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V. Morales-Flórez a, M. Piñero b, N. de la Rosa-Fox a,*, L. Esquivias c,
Juan A. Anta d, J. Primera e

a Departamento de Fı́sica de la Materia Condensada, Facultad de Ciencias, Universidad de Cádiz, C/República Saharaui, s/n, 11510 Puerto Real, Spain
b Departamento de Fı́sica Aplicada, CASEM, Universidad de Cádiz, C/República Saharaui, s/n, 11510 Puerto Real, Spain

c Departamento de Fı́sica de la Materia Condensada, Facultad de Fı́sica, Universidad de Sevilla, Instituto Ciencias de Materiales,

Av. Reina Mercedes, s/n, 41012 Sevilla, Spain
d Departamento de Sistemas Fı́sicos, Quı́micos y Naturales, Universidad Pablo de Olavide, Ctra Utrera, 41013 Sevilla, Spain

e Departamento de Fı́sica, Facultad Experimental de Ciencias Universidad del Zulia, Grano de Oro, Maracaibo, Venezuela

Available online 26 October 2007
Abstract

A new structural model based on the premises widely used for describing the structure of random materials, and especially aerogels, is
introduced. Aerogels are described as an assemblage of randomly-packed spheres in several hierarchically-ordered levels. A new algo-
rithm has been developed for constructing structural models from these premises using computer simulation. Subsequently, several tech-
niques based both on the Monte Carlo technique and on geometrical considerations for characterizing real systems have been simulated,
and textural parameters of the models have been obtained, including specific surface area, specific porous volume and the apparent den-
sity of the systems. This characterization process yields a set of parameters used for testing the capacity of the models to reproduce the
structure of several real systems, like aerogels. Special attention has been paid to the pore size distribution calculations: the Monte Carlo
integration and the triangulation algorithms have been compared.
� 2007 Elsevier B.V. All rights reserved.

PACS: 61.43.Bn; 61.43.Gt; 82.33�Ln; 82.20.Wt

Keywords: Porosity; Monte Carlo simulations; Aerogels
1. Introduction

Silica aerogels are chemically inert, highly porous, nano-
structured materials, synthesized by the well-known sol–gel
method [1], and dried by the supercritical drying process
conceived by Kistler [2] for preventing cracking. In this
way we obtain the silica aerogels, more porous materials
than the conventionally-dried gels, which are also known
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as xerogels. Their particular structure is responsible for
the most interesting properties of the aerogels, such as
low thermal conductivity and very high specific surface
area, which can reach values of around 1000 m2/g or more.
Incidentally, an aerogel is currently the solid with the low-
est density ever synthesized [3], with a value of 1.9 mg/cm3.

The structure of aerogels has been described as an
assembly of randomly-packed spherical particles in several
hierarchically-ordered levels [4–7]. Knowledge of the aero-
gel structure has been acquired using computer simulation
techniques taking inputs from several sources, such as the
understanding of the sol–gel process, and the relationship
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Fig. 1. Diagram of the cluster model algorithm.
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between the structure and the mechanical properties. The
structure formation process has been studied using the
molecular dynamics technique [8]; this was first applied
by Garofalini et al. to the sol–gel process in 1994 [9] using
the Feuston–Garofalini potential [10], and they concluded
that the structure formation starts with a slow growth pro-
cess of the individual clusters, followed by the faster
growth of the structure due to cluster–cluster aggregation.

It is generally admitted that the cluster–cluster aggrega-
tion regimes (DLCA – diffusion limited cluster aggregation,
RLCA – reaction limited cluster aggregation) describe
quite well the typical structures obtained via sol–gel. One
of the goals pursued most by researchers is to reproduce
the formation and growth processes of the aerogels, using
the RLCA or DLCA algorithms or some modifications
of these [11,12]. Scherer et al. [13] used structures generated
with DLCA-modified algorithms, characterizing them by
their fractal dimension, to achieve the power law exponent
and they have presented some models to explain the rela-
tionship between structure and mechanical properties
[14,15]. Then Woignier et al. introduced a new technique
for characterizing these porous systems [16,17], and con-
cluded that pore size distribution and hydroxyl content
are relevant for understanding the mechanical properties
of these materials [18]. In a previous study, Woignier and
Phallipou proposed one approach starting from a cubic
structural model [19] and for a rigid assembly of cohesive
spheres [20]. Emmerlig and Fricke also studied this prob-
lem, for elasticity and conductivity, through the scaling
properties obtained by their simulated aerogel structures
[11]. The cluster model that is introduced here has also
been applied as an initial approach to the study of mechan-
ical properties [7].

Computer simulation techniques have been used to
characterize models from several points of view. On the
one hand, there are some simulation techniques for study-
ing the texture (specific surface, apparent density, porous
volume, porosity ...). Gelb and Gubbins have directed their
work towards the development of characterization applica-
tions based on the Monte Carlo (MC) technique, for the
porous structures generated by simulation [21] and also
for testing the validity of the BET [22] or the BJH [21]
methods for analysing the adsorption/desorption iso-
therms. Hasmy has also worked on characterization, study-
ing the behavior of the characteristic cluster size and the
influence of the simulation box size [23]. One of the most
frequently studied features of porous materials is the pore
size distribution (PSD), which is experimentally calculated
by several techniques, such as N2 adsorption or Hg poros-
imetry [24]. Similarly, the PSD of different porous struc-
tural models has been also pursued by several research
groups, using different strategies or different concepts for
describing a pore [16,25–27].

We have also applied our models to simulate titania
(TiO2) porous systems. These are widely used in the field
of photocatalysis and new-generation photovoltaics [28].
The use of mesoporous morphology allows for a very high
light-harvesting efficiency due to the large internal surface
area of the material [29]. Furthermore it has been observed
that transport and recombination in mesoporous solar cells
is limited by point defects located on the surface of the tita-
nia nanoparticles [30]. For this reason it is of considerable
practical interest to have a theoretical estimation of the sur-
face area as a function of parameters like the particle size
or the apparent density.

2. The cluster model: algorithm and characterization

techniques

We are proposing a new algorithm based on the premise
of randomly-packed spheres in several hierarchically-
ordered levels for building the cluster models. The aim of
this technique is to build structural models emulating the
real systems. Its best quality is its versatility: by tuning
the geometric parameters of the model we can obtain very
different assemblies of randomly-packed spheres for repre-
senting very different porous systems. The main structural
parameters in this model are the elementary particle radius,
the contact distance, the number of shells of each level and
the number of hierarchical levels. However, models con-
structed by this procedure are intended to describe not
the growth process of real systems, but the final state of
such systems. They are categorised as static models [31].

FORTRAN 90 programming language on a Pentium 4
(3.5 GHz) processor running under Linux Ubuntu OS was
used; while only a few seconds was taken to construct these
systems, several hours were spent in characterizing them. In
the course of this article, reduced units (particle diameter)
have been considered.

2.1. Algorithm

Fig. 1 displays a diagram explaining the building pro-
cess. The algorithm works as follows: first we place one ele-

mentary sphere in the centre of our system. Then we
randomly place as many other spheres as are needed to
cover fully the surface of the first one; this produces the
first random shell. Every sphere has to be in contact at least
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with one other; that is, it must be at a previously defined
distance. One can build as many shells of random spheres
as are required. Then the basic aggregate of the first hierar-
chical level is built, and its diameter is measured. This
diameter will be taken as the diameter of a secondary

sphere.
The following hierarchical level is built in the same way,

taking the basic aggregate as if it were an elementary
sphere, that is, building the second level with secondary

spheres. After building this new aggregate, each secondary
sphere is replaced with one basic aggregate, to obtain a
two-level hierarchically-ordered assembly of randomly-
packed spheres. Then, the size of this system is measured
again and is taken as the diameter of a tertiary sphere, if
the intention is to build a third hierarchical level. In this
case, an aggregate of tertiary spheres can then be built
and, lastly, each tertiary sphere is replaced by the two-level
system; in this way a three-level hierarchically-ordered sys-
tem is obtained. This process can be repeated as many
times as required. Typical values of our models are 1000–
60000 particles organised in 2–4 shells of random-packed
spheres and 2 or 3 hierarchical levels; their contact distance
d usually is found in the interval 0.85D < d < 1.0D, D being
the particle diameter.

Although auto similarity is potentially present in the
cluster model as a consequence of its generation algorithm,
in the present case we have not considered a fractal descrip-
tion because the structure of target aerogels is not auto
similar over more than one order of magnitude. In the
future we will emulate the fractal structure of those aero-
gels that present a well-defined fractal dimension.

Cubic simulation boxes have been used for the charac-
terizing applications that are boundary-dependent and
finite size-dependent, to apply periodic boundary condi-
tions. One of the main topics previously dealt with is the
question regarding the finite size effect. To be absolutely
certain that one is working under enough repetitive condi-
tions from the point of view of the results, it is important to
work always above the minimum representative size. To
ensure that the results of the simulation are not determined
by the size of the simulated system, one should work with
what has been called the representative volume element
[32]. To evaluate this feature, we tested the porosity, as this
parameter is very easy and quick to calculate, and it pre-
sents a rapid convergence as the system size increases
[33]. It was confirmed that, for models with a size above
8D, the values were within the statistical error. Therefore
we always worked with systems larger than 8D.

2.2. Previous structural models

The starting point for this algorithm is the previous
structural model for gels proposed by Rodrı́guez-Ortega
and Esquivias [26,34]. These authors developed an algo-
rithm for randomly-packed spheres and they characterise
systems by geometrical considerations. The main advan-
tage of this algorithm is that it always works with reduced
units, so results are independent of particle-size. The most
important objective is to obtain the pore size distribution.
Each system yields a unique PSD, so this curve can be used
to match real systems to their corresponding structural
models.

2.3. Texture

The specific surface and volume, the porosity and the
apparent density can be calculated by various simulation
techniques or through geometrical considerations, as has
been explained in a previous study [7]. This set of parame-
ters is the main indicator used to match a cluster model to a
real system. Thus, we built several cluster models varying
the formative parameters in order to reproduce real values
of texture, PSD, etc. We have applied the improved version
of the pore volume calculation proposed by Gavalda [35]
who explained that this value was being systematically
underestimated. We took several real systems and built
their respective cluster models, characterizing them
through the usual simulation techniques previously cited.
Most of the parameters are purely geometric, but others,
like apparent density, needed the value of the skeleton den-
sity. We preferred to use the calculated value of the skele-
ton density of aerogels of 2.09 g/cm3 [36] rather than the
more usual value of 2.2 g/cm3, from bulk silica, used in
other simulations.

2.4. Pore size distribution

There are several possible methods for obtaining the
PSD of any structural model built from elementary
spheres. It is generally accepted that a pore can be under-
stood as a spherical set of points, so the PSD is usually con-
structed by considering for each point of the pore space,
the radius of the biggest sphere that can be placed in the
pore volume, centred on the given point and without over-
lapping the solid phase [25].

An advance on this method was made by Gavalda and
Gelb, who calculate the PSD by the technique known as
MC integration [21,37]. For any given point in the pore
space, they looked for the largest sphere that can be placed
in that space without overlapping the solid phase, but now
not restricted to being centred on the given point, merely
containing that point. In this way, more irregularities and
details of the pore shape are taken into consideration for
the measurement, so pore space is more fully described.

Rodriguez-Ortega (RO) worked with another concept
for obtaining the PSD, based on previous works by Finney
and Wallace [38]. For each set of four elementary spheres
in mutual contact, not necessarily tangentially, the largest
sphere that the pore space between them can contain is
obtained. Again, the pore shape description is improved
when spheres are used as the basic tool.

In the triangulation method (TR) of Primera [16] no pre-
vious assumption is made in respect of the pore shape. This
is a new technique that allows the pore size distribution to



Fig. 2. Schematic illustration of the two-dimensional triangulation
method applied to the pore space. Points 1, 2 and 3 correspond to the
three vertices of one of the triangles.

Table 1
Structural parameters of several real systems and the geometric and
structural parameters of their corresponding counterpart cluster models

System 1 Model 1

(pure silica aerogel) Apparent density: 0.80 g/cm3

Apparent density: 0.83 g/cm3 Specific surface: 384 m2/g
Specific surface: 387–407 m2/g

Specific porous volume: 0.73–
0.74 cm3/g

Specific porous volume:
0.72 cm3/g

System 2 Model 2

(pure silica aerogel) Elemental sphere radius: 1.1 nm
Elemental sphere radius: 1.2 nm First aggregate radius: 4.5 nm
First aggregate radius: 4.5 nm Specific surface: 612 m2/g
Specific surface: 640 m2/g

System 3 (mesoporous TiO2) Model 3

Radius: 5–25 nm (a) Radius: 15 nm
Apparent density: 1 g/cm3 Apparent density: 0.93 g/cm3

Specific surface: 20 m2/g Specific surface: 46 m2/g
(b) Radius: 20 nm
Apparent density: 1.09 g/cm3

Specific surface: 32 m2/g
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be measured by means of a triangulation of the pore space.
In this method numerous 2D cross-sections of the pore
space are studied. For each cross-section, TR method is
applied to the porous ‘space’. A schematic illustration of
this method is shown in Fig. 2. First, a large number of
points are randomly located in the pore space and then
the TR procedure is applied at each point.

This method of describing the pore space gives a more
realistic result as it does not require any previous assump-
tion of the shape of the pore, but considers all possible dif-
ferent shapes, not only the spherical.
Fig. 3. Sketch of a cluster model, corresponding to the simulation box
cropped from Model #2 of Table 1.
3. Results

3.1. Emulating real systems

We have built several cluster models that represent the
microstructure of various real systems. Initially, the aim
of these models was to emulate the structure of the porous
silica aerogels, but in fact, they can be used to emulate a
variety of disordered particulate materials which could be
described as randomly-packed spheres. Table 1 gives the
characterization parameters of some real systems and their
corresponding models. Systems #1 and #2 correspond to
two different silica aerogels prepared from TEOS, and were
characterized by the analysis of the N2 adsorption/desorp-
tion isotherms [39]. System #3 corresponds to the porous
TiO2 usually used in solar cells. The object of this part of
the work was to construct models corresponding as accu-
rately as possible to the real systems. A very good corre-
spondence can be seen between the real systems and their
cluster models. Taking the experimental structural param-
eters, the models presented reproduce the textural values of
the real systems.

As mentioned in the introduction, we have made use of
our models to study mesoporous TiO2 systems films for
photovoltaic applications in dye sensitised solar cells.
These films have apparent densities of around 1 g/cm3

and porosities of around 50% [40]. Taking into account
that usually the active surface in a solar cell is 1000
times the external surface of the cell, for a typical cell of
around 1 cm2 area and 50 lm thickness, a specific surface
of 20 m2/g is obtained.

A sketch of a cluster model can be seen in Fig. 3 ren-
dered using the free software POVRay [41]. The system
illustrated corresponds to the simulation box cropped from
model #2, and has around 3000 particles.
3.2. Pore size distribution

In order to ensure the consistency required between the
RO [26] and cluster models, we performed some simple
simulated experiments, obtaining the PSD by the MC



Fig. 4. Upper: pore size distributions (PSD) of a cluster model (CM) and
the corresponding fitted model of Rodrı́guez-Ortega (RO). The CM curve
was averaged over at least five replicas. Lower: comparison of the PSD of
a system constructed by the cluster model algorithm, calculated using two
different techniques: the Monte Carlo (MC) Integration and the triangu-
lation method (TR).
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Integration of a cluster model as if it were a real system,
and using it to look for the matching RO model. Then,
the parameters of the two models were compared. The
resulting curves and the geometrical parameters are shown
in Fig. 4, Upper and Table 2, respectively.

With regard to the different techniques for calculating
the Pore Size Distribution, we have compared the resulting
curves obtained by two different methods: the widely used
MC Integration, and the TR method. For a given cluster
model, we applied the two methods to obtain the two
PSD curves, which are shown in Fig. 4, Lower. The TR
curve was taken from 25 2D cross-sections of the system.
Both curves were obtained by averaging over at least 5
replicas.

Results show that the curve obtained by TR presents
more noise, whereas MC gives a smoother PSD. Moreover,
TR yields larger pore sizes and a size distribution centred
on around 0.8D. It also indicates the presence of pores of
around 0.5D and 1.1D, whereas MC gives just one typical
size for the pore space of around 0.16D.
Table 2
Textural parameters of both models: the cluster model and the model of
Rodrı́guez-Ortega

Cluster model Model of Rodriguez–Ortega

Apparent density: 1.11 ± 0.06 g/cm3 Apparent density: 1.06 g/cm3

Porosity: 54 ± 3% Porosity: 52%
Specific porous volume:

0.49 ± 0.06 cm3/g
Specific porous volume:
0.48 cm3/g
4. Discussion

4.1. Emulating real systems

Geometrical parameters of selected models reproduce
quite well those values reported from experimental mea-
surements. There is a good agreement on the particle size
of 1.1 nm for elementary particles reported in the literature
[36,39] and that obtained through modelling. The apparent
densities and specific surface data obtained for TiO2 are
close to the values determined experimentally for this type
of system. In fact, roughness factors (ratio of the surface to
the volume) ranging between 57 and 149 lm�1 are found
by gas sorption experiments [30]. Our predictions are 43
and 35 lm�1 for the models of 15 and 20 nm particle
radius, respectively. Furthermore, the theoretical results
predict a decrease of the roughness factor with the size of
the particle, in complete agreement with the experimental
findings [30].

4.2. Pore size distribution

Regarding the consistence between the cluster models
and their predecessors, the RO models, good agreement
can be found between the two sets of textural parameters
(Table 2), those of the ‘real’ system obtained from the clus-
ter model via MC and those from the fitted RO model. The
corresponding RO model was found by fitting the peak and
the shape of the curve (Fig. 4, upper). As each RO model
describes just one hierarchical level, the absence of fit on
the left side of the PSD, regarded as the microporosity,
reveals the existence of two hierarchical levels. The selected
model satisfactorily describes the mesoporous structure
(�2 nm pore radii), so in order to make a complete descrip-
tion of the PSD, another RO model should be considered
for describing the microporous structure. Therefore, on
the one hand, this result is consistent with the real struc-
ture, thus supporting the consistence between the two mod-
els, but on the other hand, this fact implies that reported
RO textural values are relatively underestimated.

Considering the comparison between MC and the TR
curves of the PSD obtained from the same cluster model
(Fig. 4, lower), it can be seen that TR finds larger pores
than MC. The lack of constraints of the TR method
enables it to give a more realistic description of the pore
space. Fig. 5 illustrates diagrammatically a 2D pore
between 4 spheres. In the pore space (white) several test
points have been positioned in the form of a grid. It can
be clearly seen that all the 13 test points belong to the same
connected pore space. However, a technique that considers
the pore as the largest test sphere that can be centred on a
test point without overlapping the solid phase will yield 4
different pore sizes. If movements of the centre of the grow-
ing test sphere are allowed as in MC Integration, we will
obtain a bimodal PSD, one size corresponding to the
radius of the circle containing, for example, point 2 in
the diagram, and the other size corresponding to the radius



Fig. 5. 2D diagram of a grid in the pore space between 4 spheres.
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of the maximum circle tangential to the four circles repre-
senting the solid phase, which contains the remaining 9
points. In contrast, the RO and TR methods will yield a
monomodal PSD for this connected pore space. RO will
find the same four spheres in mutual contact, and thereby
the largest sphere that the pore space between them can
contain for all the 13 points will be the same, and with
TR, because even the most ‘interstitial’ points like #3 in
Fig. 5 almost ‘sees’ the whole pore space, the 13 points will
also yield the same pore radius.

5. Conclusions

The new algorithm that has been introduced is a very
useful tool for modelling the microstructure of random
materials. The parameters of these models can be easily
tuned to match the values of a variety of porous systems,
as it has a very versatile geometrical construction. Cluster
models have been used to model very different porous
systems, to give an interesting illustration of the
microstructure.

The models provide a straightforward and precise com-
putation of the internal surface of titania mesoporous
films, a parameter of great importance in the performance
of dye sensitised solar cells.

These new models are consistent with their predecessors,
as can be deduced from the comparative study performed.
Different models, giving a similar texture, have the same
pore size distribution curve.

Several techniques for obtaining the pore size distribu-
tion have been compared and the different concepts of what
constitutes a pore are also discussed. The triangulation
algorithm yields a more realistic pore space description,
especially in comparison with the Monte Carlo integration
technique. Hence the consideration of the pore as a sphere
may not be adequate for describing the real pore space.
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[28] J.A. Anta, I. Mora-Seró, J. Bisquert, T. Dittrich, 16th International

Conference on Photochemical Conversion and Storage of Solar
Energy, Uppsala, Sweden, July 2–7, 2006.

[29] M. Grätzel, Nature 414 (2001) 338.
[30] N. Kopidakis, N.R. Neale, K. Zhu, J. van de Lageemat, A.J. Frank,

Appl. Phys. Lett. 87 (2005) 202106.
[31] L.T. To, Z.H. Stachurski, J. Non-Cryst. Solids 333 (2004) 161.
[32] G. Cailletaud, S. Forest, D. Jeulin, F. Feyel, I. Galliet, V. Mounoury,

S. Quilici, Comput. Mater. Sci. 27 (2003) 351.
[33] J. Primera Ferrer, PhD thesis, Université Montpellier II, France, 2002.
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