ≤ 1.

Let U and V be two open sets in B. Since D1 and D2 are dense in B, we may choose
dn ∈ U and d̃ j ∈ V . Let ε > 0 be so small that Bd(d̃ j , ε) ∩ B ⊆ V . Since Cφm converges
to 0 on D1, there exists m0 ∈ N such that ||dn ◦ φm ||d < ε/2 for every m ≥ m0. Since
dn,m → 1 as m → ∞, there exists m1 ≥ m0 so that ||1 − dn,m ||d < ε/2 for every m ≥ m1.
By our hypothesis,

Hn,m := dn + (d̃ j dn,m) ◦ φ−1
m ∈ B.

Hence, when m is big enough, Hm,n ∈ U (because d̃ j ◦ φ−1
m → 0 as m → ∞), and

||d̃ j (dn,m − 1)||d + ||dn ◦ φm ||d < ε.

So, for some m,

Cφm (Hn,m) = dn ◦ φm + d̃ j dn,m ∈ Bd(d̃ j , ε) ∩ B ⊆ V,

because

||Hn,m ◦ φm − d̃ j ||d ≤ ||dn ◦ φm + d̃ j (dn,m − 1)||d < ε.

Hence Cφm (U )∩ V �= ∅. Thus we get a dense Gδ-set of B-universal functions for (φn). But
Cφm (U )∩ V �= ∅ implies that U ∩ C−1

φm
(V ) �= ∅. Hence, by Birkhoff’s transitivity criterion,

there exists a dense Gδ-set of B-universal function for (φ−1
m ). The intersection of both sets

yields the dense Gδ-set consisting of B-universal functions for (φn) and (φ−1
n ).

3 Getting universal functions from universality theorems

Now we apply these universality criteria to establish the existence of B-universal functions
in H(Ω), where Ω is a domain in C

N . Let us begin with two elementary but useful results.

Lemma 3.1 Let (φn) be a sequence of self-maps ofΩ . If there exists a B-universal function
for (φn), then for any z0 ∈ Ω , (φn(z0)) contains an asymptotic interpolating sequence of
type one.

Proof Let F denote the B-universal function. Then choose φn j so that F ◦φn j converges to
the constant function 1. Evaluation at any z0 ∈ Ω will yield a sequence (w j ) := (φn j (z0)) j

in Ω for which there exists a nonconstant function G of norm one, namely F , such that
G(w j ) → 1. By Lemma 2.3, such sequences contain asymptotic interpolating sequences of
type one.
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752 P. Gorkin et al.

Lemma 3.2 Let (φn) be a sequence of self-maps of Ω . If there exists z0 ∈ Ω such that
(φn(z0)) has an asymptotic interpolating subsequence of type one, then for each z ∈ Ω the
sequence (φn(z)) contains an asymptotic interpolating subsequence of type one, too.

Proof Without loss of generality we may assume that (φn(z0)) is an asymptotic interpolating
sequence of type one. By Lemma 2.3, there exists a function f ∈ B such that | f (φn(z0))| →
1 and | f (φn(z0))| < 1 for all n. By passing to a subsequence, we may assume that (( f ◦
φn)(z0)) converges to a point α of modulus one. Thus, f ◦ φn → α uniformly on compact
subsets. In particular, f (φn(z)) → α. Again using Lemma 2.3 we see that (φn(z)) has an
asymptotic interpolating subsequence of type one.

Lemma 3.3 Let (φn) be a sequence of automorphisms of Ω ⊆ C
N . Suppose that for some

z0 ∈ Ω , (φn(z0)) is an asymptotic interpolating sequence of type one. Then there exist
functions kn ∈ B such that

kn ◦ φn → 1 as n → ∞
and

kn ◦ φn ◦ φm → −1 as m → ∞.

Proof Since φ j is an automorphism and (φn(z0)) is an asymptotic interpolating sequence
of type one, we see that

(
(φ j ◦ φn)(z0)

)
n is an asymptotic interpolating sequence of type

one, too. Hence, by Lemma 2.5, for each j we can find an element k j ∈ B such that
k j (φ j (z0)) = 1 − 1/j and k j (φ j (φm(z0))) → −1 as m → ∞. Note that since k j ∈ B and
(k j ◦ φ j )(z0) → 1, we have k j ◦ φ j → 1 uniformly on compacta as j → ∞. Also, since
(k j ◦ φ j ◦ φm)(z0) → −1 as m → ∞, we have k j ◦ φ j ◦ φm → −1 uniformly on compacta
as m → ∞.

We say that a function f ∈ B is a B-biuniversal function for (φn) if { f ◦ φn : n ∈ N}
and { f ◦ φ−1

n : n ∈ N} are locally uniformly dense in B.

Theorem 3.4 Let Ω ⊆ C
N be a domain for which H∞(Ω) is non-trivial. Let (φn) be a

sequence of automorphisms of Ω and let z0 ∈ Ω . Then the following are equivalent.

(a) There is a subsequence (φnk ) of (φn) such that both (φnk (z0)) and (φ−1
nk
(z0)) are asymp-

totic interpolating sequences of type one.
(b) There exist a subsequence (φnk ) of (φn), two sets D1 = {dn : n ∈ N} and D2 = {d̃ j :

j ∈ N} dense in B and functions dn,m ∈ B with dn,m → 1 as m → ∞, such that

Cφnk

k→∞−→ 0 on D1, C−1
φnk

k→∞−→ 0 on D2 and

{dn + d̃ j dn,k ◦ φ−1
nk

: j, n, k ∈ N} ⊆ B.

(c) There exists a subsequence (φn j ) of (φn) for which (φn j (z0)) j is an asymptotic inter-
polating sequence of type one and a B-biuniversal function f ∈ B for (φn) such that
the set { f ◦ φ−1

n j
: j ∈ N} is locally uniformly dense in B.

Proof (a) �⇒ (b): Since we know that, with respect to the compact open topology, H∞(Ω)
is separable, the subset B is separable, also. Let {pn : n ∈ N} and {qn : n ∈ N} be count-
able dense subsets of B. Now we are assuming that (φnk (z0)) is an asymptotic interpolating
sequence of type one (which we denote with the index m). Use Lemma 3.3 to obtain func-
tions km ∈ B satisfying the conditions of that lemma for (φm(z0)). Consider the function
g j = (1 + k j )/2. Then g j ◦ φ j → 1 and g j ◦ φ j ◦ φm →

m→∞ 0 uniformly on compacta.
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Now we also assume that (φ−1
m (z0)) is an asymptotic interpolating sequence, so we may use

Lemma 3.3 to obtain functions k̃m ∈ B satisfying the conditions of that lemma for (φ−1
m (z0)).

Consider the function h j = (1 + k̃ j )/2. Then h j ◦ φ−1
j → 1 and h j ◦ φ−1

j ◦ φ−1
m →

m→∞ 0

uniformly on compacta.
Let

D1 = {dn := pn(gn ◦ φn)
2 : n ∈ N}

and

D2 = {d̃ j := q j (h j ◦ φ−1
j ) : j ∈ N}.

Since gn ◦ φn → 1 and h j ◦ φ−1
j → 1 uniformly on compacta, both D1 and D2 are dense

in B (Here we have used the fact that B, as a convex set in a topological vector space, does
not contain any isolated point). Finally, let

dn,m := (1 − kn ◦ φn ◦ φm)
2/4.

Then dn,m → 1 as m → ∞. Note that dn = pn(1 + kn ◦ φn)
2/4. Since

1

4

[|1 + kn ◦ φn |2 + |1 − kn ◦ φn |2] ≤ 1,

we conclude that dn + d̃ j dn,m ◦ φ−1
m ∈ B for every n,m, j ∈ N.

Moreover Cφm (dn) = (pn ◦φm)(gn ◦φn ◦φm)
2 → 0 as m → ∞ since gn ◦φn ◦φm → 0

as m → ∞. Similarly, C
φ−1

m
(d̃ j ) = (

q j ◦ φ−1
m

) (
h j ◦ φ−1

j ◦ φ−1
m

)
→ 0 as m → ∞.

(b) �⇒ (c): By Theorem 2.7 there exists a Gδ-set of B-biuniversal functions for the
sequence (φnk ) that is dense in B. Take one such B-universal function, F . By Lemma 3.1,
there exists a subsequence (φnk�

) so that (φnk�
(z0))� is an asymptotic interpolating sequence

of type one. By assumption, Theorem 2.7 applies. Thus we get a B-biuniversal function for
the sequence (φnk�

).
(c) �⇒ (a): Let (φn j (z0)) be an asymptotic interpolating sequence of type one and f a

B-biuniversal function of norm one such that the set { f ◦ φ−1
n j

: j ∈ N} is dense in B. So,

for some subsequence, (φ−1
n jk
), we see that f ◦φ−1

n jk
→ 1 uniformly on compacta. By Lemma

2.3, (φ−1
n jk
(z0)) contains an asymptotic interpolating sequence of type one.

Now we establish the existence of universal functions for invertible composition operators
Cφn for which (φn(z0)) contains an asymptotic interpolating sequence of type one for some
z0 ∈ Ω , but no information is available about (φ−1

n ).

Theorem 3.5 Suppose that Ω ⊆ C
N is a domain for which H∞(Ω) is nontrivial. Let (φn)

be a sequence of automorphisms of Ω . Then there exists a B-universal function for (φn) if
and only if for some z0 ∈ Ω (and hence for all z ∈ Ω) the sequence (φn(z0)) contains an
asymptotic interpolating sequence of type one.

Proof If there exists a B-universal function for (φn), then Lemma 3.1 implies that (φn(z0))

contains an asymptotic interpolating sequence of type one.
Now suppose that (φn(z0)) contains an asymptotic interpolating sequence of type one

(which we denote with the index n again). We claim that there is a sequence fn ∈ B such
that fn → 0 and fn ◦ φn → 1 uniformly on compacta. We will use fn to build our universal
functions. To verify our claim, use Lemma 2.5 to choose f ∈ B so that f (φn(z0)) → 1 and
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f (z0) = 0. Then, by definition of the pseudohyperbolic distance, ρΩ(z0, φn(z0)) → 1. By
Lemma 2.6, there exist hn ∈ B with hn(z0) → −1 and hn(φn(z0)) → 1. By the maximum

principle, hn → −1 and hn ◦ φn → 1 uniformly on compacta in Ω . Let fn =
(

1+hn
2

)2
.

Then fn ∈ B, fn → 0 and fn ◦ φn → 1, as claimed.
Let {pm : m ∈ N} be dense in B in the compact open topology. We take our motiva-

tion from Theorem 1.3: we construct functions gn,m such that gn,m → 0 as n → ∞ and
gn,m ◦ φn → pm . To do this, define the functions gn,m on Ω by

gn,m = (
pm ◦ φ−1

n

)
fn . (3.1)

Then, because pm is a bounded function, gn,m → 0 as n → ∞, and, for every m, we have
gn,m ◦ φn → pm as n → ∞.

By construction, the set

D1 =
{

Fn, j :=
(

1 − hn

2

)2

p j : n, j ∈ N

}

is dense in B. Moreover,

|gn,m | + |Fn, j | ≤ | fn | + |Fn, j | ≤ |(1 + hn)
2/4| + |(1 − hn)

2/4| ≤ 1. (3.2)

Therefore, gn,m + Fn, j ∈ B.
We now verify that {Cφn : n ∈ N} satisfies Birkhoff’s Universality Criterion for Baire

spaces. So let U and V be open sets in B. We must show that there exists n such that
Cφn (U ) ∩ V �= ∅. Let u ∈ U . Choose ε > 0 so that Bd(u, ε) ∩ B ⊆ U . Since V is open,
we may choose pm ∈ V . Now D1 is dense in B, so this together with the definition implies
that there exists j0 and n0 such that Fn, j0 ∈ Bd(u, ε/2)∩ B ⊆ U for n > n0. Now consider
the functions

Gn,m, j0 = gn,m + Fn, j0 .

By (3.2), Gn,m, j0 ∈ B for each n and m. But gn,m → 0 as n → ∞, so there exists n1 such
that ||gn,m ||d < ε/2 for n ≥ n1. Hence, for n ≥ max{n0, n1}, we have

||Gn,m, j0 − u||d ≤ ||gn,m ||d + ||Fn, j0 − u||d ≤ ε/2 + ε/2 = ε.

So we may choose n so large that Gn,m, j0 ∈ U . On the other hand, since hn ◦ φn → 1,

Fn, j0 ◦ φn =
(

1−hn◦φn
2

)2
(p j0 ◦ φn) → 0 as n → ∞

so

Gn,m, j0 ◦ φn = gn,m ◦ φn + Fn, j0 ◦ φn → pm ∈ V,

as n → ∞. Therefore, for n large, we must have

Gn,m, j0 ◦ φn ∈ V .

Consequently, Cφn (U ) ∩ V �= ∅, concluding the proof.

Corollary 3.6 Let (φn) be a sequence of automorphisms of a domain Ω ⊆ C
N . Then the

existence of a B-universal function for (φn) implies that for some subsequence, (φnk ), of
(φn) the composition operators Cφnk

satisfy the hypothesis of Theorem 2.7 (b).
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Proof Let f be a B-universal function for (φn) and fix z0 ∈ Ω . Then, for some subse-
quence, (φnk (z0)) is an asymptotic interpolating sequence of type one. By Theorem 3.5,
there exists a B-universal function for the sequence (φnk ). This means that whenever U
and V are open sets in B, there exists k such that Cφnk

(U ) ∩ V �= ∅. This implies that

U ∩ C−1
φnk
(V ) �= ∅. Hence, by Birkhoff’s transitivity criterion, there exists a B-universal

function for
(
φ−1

nk

)
. Thus, for some subsequence, (φ−1

nk�
(z0)) is an asymptotic interpolating

sequence of type one. Of course, as a subsequence of (φnk (z0)), the sequence (φnk�
(z0)) is

an asymptotic interpolating sequence of type one, too. Hence, by Theorem 3.4, (a) �⇒ (b),
we see that (Cφnk

) satisfies the hypothesis of Theorem 2.7 (b)

Bernal-Gonzalez and Montes-Rodriguez ([3,21]) showed that for a planar domain Ω not
conformally equivalent to C \ {0} (see also [2, p. 24]) there exists a function f ∈ H(Ω) for
which { f ◦ φn : n ∈ N} is dense in H(Ω) if and only if the sequence of automorphisms
(φn) is a runaway sequence. The corollary below complements and, under certain conditions,
extends this result to domains in C

N .

Corollary 3.7 Let Ω be a domain in C
N such that H∞(Ω) is locally uniformly dense in

H(Ω). Suppose that (φn) is a sequence of automorphisms of Ω such that for some z0 ∈ Ω
the sequence (φn(z0)) contains an asymptotic interpolating subsequence of type one. Then
there exists a function f ∈ H(Ω) for which the set { f ◦ φn : n ∈ N} is locally uniformly
dense in H(Ω).

Proof Suppose that H∞(Ω) is dense in H(Ω). Then we can choose a countable dense set
{pm : m ∈ N} of bounded functions in H(Ω). Without loss of generality we may assume
that (φn(z0)) is an asymptotic interpolating sequence of type one. Let kn be the functions
constructed in Lemma 3.3 and let gn = (1+kn)/2. Then gn ◦φn → 1 and gn ◦φn ◦φm → 0 as
m → ∞. Hence D1 = {pn(gn◦φn) : n ∈ N} is dense in H(Ω) and Cφm converges to 0 on D1.
As in the proof of Theorem 3.5, (see (3.1)), we consider the functions tn,m = (pm ◦ φ−1

n ) fn .
They satisfy tn,m → 0 as n → ∞ and tn,m ◦ φn → pm as n → ∞. Hence, by Theorem 1.3,
this yields a Gδ-set of H(Ω)-universal functions.

Examples of sets in C for which H∞(Ω) is locally uniformly dense in H(Ω) include planar
domains for which all components of the complement have nonempty interior. Domains for
which H∞(Ω) is not dense include sets Ω ⊆ C for which the complement has components
that are Painlevé null sets, for example, D \ {0}.

4 Constructing universal functions

Thus far, we have shown how the existence of universal functions can be derived from the
universality theorems. In this section, we show how B-universal functions can be constructed.

Lemma 4.1 Assume that Ω ⊆ C
N is a domain for which H∞(Ω) is non-trivial. Let (wn)

be an asymptotic interpolating sequence of type one inΩ and let ε jk > 0 for each j, k ∈ N.
Then there exists a subsequence (z j ) of (wn) and functions f j and g j in B satisfying:

f j (z j ) → 1 and g j (z j ) → 0, (4.1)

| f j | + |g j | ≤ 1, (4.2)

f j (zk) = 0 for k < j, (4.3)

| f j (zk)| ≤ (ε jk)
2 for k > j, (4.4)

|1 − g j (zk)| < 2ε jk for k > j. (4.5)
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Proof The proof will be by induction. Let (ε j ) be a sequence of positive numbers satisfying
ε j → 0. Let n = 1. Since (w j ) is an asymptotic interpolating sequence of type one, there
exists a nonconstant function p ∈ B such that p(w j ) → −1. Choose z1 ∈ {w j : j ∈ N}
so that |p(z1)| > 1 − 2ε1. By composing on the left with a Möbius transformation, ψ1, of
D onto D satisfying ψ1(−1) = −1 and ψ1

(
p(z1)

) = |p(z1)|, we see that at z1 the value

of p1 := ψ1 ◦ p is positive. Let f1 =
(

1+p1
2

)2
and g1 =

(
1−p1

2

)2
. Then | f1| + |g1| ≤ 1,

| f1(z1)| > (1 − ε1)
2, |g1(z1)| ≤ ε2

1, and f1(w j ) → 0.
Now assume that for j = 1, . . . , n − 1 the functions p j , f j and g j and the points

z j ∈ {wm : m ∈ N} have been chosen so that f j = B j

(
1+p j

2

)2
and g j =

(
1−p j

2

)2
for some

B j ∈ B, where p j = ψ j ◦ p for some holomorphic self-map ψ j of D fixing the point −1
and sending p(z j ) to |p(z j )|.

For a ∈ D, let ψa(ξ) = a−ξ
1−aξ and for j = 1, . . . , n − 1, let b j := ψp(z j ) ◦ p and

Bn := b1 · · · bn−1. Then Bn(z j ) = 0 for j = 1, . . . , n − 1. Since p(wm) → −1 as m → ∞,
we may choose zn ∈ {wm : m ∈ N} \ {z1, . . . , zn−1} such that

|Bn(zn)| ∼ 1 and |p(zn)| ∼ 1, (4.6)

and
|p j (zn)+ 1| < 2ε jn for j = 1, . . . , n − 1. (4.7)

Composing on the left with a Möbius transformation ψn satisfying ψn(−1) = −1 and
ψn(p(zn)) = |p(zn)|, we obtain a function pn := ψn ◦ p whose value at zn is positive and
close to one.

Let fn = Bn

(
1+pn

2

)2
and gn =

(
1−pn

2

)2
. Then fn(z j ) = 0 for j = 1, . . . , n − 1,

| fn | + |gn | ≤ 1, fn(zn) ∼ 1, gn(zn) ∼ 0, fn(wm) → 0 as m → ∞. Moreover

| f j (zn)| ≤
∣
∣
∣
∣
1 + p j (zn)

2

∣
∣
∣
∣

2

≤ (ε jn)
2

and

|1 − g j (zn)| =
∣
∣
∣
∣
∣
1 −

(
1 − p j (zn)

2

)2
∣
∣
∣
∣
∣
=

∣
∣
∣
∣1 +

(
1 − p j (zn)

2

)∣
∣
∣
∣

∣
∣
∣
∣1 −

(
1 − p j (zn)

2

)∣
∣
∣
∣

≤ 2

∣
∣
∣
∣
1 + p j (zn)

2

∣
∣
∣
∣ ≤ 2ε jn .

whenever 1 ≤ j ≤ n − 1.

We remark that if, in the lemma above, the sequence (wn) has the form wn = φn(z0)

for some self-map φn of Ω , then for some subsequence (φn j ), the functions fn ◦ φn j tend
to 0 locally uniformly in Ω as j → ∞. Indeed, since z j is a subsequence of wn , we have
z j = φn j (z0) and so

pn(φn j (z0)) = pn(z j ) = ψn(p(z j )) → ψn(−1) = −1.

Since ||pn ||∞ ≤ 1, we know that pn ◦φn j → −1 uniformly on compacta as j → ∞. Hence

fn ◦ φn j = (Bn ◦ φn j )

(
1 + pn ◦ φn j

2

)2

tends to 0 uniformly on compacta as j → ∞.
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The following lemma is a version of a result in [1].

Lemma 4.2 Let a j , b j be complex numbers such that |a j | + |b j | ≤ 1. Then for every N

|a1| + |a2b1| + |a3b1b2| + · · · + |aN b1b2 . . . bN−1| ≤ 1.

The following result will be crucial to our construction of universal functions.

Theorem 4.3 Assume that Ω ⊆ C
N is a domain for which H∞(Ω) is non-trivial. Let (φn)

be a sequence of self-mappings of Ω . Suppose that for some z0 ∈ Ω the sequence (φn(z0))

contains an asymptotic interpolating sequence of type one for H∞(Ω). Then there exists a
subsequence (φn j ) of (φn) such that for any sequence (h j ) of functions in B there exists a
function F ∈ B such that |F ◦ φn j − h j ◦ φn j | → 0 uniformly on compacta in Ω .

Proof Let (wm) be a subsequence of (φn(z0)) that is an asymptotic interpolating sequence
of type one for H∞(Ω). Use Lemma 4.1 to choose functions f j and g j and a subsequence
(z j ) of (wm) satisfying (4.1)–(4.5) with ε jk = 1/2 j+k+1. Let g0 := 1. By Lemma 4.2, we
have that

∑∞
n=1 | fng1 · · · gn−1| ≤ 1. We show that the function

F =
∞∑

n=1

hn( fng1 · · · gn−1)

is the desired function. Applying Montel’s theorem and Vitali’s theorem, we conclude that
F ∈ H∞(Ω) and ||F ||∞ ≤ 1. Note that by the choice of the z j we have z j = φn j (z0) for
some n j .

Claim
(

f j g1 · · · g j−1
)◦φn j tends to 1 uniformly on compacta.

To show this, note that
(

f j g1 · · · g j−1
)
(φn j (z0)) = (

f j g1 · · · g j−1
)
(z j ).

We will apply Lemma 4.1. Applying the inequality |1 − ∏
k ak | ≤ ∑

k |ak − 1| for |ak | ≤ 1,
we obtain

∣
∣
(

f j g1 · · · g j−1
)
(z j )− 1

∣
∣ = | f j (z j )

j−1∏

k=1

gk(z j )− 1| ≤

≤ | f j (z j )− 1| +
j−1∑

k=1

|gk(z j )− 1| ≤
(4.1),(4.5)

ε j + 2
j−1∑

k=1

εk j =

= ε j + 2
j−1∑

k=1

2−k− j−1 ≤ ε j + 2− j → 0 as j → ∞.

But

|( f j g1 · · · g j−1
) ◦ φn j | ≤ 1.

By a normal families argument and the maximum principle, we conclude that the sequence(
f j g1 · · · g j−1

) ◦ φn j → 1 uniformly on compacta. This completes the proof of the claim.
Now we evaluate F at z j to obtain

F(z j ) = ∑
n:n< j hn(z j )( fng1 · · · gn−1)(z j )+ h j (z j )( f j g1 · · · g j−1)(z j )+

+∑
n:n> j hn(z j )( fng1 · · · gn−1)(z j ).
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By (4.3) the third summand is zero and by (4.4) the first summand is majorized by
∑

n:n< j

2−n− j−1 < 2− j .

Hence
lim

j→∞ |F(z j )− h j (z j ) ( f j g1 · · · g j−1)(z j )| = 0. (4.8)

Note that if we write w = φn j (z) we get
∣
∣F ◦ φn j (z)− (h j ◦ φn j )(z)[( f j g1 · · · g j−1) ◦ φn j (z)] + ( f j g1 · · · g j−1) ◦ φn j (z)

∣
∣

≤ ∑
n �= j |(hn fng1 · · · gn−1)(w)| + |( f j g1 · · · g j−1)(w)|

≤ ∑∞
n=1 |( fng1 · · · gn−1)(w)| ≤ 1.

In other words,
∣
∣F ◦ φn j − (h j ◦ φn j )

[(
f j g1 · · · g j−1

) ◦ φn j

] + (
f j g1 · · · g j−1

) ◦ φn j

∣
∣ ≤ 1. (4.9)

Evaluating at z0, recalling that z j = φn j (z0) in (4.8), and using the fact that
( f j g1 · · · g j−1)(φn j (z0)) tends to 1, we see that

(

F ◦ φn j − (h j ◦ φn j )
[(

f j g1 · · · g j−1
)◦φn j

]+(
f j g1 · · · g j−1

) ◦ φn j

)

(z0) → 1.

Again by the maximum principle, (4.9) implies that

F ◦ φn j − (h j ◦ φn j )
[(

f j g1 · · · g j−1
) ◦ φn j

] + (
f j g1 · · · g j−1

) ◦ φn j → 1

uniformly on compacta. Since ( f j g1 · · · g j−1) ◦ φn j tends to 1, we deduce that

F ◦ φn j − (h j ◦ φn j )
[(

f j g1 · · · g j−1
) ◦ φn j

] → 0

uniformly on compacta. Thus

|F ◦ φn j − h j ◦ φn j | ≤ ∣
∣F ◦ φn j − (h j ◦ φn j )

[(
f j g1 · · · g j−1

) ◦ φn j

]∣
∣ +

+∣
∣h j ◦ φn j − (h j ◦ φn j )

[(
f j g1 · · · g j−1

) ◦ φn j

]∣
∣ ≤

≤ ∣
∣F ◦ φn j − (h j ◦ φn j )

[(
f j g1 · · · g j−1

) ◦ φn j

]∣
∣+∣

∣1 − (
f j g1 · · · g j−1

) ◦ φn j

∣
∣ → 0

uniformly on compacta. This proves that, with the compact open topology on H(Ω), the
accumulation points (in H(Ω)) of the sets {F ◦ φn j : j ∈ N} and {h j ◦ φn j : j ∈ N} are the
same.

We point out that the subsequence
(
φn j

)
is independent of the approximating sequence

(hm). This subsequence, which came from Lemma 4.1, was chosen so that φn j (z0) tended
very quickly to the boundary.

We are now ready to exhibit, in the most general setting, an explicit formula for a
B-universal function associated with the composition operators Cφn on H∞(Ω). The
following proofs stand in contrast to the proofs of Theorem 3.5 in that Theorem 3.5
relied solely on our universality criteria (Theorem 2.7), while the proof of Theorem 4.4,
below, is constructive.

Theorem 4.4 LetΩ ⊆ C
N be a domain for which H∞(Ω) is non-trivial. Suppose that (φn)

is a sequence of automorphisms such that (φn(z0)) contains an asymptotic interpolating
sequence of type one for H∞(Ω). Then there exists a B-universal function F; that is, there
is a function F ∈ B for which the set {F ◦ φn : n ∈ N} is locally uniformly dense in B.
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Proof Since H∞(Ω) is separable, its unit ball B is separable, too. Hence there exists a
countable dense subset {p j : j ∈ N} in B. Let φn j be the subsequence above. Define
h j = p j ◦ φ−1

n j
. Then h j ∈ B and p j = h j ◦ φ j . By Theorem 4.3 there exists a function

F ∈ B such that |F ◦ φn j − h j ◦ φn j | = |F ◦ φn j − p j | → 0 locally uniformly in Ω . Then
F is the desired universal function.

5 Asymptotic interpolating sequences and runaway automorphisms

If we assume our domain is bounded, we can recover a standard approach in this area. We
let Ĉ denote the extended complex plane.

Corollary 5.1 Assume that Ω ⊂ C is a bounded domain such that:

1. the boundary of Ω does not contain any component that is a singleton and
2. there exists a runaway sequence of automorphisms (φn) of Ω .

Then there exists a function f in the unit ball B of H∞(Ω) such that { f ◦ φn : n ∈ N} is
dense in B in the compact open topology.

Proof Suppose that for every compact set K ⊆ Ω there exists an integer n = n(K ) such
that φm(K )∩ K = ∅ for all m ≥ n(K ). In particular, for every z ∈ Ω , the sequence (φn(z))
converges to the boundary ofΩ , denoted ∂Ω . Fix a point z0 ∈ Ω . SinceΩ is bounded, there
exists ξ ∈ ∂Ω and a subsequence wk = φnk (z0) such that wk → ξ . Let Eξ be the connected
component of Ĉ\Ω that contains ξ . Then Eξ is closed and ξ is a boundary point of Eξ . By a
topological argument (see [22, p. 78, Theorem 3.2]), the set U := Ĉ \ Eξ is a connected set
in Ĉ andΩ ⊆ U . Since Eξ is connected, U is a simply connected domain in Ĉ. Let R be the
Riemann map of U onto the unit disk D with R(∞) = 0. Now, there exists a subsequence
(wk j ) of (wk) such that R(wk j ) converges to the boundary of D, say lim j R(wk j ) = 1. Let
p(z) = (1+z)/2 be the peak function for A(D) associated with the point 1 and let f = p◦ R.
Then f ∈ H∞(Ω) and has norm one. Moreover, lim f (wk j ) = 1 and | f (wk j )| < 1. Hence,
by Lemma 2.3, (wk j ) admits an asymptotic interpolating sequence of type one and, therefore,
so does (φn(z0)). Consequently, Theorem 4.4 implies the result.

Example 2 in the next section shows that there exist infinitely connected unbounded
domainsΩ ⊆ C such that the iterates of an automorphism converge to a boundary point that
is a non-isolated component of the boundary of Ω .

We will say that a boundary point ξ of a bounded domain Ω ⊆ C
N is an H∞(Ω)-peak

point if there exists a function f of norm one, called a peak function, such that lim z→ξ
z∈Ω

f (z) =
1 and lim sup z→η

z∈Ω | f (z)| < 1 for every boundary point η �= ξ .

Proposition 5.2 Let Ω ⊆ C
N be a bounded domain such that every boundary point is an

H∞(Ω)-peak point. Then the existence of a runaway sequence of automorphisms for Ω
implies the existence of B-universal functions.

Proof If (φn) is a runaway sequence, then given z0 ∈ Ω , there exists a subsequence
(
φnk

)
of

(φn) such that
(
φnk (z0)

)
converges to a boundary point ξ . By our hypothesis, ξ is a peak point.

The associated peak function g satisfies ‖g‖∞ < 1 and g
(
φnk (z0)

) → 1. By Lemma 2.3,(
φnk (z0)

)
has an asymptotic interpolating subsequence and so Theorem 4.4 implies the result.

Theorem 5.3 Let Ω be a bounded domain in C. Suppose that (φn) is a sequence of auto-
morphisms of Ω and let z0 ∈ Ω . Then the following are equivalent.
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(a) The sequence (φn(z0)) contains an asymptotic interpolating subsequence of type one.
(b) There is a B-universal function for the sequence (φn).

Each of these conditions implies
(c) The sequence (φn) is runaway.

If, in addition, Ω satisfies condition (1) of Corollary 5.1, then (a), (b) and (c) are equiv-
alent.

Proof The equivalence of (a) and (b) follows from Theorem 4.4 and Lemma 3.1.
We prove that (a) implies (c): Without loss of generality, let us assume that (φn(z0)) is an

asymptotic interpolating sequence of type one. Suppose that (φn) is not runaway. Then there
exists a compact set K ⊆ Ω such that for all n we have φn(K ) ∩ K �= ∅. Hence there is a
sequence (ξn) in K such thatφn(ξn) ∈ K for all n. Let n j be chosen so that lim φn j (ξn j ) =: η0

exists. Let wn := φn(z0). Since (wn) is assumed to be an asymptotic interpolating sequence
of type one, there exists a function H , of norm one, such that H(wn) → 1 and |H(wn)| < 1
for all n. Consider the sequence of functions (H ◦ φn). Since this sequence is bounded by 1
and converges to a value of modulus 1 at z0 ∈ Ω , we know that the sequence converges to the
value 1 on compact subsets of the domain. Thus, we conclude that for each ε > 0, there exists
n(K ) such that supz∈K |H ◦φn(z)−1| < ε for n > n(K ). Therefore (H ◦φn j )(ξn j ) → 1. In
particular, H(η0) has modulus 1. Thus, applying the maximum modulus theorem, we con-
clude that H is constant. This contradiction implies that the sequence (φn(z0)) is runaway;
hence we get (c). Now, if additionally condition (1) of Corollary 5.1 holds, then the same
corollary implies that (b) holds, completing the proof of this theorem.

6 Examples

Let Aut(Ω) denote the group of automorphisms on the domain Ω . We note that a finitely
connected domain in C with at least two holes cannot have a sequence of runaway auto-
morphisms (see [16]), because Aut(Ω) is compact in these cases. However, an infinitely
connected set can have such a sequence. Kim and Krantz’s recent article [18] contains many
relevant examples and comments.

Combining information from several sources, we obtain the following for an infinitely
connected domain Ω ⊂ C.

Proposition 6.1 For an infinitely connected domain Ω ⊂ C, the following are equivalent.

1. Aut(Ω) is infinite.
2. Aut(Ω) contains a runaway sequence.
3. Aut(Ω) is not compact.
4. There exists a sequence (φn) in Aut(Ω) such that for some (every) z0 ∈ Ω the sequence

(φn(z0)) tends to ∂Ω .
5. For all z0 ∈ Ω there exists φn ∈ Aut(Ω) and ξ ∈ ∂Ω such that φn(z0) → ξ .

Proof The equivalence of (1) and (2) appears in ([21, p. 194]). The equivalence of (3) and
(4) can be found in [18]. It is clear that (3) implies (1), (2) implies (5), and (5) implies (4).

The following example of an infinitely connected domain with a runaway sequence of
automorphisms, appeared in [18].

Example 1 [18, Example 2.1] Let D be the unit disk in the plane and K = {z ∈ C : |z| ≤
1/10}. The automorphism φ is defined by
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φ(z) = z − 1/2

1 − (1/2)z
.

Let φ[ j] denote the j-fold iterate, ( j ∈ Z). The domain Ω is given by

Ω := D \
∞⋃

j=−∞
φ[ j](K ).

Since each φ[ j] is an automorphism of Ω , it is clear that there are infinitely many automor-
phisms of Ω . Further, it is noted in [18] that

φ[ j](z) = z − 3 j −1
3 j +1

1 − 3 j −1
3 j +1

z
.

Therefore, for any point z0 ∈ Ω , lim j→∞ φ[ j](z0) = −1 and so φ[ j] → −1 uniformly
on compacta. Thus, (φ[ j]) is an example of a runaway sequence of automorphisms on an
infinitely connected domain. By Corollary 5.1, Ω therefore admits B-universal functions.

Example 2 Let P be the set of poles of the iterates φ[ j] above. Now let Ω be defined as

Ω = C \
[ ∞⋃

j=−∞
φ[ j](K ) ∪ P

]

.

Again, φ[ j] ∈ Aut(Ω). Here the (positive) iterates converge to the boundary point −1, which
is itself a component for ∂Ω . Using the peak point criterion of Melnikov-Gamelin-Garnett
[7], it can be shown that −1 is a peak point for H∞(Ω). Hence, by Lemma 2.3, the sequence(
φ[n](z0)

)
admits an asymptotic interpolating sequence of type one, and so, by Theorem 3.5,

this domain Ω admits B-universal functions.

By the results of this paper, if Ω ⊆ C
N is a domain for which there exists a sequence

(φn) of automorphisms and a non-constant function f ∈ B that is extremal on the orbit of
z0 under (φn), (i.e. if | f (φn(z0))| → 1), then the sequence of composition operators (Cφn )

admits a B-universal vector. Examples of such domains in C
N include the ball, the polydisk

D
N (see [23, p. 167]) and the “complex ellipsoids”

E1,m = {(z1, z2) ∈ C
2 : |z1|2 + |z2|2m < 1}

(see [18, p. 593, 597] and [17, p. 273]). Note that if (φn) is a sequence of automorphisms of
the polydisk D

N such that φn(0) converges to a point α = (α1, . . . , αN ) of the topological
boundary of D

N (say α1 = 1), then the function p(z1, · · · , zN ) = (1 + z1)/2 is a function
that converges to 1 on the orbit (φn(0)); hence our theory can be applied. In particular the

automorphisms φn(z, w) =
(

z+rn
1+rn z , w

)
admit B-universal functions whenever rn → 1,

although the orbits do not accumulate at points on the distinguished boundary T × T. Let us
also mention that in all of these three examples the analogue of Theorem 5.3 holds.

It is clear that if the automorphism group of a domain Ω in C
N is compact, then this

domain does not carry B or H(Ω)-universal functions. As an example in C
2 we mention the

complex ellipsoid

E2,2 = {(z1, z2) ∈ C
2 : |z1|4 + |z2|4 < 1},

(see [18, p. 595]).
We close the paper with a few remarks about composition operators for which the symbol

is not an automorphism.
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(1) In order that the iterates φ[n] of a self-map φ of a domain Ω ⊆ C
N admit a universal

function F , φ must be injective. In fact, if it were the case that φ(z) = φ(w), then
φ[n](z) = φ[n](w) for every n. Since F is assumed to be universal, there would exist
a subsequence (φ[n j ]) such that F ◦ φ[n j ] converges to the identity function uniformly
on compacta and, therefore, z = w.

(2) A further necessary condition for a sequence φn : D → D to admit a universal function
is that lim supn |φ′

n(0)|/(1−|φn(0)|2) = 1. To see this, let F be universal and say F ◦φn

tends to the identity. Then, taking derivatives and evaluating at the origin we obtain

F ′(φn(0))φ
′
n(0) = [

(1 − |φn(0)|2)F ′(φn(0))
]

[
φ′

n(0)

1 − |φn(0)|2
]

→ 1.

By Schwarz’s lemma these two expressions are less than one in modulus. Hence
|φ′

n(0)|/
(
1 − |φn(0)|2

)
must tend to 1.
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