
Available online at www.sciencedirect.com
Measurement 41 (2008) 105–118

www.elsevier.com/locate/measurement
Higher-order spectra measurement techniques of
termite emissions. A characterization framework q
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Abstract

A higher-order frequency-domain characterization of termite activity (feeding and excavating) has been performed by
means of analyzing diagonal slices of the bispectrum and the trispectrum, with the main goal of reducing subjectiveness in
the task of detecting a possible infestation in a noisy measurement scenario. Five sets of signals of different qualities were
acquired using two different accelerometers: an insect-oriented model and a seismic-waves sensor. We conclude that it is
possible to establish a higher-order pattern associated to the termite emissions, and resulting from the impulsive response
of the sensor and the body or substratum through which the emitted waves propagate.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Termite detection has been gaining importance in
the last decade mainly due to the urgent necessity of
avoiding the use of harming termiticides, and to the
joint use of new emerging techniques of detection
and hormonal treatments, with the aim of perform-
ing an early treatment of the infestation. A localized
partial infestation can be exterminated after two or
three generations of these insects with the aid of
.
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hormones. Workers stop feeding the queen termite
of the colony, which dies of starvation, finishing
the reproduction process, and consequently cutting
any possible replacement of the members of the col-
ony with a new generation.

The primary method of termite detection consists
of looking for evidence of activity. But only about
25% of the building structure is accessible, and the
conclusions depend very much on the level of exper-
tise and the criteria of the inspector [1]. As a conse-
quence, new techniques have been developed to
remove subjectiveness and gain accessibility.

User-friendly equipment is being currently used
in targeting subterranean insect infestations by
means of temporal analysis of the vibratory data
sequences.1 An acoustic-emission (AE) sensor or
an accelerometer is fixed to the suspicious structure.
Counting the hits produced by the insects and being
registered by the accelerometer; the instrument out-
puts light signals. At the same time, the user can lis-
ten to the sounds and perform some pre-processing,
like filtering or amplifying. A set of hits is defined as
an acoustic event, which in fact constitute the elec-
tronic tracks of these insects.

This class of instruments are based on the calcu-
lation of the root mean square (RMS) value of the
vibratory waveform. This RMS value comprises
information of the AE raw signal power during each
interval of measurement, reducing the dynamic
range and, consequently, leading to a loss of poten-
tially valuable information. The use of the RMS
value can be understood both by the difficulty of
working in the high-frequency range of raw AE
sequences, and by the lack of understanding of
AE waves sources and propagation. Noisy media
and anisotropy makes even harder the implementa-
tion of new methods of calculation and measure-
ment procedures.

A more sophisticated family of instruments make
use of spectral analysis and digital filtering to detect
and characterize vibratory signals [2]. Both classes
of systems (counting-assemblies and spectrum-
based) have the drawback of the relative high cost
and their practical limitations.

In fact, the usefulness of the above prior-art
acoustic techniques and equipment for detection
depends very much on several biophysical factors.
The main one is the amount of distortion and atten-
1 The system AED-2000 (Acoustic Emission Consulting) has
proven to be an advance in the detection of several insect species.
uation as the sound travels through the soil
(�600 dB m�1, compared with 0.008 dB m�1 in the
air). Furthermore, soil and wood are far from being
ideal vibratory propagation media because of their
high anisotropy and frequency dependent attenua-
tion characteristics [2]. This is the reason whereby
digital signal processing techniques emerged as an
alternative.

On the other hand, second order statistics (i.e.
correlation and power spectra estimation, the sec-
ond order spectrum) failure in low SNR conditions,
even with ad hoc piezoelectric sensors. Spectrum
estimation and spectrogram extract time–frequency
features, but ignoring phase properties of the sig-
nals. Besides, second-order algorithms are very sen-
sitive to noise, which makes the users’ identification
criteria (mainly based on frequency-pattern recogni-
tion) being difficult to apply without great
uncertainty.

Other prior-art second-order tools, like wavelets
and wavelet packets (time-dependent technique)
concentrate on transients and non-stationary move-
ments, making possible the detection of singularities
and sharp transitions, by means of subband decom-
position. The method has been proved under con-
trolled laboratory conditions, up to a SNR =
�30 dB [3].

Higher-Order Statistics (HOS), like the bispec-
trum, have proven to be a useful tool for character-
ization of termites’ emissions, using a synthetics of
termite alarms and prior-known symmetrically dis-
tributed noise processes [4,5]. Cumulants have been
modelled in order to characterize propagation of
ultrasound in materials [6]. Other HOS tools, like
the bicepstrum, have been successfully used in blind
identification of acoustic emissions [7]. The conclu-
sions of these works were funded in the advantages
of cumulants; in particular, in the capability of
enhancing the SNR of a signal buried in symmetri-
cally distributed noise processes. The computational
cost could be pointed out as the main drawback of
the technique. Besides, in the practice, the goal is to
localize the infestation from weak evidences, in
order to prevent greater destruction. For that rea-
son it should be emphasized that non-audible sig-
nals have to be detected.

In this paper we use higher-order spectra slices to
characterize termite emissions. We present a set of
graphical materials which help the researcher on
HOS understand the interpretation of higher-order
frequency diagrams; in particular in the field of insect
characterization by AE signal processing. The con-
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clusions are based in records which were acquired in
several locations within the surrounding perimeter of
the infestation. The quality of the signals has been
established using the criteria of audibility and the lev-
els of quantization used in the digitalizing process by
the data acquisition equipment.

Two accelerometers have been used in the experi-
ences. Both of them attached to the sound card of a
portable computer. The first one is insect-detection
oriented (SP-1L probe from AED-2000 instrument).
The second one is the model KB12V (MMF); seis-
mic accelerometer, consequently with a high sensi-
tivity and a short band-with. One of the goals of
this experiment consists of establishing insect identi-
fication criteria, independent from the sensor.

The paper is structured as follows: Section 2 sum-
marizes the problem of acoustic detection of ter-
mites; Section 3 remembers the theoretical
background of HOS, focussing on the computa-
tional tools employed. Experiments are drawn in
Section 4; this section is intended for use as a tool
for interpreting results from a HOS-based experi-
ment. And finally, conclusions are explained in Sec-
tion 5.
2. Acoustic detection of termites

2.1. Characteristics of the AE alarm signals

Acoustic emission (AE) is defined as the class of
phenomena whereby transient elastic waves are gen-
erated by the rapid (and spontaneous) release of
energy from a localized source or sources within a
material, or the transient elastic wave(s) so gener-
ated (ASTM, F2174-02, E750-04, F914-032). This
energy travels through the material as a stress or
strain wave and is typically detected using a piezo-
electric transducer, which converts the surface
displacement (vibrations) to an electrical signal [3,
8,9].

Termites use a sophisticated system of vibratory
long distance alarm. When disturbed in their nests,
extended gallery systems, soldiers produce sophisti-
cated vibratory signals by drumming their heads
2 American Society for Testing and Materials. F2174-02:
Standard Practice for Verifying Acoustic Emission Sensor
Response. E750-04: Standard Practice for Characterizing Acous-
tic Emission Instrumentation. F914-03: Standard Test Method
for Acoustic Emission for Insulated and Non-Insulated Aerial
Personnel Devices Without Supplemental Load Handling
Attachments.
against the substratum [10]. The drumming signals
consist of pulse trains which propagate through
the substrate (mechanical vibrations), with pulse
repetition rates (beats) in the range of 10–25 Hz,
and with burst rates around 500–1000 ms, depend-
ing on the species [11]. Soldiers produce such vibra-
tory signals in response to disturbance (1–2 nm by
drumming themselves) by drumming their head
against the substratum (head banging). Workers
can perceive these vibrations, become alert and tend
to escape [12]. The most probable sounds (default)
consists of feeding and excavating.

Fig. 1 shows one of the impulses within a typical
four-impulse burst (alarm signals) and its associated
power spectrum. Significant drumming responses
are produced over the range 200 Hz–10 kHz. It is
in this interval where the spectral identification of
the specie (Reticulitermes Lucifugus) is performed.
The carrier frequency of the drumming signal is
defined as the main spectral component, which
keeps with longer attenuation time, and in this case
is around 2600 Hz.

It is important to remark that the recording con-
ditions of alarm signals are very favorable in most
of the situations (even in urban zones where para-
sitic noise is present). This is due to the characteris-
tic and the intensity of the sound of the bursts. For
this reason we used an economical directional
microphone to record the register; Ariston CME6

model, with a sensitivity of 623 dB and a bandwidth
of 100 Hz–8 kHz. The device was connected to the
sound card of a portable computer, and the sample
frequency was adjusted to 96,000 Hz.

The spectrum is not flat as a function of fre-
quency, as one would expect for a pulse-like event.
This is due to the frequency response of the sensor
(its selective characteristics) and also to the fre-
quency-dependent attenuation coefficient of the
propagation media, wood and air.

Due to our identification purposes we are con-
cerned of the spectral patterns of the signals; so
we do not care about the energy levels. Besides, as
a result of the higher-order processing, the original
energy levels of the signals are lost, but not as the
extent of the levels of parasitic noise which are cou-
pled to the signals.

Furthermore, signals from feeding an excavating
activities differ from alarm signals in the fact that
the last ones have clear time patterns. But all of
them come essentially from random impulse events
that induce the same response of the sensor and
the traversed media. The main handicap is the low



Fig. 1. A single pulse extracted from a four-pulse burst (top) and its associated power spectrum (bottom). Significant amplitudes are found
up to 10 kHz. In the interval 10–27 kHz the activity remains constant in a lower energy level.

3 In the case of the widely used system AED-2000, the timeout
period is called hit determination time and is 1 ms.
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intensity of the involved levels. Herein after we are
concerned of detecting normal (by default) activity
of insects, which in fact are the key to earlier detec-
tion. We use accelerometers’ recording comprising
several levels of audibility. First, we classify the
waveform of AE events.

2.2. AE types, devices, ranges of measurement and

HOS techniques

Two ideal basic types of acoustic emissions are
commonly distinguished according to their time
instances. Continuous acoustic emission is the most
difficult to characterize when several emissions coex-
ist in the same time-series, interfering each other
and, consequently making difficult the task of
extracting useful information. This is for example
the case of a sensor output buried in noise. When
the measurand is the whole continuous sequence
of AE signals, it is best measured as RMS.

Burst-type emission is best characterized by
threshold crossing detection. The AE signal voltage
is compared with an internally generated reference
(threshold). Each time the signal crosses the thresh-
old level, the detecting device emits a pulse (count)
which is summed up by a processor, in the counting
assembly. The total count is provided within a time
interval (measurement time). When the instrument
fails to detect a pulse within a specified timeout,
the detector circuit turns off and stores the pulses
in the measuring time as a hit.3

The former AE types are found in real situations
in miscellaneous forms, with noise background.
Spiky continuous noise characterizes turbulence in
fluid or gas flow systems and voltage fluctuations
in high tension lines. Characterization helps estab-
lish the quality of the energy flow.

Burst-type emission with continuous noise back-
ground can be observed in the following situations:
cavitation phenomena in fluid flow systems, dis-
charges in power transformers with core noise, sig-
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nals from leakage in flat-bottom storage tanks and
machinery monitoring applications on bearings
and gears.

Many efforts to develop techniques for detecting
hidden termite infestations have produced only a
few real alternatives to traditional visual inspection
methods. Remarkable alternatives are ground-based
monitoring devices and sensors that detect acoustic
emissions of termites in wood (like AED-2000). It
has been proved that nearly all noise signals have
most of their energy below 20 kHz4 [10,12]. Besides,
termite activities in the wood generate a significant
amount of acoustic emission with frequency compo-
nents extending to above 100 kHz. Therefore,
acoustic emission sensors are successful because
they are non-destructive and operate at high fre-
quency (>40 kHz) where background noise is negli-
gible and does not interfere with insect sounds [13].

Soil and wood have a much longer coefficient of
sound attenuation than air and the coefficient
increases with frequency. This attenuation reduces
the detection range of acoustic emission to 2–5 cm
in soil and 2–3 m in wood, as long as the sensor is
in the same piece of material [13]. The range of
acoustic detection is much greater at frequencies
<10 kHz, and low frequency accelerometers have
been used to detect insect larvae over 1–2 m in grain
and 10–30 cm in soil [1,13]. To sum up, acoustic
measurement devices have been used primarily for
detection of termites in wood (feeding and excavat-
ing), but there is also the need of detecting termites
in trees and soil surrounding building perimeters.

It has been shown that the independent compo-
nent analysis (ICA) success in separating termite
emissions with small energy levels in comparison to
the background noise. This is explained away by sta-
tistical independence basis of ICA, regardless of the
energy associated to each frequency component in
the spectra [4,14]. The same authors have proven
that the diagonal bispectrum can be used as a tool
for characterization purposes [5], using a set of syn-
thetics comprising bursts and noise processes, previ-
ously designed and with a symmetrical probability
density function. With the aim of facing the problem
of detection from real activity signals we use the
binomial bispectrum–trispectrum to extract fre-
quency patterns. The guts of HOS and their associ-
ated polyspectra are exposed in Section 3.
4 The sensor used was a model A3 resonant sensor (30–50 kHz)
manufactured by Physical Acoustics, with a JFET low noise
voltage amplifier, model 324-3.
3. Higher-order statistics (HOS)

3.1. Motivation of HOS

Gaussian processes are completely characterized
by the autocorrelation sequence and its associated
Fourier transform, the power spectrum. However,
there are numerous cases where we have to look
beyond the autocorrelation to extract information
regarding deviations from Gaussianess and non-lin-
ear characterization.

Data sequences, and their associated power spec-
tra, which have been obtained by multiplying more
than two time-series are called higher-order statis-
tics. They contain additional information regarding
the phase of the signals involved in the quantities.
This information is used with the objective of solv-
ing the problem described in the paragraph above.

The power spectrum (second order spectrum) is a
particular case of higher-order spectra. The third
order spectrum is called the bispectrum and the
fourth-order spectrum is called the trispectrum.
They are defined to be the Fourier transforms or
the third- and fourth-order cumulant sequences,
respectively.

Polyspectra consist of higher-order moment spec-
tra and cumulant spectra and can be defined for
both deterministic signals and random processes.
Moment spectra can be very useful in the analysis
of deterministic signals (transient and periodic),
whereas cumulant spectra are of great importance
in the analysis of stochastic signals.

The motivation of the polyspectral analysis yields
in three applications: (a) To suppress Gaussian
noise processes of unknown spectral characteristics;
the bispectrum also suppress noise with symmetrical
probability distribution, (b) to reconstruct the mag-
nitude and phase response of systems, and (c) to
detect and characterize non-linearities in time series.

In the following, we settle the mathematical
foundations of HOS in order to improve the under-
standing of the graphs, and the subsequent charac-
terization process.

3.2. Cumulants

High-order statistics, known as cumulants, are
used to infer new properties about the data of
non-Gaussian processes [15]. Before cumulants,
such processes had to be treated as if they were
Gaussian [16]. Cumulants and their associated Fou-
rier transforms, known as polyspectra [17], reveal
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information about amplitude and phase, whereas
second-order statistics (power, variance, covariance
and spectra) are phase-blind [18].

Before the definitions, it is convenient to remark
that cumulants of order higher than 2 are all zero in
signals with Gaussian probability density functions.
What is the same, cumulants are blind to any kind
of a Gaussian process. This is the reason why it is
not possible to separate these signals using the sta-
tistical approach [16–18].

The relationship between the cumulant of r sto-
chastic signals, {xi}i2[1,r], and their moments of
order p, p 6 r, can be calculated by using the Leo-

nov–Shiryaev formula [4,17,18]

Cumðx1; . . . ; xrÞ ¼
X
ð�1Þp�1 � ðp � 1Þ! � E
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where the addition operator is extended over all the
set of vi (1 6 i 6 p 6 r) and vi compose a partition of
1, . . . , r. By using (1) the second-, third-, and fourth-
order cumulants, for a zero mean variable, are given
by

Cumðx1; x2Þ ¼ Efx1 � x2g ð2aÞ

Cumðx1; x2; x3Þ ¼ Efx1 � x2 � x3g ð2bÞ

Cumðx1; x2; x3; x4Þ ¼ Efx1 � x2 � x3 � x4g

� Efx1 � x2gEfx3 � x4g

� Efx1 � x3gEfx2 � x4g

� Efx1 � x4gEfx2 � x3g ð2cÞ

In the case of non-zero mean variables xi have to be
replaced by xi � E{xi}.

Let {x(t)} be a rth-order stationary random real-
valued process. The rth-order cumulant is defined as
the joint rth-order cumulant of the random vari-
ables x(t), x(t + s1), . . . ,x(t + sr�1),

Cr;xðs1; s2; . . . ; sr�1Þ
¼ Cum½xðtÞ; xðt þ s1Þ; . . . ; xðt þ sr�1Þ� ð3Þ
The second-, third- and fourth-order cumulants
of zero-mean x(t) can be expressed using (2) and
(3)
C2;xðsÞ ¼ EfxðtÞ � xðt þ sÞg ð4:aÞ

C3;xðs1; s2Þ ¼ EfxðtÞ � xðt þ s1Þ � xðt þ s2Þg ð4:bÞ

C4;xðs1; s2; s3Þ ¼ EfxðtÞ � xðt þ s1Þ � xðt þ s2Þ � xðt þ s3Þg

� C2;xðs1ÞC2;xðs2 � s3Þ

� C2;xðs2ÞC2;xðs3 � s1Þ

� C2;xðs3ÞC2;xðs1 � s2Þ ð4:cÞ

By putting s1 = s2 = s3 = 0 in (4), we obtain

c2;x ¼ Efx2ðtÞg ¼ C2;xð0Þ ð5:aÞ
c3;x ¼ Efx3ðtÞg ¼ C3;xð0; 0Þ ð5:bÞ
c4;x ¼ Efx4ðtÞg � 3ðc2;xÞ

2 ¼ C4;xð0; 0; 0Þ ð5:cÞ
Eq. (5) are measurements of the variance, skewness
and kurtosis of the distribution in terms of cumulants
at zero lags. Normalized kurtosis and skewness are
defined as c4,x/(c2,x)2 and c3,x/(c2,x)3/2, respectively.
We will use and refer to normalized quantities be-
cause they are shift and scale invariant. If x(t) is sym-
metrically distributed, its skewness is necessarily zero
(but not vice versa); if x(t) is Gaussian distributed, its
kurtosis is necessarily zero (but not vice versa).

In practice, the computation of the cumulants
and polyspectra are based in estimates. For example
in this paper, the fourth-order cumulant of a N-sam-
ple signal vector x(n) is computed by means of a
biased estimates via Eq. 6:
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where, k, l,m 2 [�v, . . . ,�1,0,1, . . .,+v], and n = 0,
1, . . . ,N � 1. v is the maximum time shift (lag)
between samples of a record.
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3.3. Polyspectra

We will assume in the following that the cumu-
lant sequences satisfies the bounding condition:

Xs1¼þ1

s1¼�1
. . .

Xsr�1¼þ1

sr�1¼�1
jCr;xðs1; s2; . . . ; sr�1Þj <1 ð7Þ

Under this assumption, the higher-order spectra are
usually defined in terms of the rth-order cumulants
as their (r � 1)-dimensional Fourier transforms

Sr;xðf1; f2; . . . ; fr�1Þ

¼
Xs1¼þ1

s1¼�1
. . .

Xsr�1¼þ1

sr�1¼�1
Cr;xðs1; s2; . . . ; sr�1Þ

� exp½�j2pðf1s1 þ f2s2 þ � � � þ fr�1sr�1Þ� ð8Þ

The special poly-spectra derived from (8) are power
spectrum (r = 2), bi-spectrum (r = 3) and tri-spec-
trum (r = 4). Only power spectrum is real, the oth-
ers are complex magnitudes.

Polyspectra are multidimensional functions
which comprise a lot of information. As a conse-
Fig. 2. Average power spectra of six categories of emissions in comparis
of each quality type. The sampling frequency was 64 kHz. Abscissae o
quence, their computation may be impractical in
some cases [19]. To extract useful information
one-dimensional slices of cumulant sequences and
spectra, and bi-frequency planes are employed in
non-Gaussian stationary processes [5].

Having settled down the motivation of the exper-
iment, hereinafter we present que results obtained
by means of the tools described here.
4. Experimental results

4.1. Pre-processing and bispectrum of data sequences

from the AED-2000 probe

The strategy of the experiment has the main goal
of trying to clarify if a non-suited accelerometer, or
vibratory sensor, can be used instead of an insect-
detection oriented (ad hoc) transducer, in a noisy
scenario. We use the sound card of a portable com-
puter with the aim of reducing the data acquisition
cost of the equipment.

The data acquisition stage took place in a resi-
dential area of the ‘‘Costa del Sol’’ (Málaga—
on to the background. The first row of graphs contains one signal
f time sequences (ms); abscissae of spectra (kHz).
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Spain), at the beginning of the reproductive season
of the termites. The sensors were attached (plunged)
in the soil surrounding affected trees (above the
roots). We worked under the hypothesis of having
a 500 m-radius of an affected circular perimeter.

The probe SP-1L from the equipment AED-2000
has been taken as the reference for a twofold pur-
pose. First, we analyze the power spectra of signals
with different qualities, to decide whether it is possi-
ble to use second-order spectra for identification
purposes. Secondly, we settle down a higher-order
detection criterium in the frequency domain, which
in turn is used with the second accelerometer, the
model KB12V (seismic accelerometer). Each graph
is the result of averaging 15 2500-sample registers
from R. Lucifugus feeding activity. Fig. 2 shows
the average power spectra of six signal categories
according to their amplitude quantization levels.
These AE signals were acquired by the sensor SP-
1L, using a sampling frequency of 64 kHz and a res-
olution of 16 bits. These spectra are compared to
Fig. 3. A signal from KB12V accelerometer. The low frequency compo
the signal has been filtered the low-level impulses arise (bottom).
the background in order to establish an identifica-
tion criterium. Vibrations of qualities D and E are
inaudible.

Quality-A (Q-A) signals’ amplitudes belong to
the quantization levels interval [25,000,30,000]. Q-
B levels are in [15,000,20,000]. Q-C levels are in
[10,000,15,000]. Quality-D levels are in the interval
[5000, 10,000]. Finally, Q-E impulses are completely
buried in the background. We are sure about the
infestation, so the AE events in these series are
due to termite activity, probably in the perimeter
of the measurement.

The two main frequency components in the spec-
tra of Fig. 2 appear at 6 and 15 kHz, respectively,
which are associated to the frequency response of
the sensor, to the features of the sounds produced
by the specie of termite and to the characteristics
of the substratum, where the emissions propagate.
We conclude that using the probe SP-1L we can
detect an infestation by interpreting the power spec-
tra diagrams. This is due to the difference that the
nents mask the AE events associated to the emissions (top). Once
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emissions exhibit in comparison to the flatter shape
of the background spectra (sixth column of graphs
in Fig. 2).

It is remarkable that we use the sensors beyond
their band-width limit, specified by the manufac-
turer. Sensor included with AED-2000 is not char-
acterized and the MMF-accelerometer KB12V has
a bandwidth of 100 Hz. The complete frequency
response of these transducers had to be obtained
before the experiment. We take advantage from
their high sensitivity.

Signals have been previously high-pass filtered in
order to suppress low frequency components which
would mask the higher-frequency components. A
fifth-order Butterworth digital filter with cut-off fre-
quency of 2 kHz is used. To show the effect of filter-
ing we include Fig. 3.

The impulses resulting from the filter action con-
stitute the fingerprints of the AE signals, associated
to feeding and excavating activities of termites.

The calculation of higher-order spectra is per-
formed with a twofold purpose. The first objective
Fig. 4. Average diagonal bispectra of raw signals acquired by the probe
for a maximum lag, v = 512. Each bispectrum results from averaging 1
consists of enhancing the detection criteria in the
frequency domain. Secondly, with the purpose of
using more economic sensors, with a lower sensitiv-
ity and a higher band-width. Fig. 4 shows the aver-
age diagonal bispectra associated to the signals
acquired with the probe SP-1L. It was chosen a
maximum lag v = 512 to compute the third-order
auto-cumulants of the signals. The bottom bispec-
trum characterizes the background sound (the most
unfavourable, with an amplitude of four-orders of
magnitude less than Q-A).

The main frequency component in Fig. 4 let us
establish a detection criterium based in the identifi-
cation of this maximum value. It is remarkable that
this frequency is also associated to the sensor.
Another sensor would carry another bispectrum
shape. For that reason, the proposed method of
insect detection is based in the previous character-
ization of the transducer. On the other hand, the
magnitudes of the bispectra in Fig. 4 do not suffer
a dramatic attenuation from high to low levels
(two orders from Q-A to Q-E). This fact reinforces
SP-1L from AED-2000 in comparison to the background sounds,
5 2500-data registers.
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the criterium of identification, in the sense that it is
the noise (symmetrically distributed) which is
mainly reduced in the higher-order computation.
In the next subsection we use the seismic vibratory
sensor to confirm this experience.

4.2. Bispectrum analysis of data sequences from the

KB12V accelerometer

The seismic accelerometer was characterized in a
former work [4], and it was found a resonance fre-
quency of 2600 Hz. In Fig. 3 it was remarked the
importance of applying the high-pass filter in order
to enhance the hidden impulses, buried in the low fre-
quency components. This in fact easies the use of the
accelerometer KB12V, which has a maximum opera-
tive range of 25 kHz (over the band-width limit).

The ultrasonic AE sensors used in former works
(like one in [1]) do not face neither the problem of
low-frequency effects (couplings or bias currents
from the sensor), nor the effects of colored noise
in the audio band. Filtering avoid the first draw-
Fig. 5. From top to bottom: A sequence of filtered impulses from the
bispectrum, for a maximum lag, v = 1024.
back, and HOS reduces effects of symmetrically dis-
tributed noise.

Fig. 5 shows the difficulties we faced when trying
to identify or detect the emissions using the trans-
ducer MMF-KB12V (seismic accelerometer). The
spectra (the symmetric version) in the middle graph
of Fig. 5 does not present a distinctive shape as the
ones in Fig. 2. In fact, the background random
impulses produce the same shape in the spectrum
(power spectrum). Moreover, the sound levels pro-
duced by the noise and the insects have the same
magnitude orders when the distance between the
transducer and the source increases. Probably this
can be explained out from the design strategy of
the equipment AED-2000 and its probe, which fil-
ters (attenuates) the low-frequency audio signals.
We have to take advantage from the higher-order
spectra.

In the bottom graph of Fig. 5 the main frequency
component appears near 2600 Hz in the diagonal
bispectrum. At a first glance the shapes of second-
order and third-order spectra are very similar. But
sensor KB12V, the symmetric power spectrum and its associated



Fig. 6. Second and third-order spectra (for a maximum lag, v = 1024) of the seismic accelerometer recordings. Units are based in the
number of quantization levels 216.

Fig. 7. A sequence of AE events (upper graph) and some third-order cumulants; from bottom to top s1 = �2,�1,0,1,2,3, for a maximum
lag, v = 512; s2 2 [�v,v].
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a thorough examination of the bispectrum reveals
important details. The bispectrum’s shape is more
accused and the frequency contents up to 2600 Hz
are clearly enhanced over the rest of the frequency
components. The former remark is confirmed in
the graphs depicted in Fig. 6, where both graphs
are drawn using the same scale.

To examine the time instances of the third-order
cumulants we have included some autocumulants in
the surrounding of zero-lag, in Fig. 7. For a fixed
value of s1, the complete sequence of impulses is
transformed into a single impulse (or transient) in
the neighborhood of the considered lag.

The lag (s) is the time-offset of signal samples.
For example, a sequence of waveform measure-
ments 1-2000 with a lag =1 will compare data 1-
1999 to samples 2-2000 ; a lag =2 compares samples
1-1998 to samples 3-2000; etc.

As we can see from Fig. 7, cumulants represent
the fingerprints of the emissions. In fact the cumu-
lant sequence can be seen as a perturbation propa-
gating from low to high values of the lag time.

These results support the idea of a frequency-
based identification criterium. In the next section
we try to enhance the procedure by means of the
diagonal trispectrum.
Fig. 8. The slice of the trispectrum correspo
4.3. Fourth-order analysis

Fourth-order non-zero-lag auto-cumulants of the
acquired waveforms and the associated spectra (tri-
spectra) are depicted and analyzed in this subsection
to complement the characterization of the signal.

We used fourth-order cumulant slices through
possible combinations of lag triplets. The slices are
well-suited to signal characterization and classifica-
tion. The higher-order statistical structure of the
cubic-3D fourth-order cumulant matrix array (the
tensor of data) have been previously examined to
select a proper slice. Following the same guidelines
of the third-order version, we try to find the ‘‘finger-
print’’ of the acquired signal.

Fig. 8 shows the selected slice from the cubic-3D
data arrangement to perform the trispectral analy-
sis. A maximum lag of v = 100 has been selected
for the sake of reducing the computational time
because we do not gain substantially in resolution
with a higher value of v.

From Fig. 8 it is clear that the diagonal slice
would be useful to settle down an axis through
begin the analysis. But we have adopted a more gen-
eral criterium, selecting the diagonal of the 3D-cubic
structure as the information axis.
nding to s3 = 0, for a Q-A type signal.



Fig. 9. The slice of the average trispectrum corresponding to the diagonal of the cubic structure, for different types of waveform. From top
to bottom: Q-A–B–D from SP-1L probe, the trispectrum of the background and the trispectrum of signals acquired by the accelerometer
KB12V.
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Fig. 9 shows the average diagonal trispectra cor-
responding to different signals, which have been
acquired with both accelerometers, in comparison
to the background diagonal trispectrum.

The presence of the peak in the boundaries of the
frequency 6 kHz let us confirm the feasibility of the
frequency-based identification criterium. The most
disadvantageous diagonal trispectrum of the back-
ground (the fourth diagram in Fig. 9 from top to
bottom) is more irregular and is centered in a differ-
ent frequency component. Finally, the shape of the
average trispectrum from the KB12V accelerometer
reveals an abrupt region in the boundaries of its res-
onance frequency, 2.6 kHz.

On the basis of these results we establish the con-
clusions related to the identification criterium
proposed.

5. Conclusions

In this work it has been shown that the bispec-
trum and the trispectrum (the diagonal slices) are
valid tools for obtaining a decision criterium to dis-
tinguish a possible infestation, based in the feeding
activities of the termites. We found this conclusion
in three arguments.

First, higher-order cumulants and spectra, as
defined herein, enable the signal analysis proce-
dure to have access to waveform shape informa-
tion that is typically unavailable when using
prior-art (second-order) methods. In particular
we remark the capability of enhancing the outline
of the frequency diagrams. This is due to the
rejection action exerted over symmetrically distrib-
uted noise processes. In fact, non-Gaussian pro-
cesses are completely characterized by means of
HOS.

Secondly, the potentially valuable information
contained in an AE signal (most part of its spec-
trum) is related to the impulses. The average spec-
trum reveals amplitude information (the resonance
peaks) but phase information is not shown.
Higher-order spectra are arrangements of complex
numbers and contain this additional information
which can be valuable in a pattern recognition or
identification criterium context.

Finally, it has been proven that using different
sensors the criterium changes the frequency set-
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point. The probability of a false alarm is very low,
considering the fact that we had to provide, inten-
tionally, the worst case of background noise. We
have estimated this probability in a 1%.

Future work is focussed on reducing the compu-
tational complexity of HOS in two directions. By
one side we are using compact functions, like FFT
and FFTshift. Secondly, we have to adopt a com-
promise between the maximum lag (v) and the reso-
lution in order to save storage memory and time.
These actions are oriented in the direction of imple-
menting the algorithms in a digital signal processor,
in an autonomous hand-held instrument.
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