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Abstract Fractures associated with volcanic rock outcrops
on the inner shelf of Alboran Island, Western Mediterra-
nean, were mapped on the basis of a side-scan sonar
mosaic. Absolute maximum fracture orientation frequency
is NW-SE to NNW-SSE, with several sub-maxima
oriented NNE-SSW, NE-SW and ENE-WSW. The origin
of the main fracture systems in Neogene and Quaternary
rocks of the Alboran Basin (south Spain) appears to be
controlled by older structures, namely NE-SW and WNW-
ESE to NW-SE faults which cross-cut the basement. These
faults, pre-Tortonian in origin, have been reactivated since
the early Neogene in the form of strike-slip and extensional
movements linked to the recent stress field in this area.
Fracture analysis of volcanic outcrops on the inner
continental shelf of Alboran Island suggests that the shelf
has been deformed into a narrow shear zone limited by two
NE-SW-trending, sub-parallel high-angle faults, the main
orientation and density of which have been influenced by
previous WNW-ESE to NW-SE basement fractures.
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Introduction

Reactivation of ancient faults, a common mechanism of
deformation in the brittle crust, depends mainly on the
action of a new, different stress field and the direction, dip
and strength of the faults. In strongly deformed areas, fault
reactivation may lead to basin inversion or development of
pull-apart or extensional basins (De Graciansky et al. 1989;
Williams et al. 1989). In weakly deformed intra-cratonic
areas, fault reactivation can lead to the fracturing of cover
units overlying the basement. Surface fracture patterns
resulting from reactivation of deep-seated faults in the
basement depend on (1) the kinematic nature of the fault,
i.e. strike-slip, normal or reverse. In the case of strike-slip
faults R, R’ and T fractures are formed in the surface cover
(Riedel 1929; Tchalenko 1970; Naylor et al. 1986; Mandl
1988). Normal or reverse basement faults tend to produce
surface faults parallel to the underlying basement faults
(Mandl 1988; Withjack et al. 1990). Surface fracture
patterns also depend on (2) the rheological properties of
the overlying sequence (unilayer or multilayer; Horsfield
1977; Mandl 1988) which mainly control the width of the
deformed zone of the overlying basement fault cover.

In the Western Mediterranean, the Alboran Ridge, the
most distinctive Alboran Basin feature, cuts the basin
obliquely in a NE-SW direction. This structure is an
anticlinorium trending NO65E, bounded by two major left-
lateral strike-slip fault systems, one in the north and one in
the south. The water depth to the ridge becomes shallower
towards the northeast in the central Alboran Sea, where the
ridge crest breaks the water surface to form the Alboran
Island (Fig. la). Due to the scarcity of sediments, the
relative homogeneity of rock type and the simplicity of
bedrock structure, the volcanic rock outcrops around
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Alboran Island are ideally suited for the study of fractures
and their relationship with geological structures (Fig. 1b).

The objectives of this study are (1) to define the fracture
pattern of volcanic rock forming the inner continental shelf
of the Alboran Island on the basis of side-scan sonar
images, and (2) to establish the origin and distribution of
the fracture patterns within the older and more recent
tectonic framework.

Geological setting

The Recent/Neogene evolution of the Alboran Basin is
related to the continental collision generated by the
northward movement of the African plate relative to Iberia,
which resulted in westward thrusting and subsequent
extension of the Alboran Block, and the creation of oceanic
crust in the south-western Algero—Balearic basin plain
(Rehault et al. 1985; Dewey et al. 1989; Mauffret et al.
1992).

The Alboran Basin region has been under continuous N—
S to NW-SE compression since the Tortonian at least, and
probably much earlier (Ott d’Estevou and Montenat 1985;
Philip 1987; Sanz de Galdeano 1990; Srivastava et al.
1990; Roest and Srivastava 1991). Since that time, the
actual axis of maximum compression seems to have varied,
from about NW-SE in the Tortonian to N-S from the late
Tortonian to early Pliocene, reverting to about NW-SE in
the Pliocene (De Larouzicre et al. 1988; Sanz de Galdeano
1990) and with a return also to NW-SE in more recent
times (De Mets et al. 1990).

The predominant trend of the most important faults in
the Alboran Basin is east—northeast to northeast (Campos
et al. 1992; Woodside and Maldonado 1992; Fig. la).
Other fault systems are oriented north—northwest and east—
southeast (Maldonado et al. 1992). Both margins of one of
the most relevant structures in the central Alboran Basin,
the Alboran Ridge, are affected by faults trending in the
same predominantly north-eastern direction. This system
is probable the offshore extension of the Jebha Fault,
which separates two major structural domains of the Rif
Cordillera: the eastern External Rif and the Internal Rifian
zones (Leblanc 1990). Land studies have demonstrated
that all these faults have a major left-lateral strike-slip
component (De Larouziere et al. 1988). The structure of
this faulting offshore along the northern margin of the
Alboran Ridge may be reverse or strike-slip, with a
compressive component (Bourgois et al. 1992; Campos
et al. 1992). The ridge itself is truncated along its flanks
by several major faults (Fig. 1a). The northern flank is
bounded by a major fault escarpment extending roughly
WNW-ESE (Dillon et al. 1980; Mauffret et al. 1987). This
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fault is inferred to have a substantial reverse component,
the origin of the progressively higher elevation of the
Alboran Ridge towards its northern end culminating in the
Alboran Island (Woodside and Maldonado 1992). More-
over, Woodside and Maldonado (1992) describe the
presence of at least one fault which compartmentalizes
the central sector of the ridge, with a WNW-ESE
direction. Some active reverse or right-lateral strike-slip
faults with a compressive component have been sug-
gested, the northern side having been elevated higher.

In the northern sector of the Alboran Ridge, Alboran
Island is located in the centre of a NE-SW-oriented shoal
area (continental shelf), which is ellipsoidal and elongate in
shape. The shelf is widest on the north-eastern side,
tapering from 17 to 2 km in width; the shelf break is at
an average depth of 110 m. Its slope is steeper towards the
southeast, with a mean gradient of 13°. In this area, two
major canyons with associated turbidite systems, and
tectonic and gravitational morphology have been identified
(Barcenas et al. 2000). North-western slope gradients are
gentle, about 5°. The asymmetry of the south-eastern slope
gradient relative to that of the north-western slope is due to
recent tectonic activity which has significantly affected the
morphology and sedimentary processes on the south-
eastern slope (Barcenas et al. 2000).

Alboran Island and its shelf consist primarily of
pyroclastic volcanic material such as ash flow tuffs and
blocks as well as ash flow deposits, overlain by Neogene—
Quaternary sedimentary units. The volcanic rock deposits
are very similar to those outcropping onshore in the strato-
volcanic complex of Cabo de Gata (southeast Spain) and
Ras Tarf (northern Morocco), which form a NE-SW-
oriented belt of calc-alkaline volcanic rocks. The pyroclas-
tic bed direction is ENE-WSW, and the dip is towards the
north (Hernandez-Pacheco and Ibarrola 1970); the age of
these rocks has been estimated to be between 9.26+0.02
and 9.37+0.01 Ma (Duggen et al. 2004).

Methods

This study is based on a network of 39 side-scan sonar
(EG&G, 500 kHz) tracks obtained in September 1994
during the Alboran 9409 cruise on board the B/O F.P.
Navarro (Instituto Espafiol de Oceanografia, Fuengirola,
Spain; Fig. 2a). These tracks around Alboran Island were
spaced about 200 m apart, comprise a total length of more
than 120 km up to a depth of 60 m, and were aligned SW—
NE and WNW-ESE to cover the inner continental shelf of
the island.

The large number of fractures identified in this survey
(Fig. 2b) was classified by means of an automatic
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exploration program. This program reads vectorial files
(DXF in our case) and explores, systematically, first along
the x-axis and then along the y-axis, generating a file which
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provides, among other things, the length and orientation of
each line. Other conventional statistical programs were run
on these data for fracture analysis.
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Fig. 1 a Structural scheme of the Alboran Sea. / Normal faults, 2
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Comas et al. 1992). b Detailed geological map of the study area
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Fracture density maps displaying fracture distribution are
drawn from calculations of the length of lines contained
within cells, in a network, divided by cell area. From the
data file bearing the coordinates of the beginning and end
of each fracture, the number of fractures beginning or
ending within each cell is calculated. To archive this, an

automatic computation program able to determine the
length of fractures, or the length of segments of fractures
included within each cell, was used (program Lindens;
Casas et al. 2000).

The compilation of fracture density maps begins with the
determination of the most appropriate cell size. Critical grid

Fig. 2 a Side-scan sonar 8
mosaic. b Fracture sketch iden- £
tified for the Alboran Island o N a
inner shelf. ¢ Rose diagram of
fracture orientation in the study E_
area. d Rose diagram of frac- =]
ture orientation, having
weighted fracture trace length =
E_
3
B /
& Y,
5| Y
2
B-
8
F:—
2
L) T 1 T L) . 1 ’ T L)
494000 494500 495000 495500 496000 496500 497000 497500 498000 498500
| | | L |
T b
8
E u N\ B
=] . _ ] ’ . ; .
“’ MFEROAAL
> B
. \\\\1‘\\ % \
E WO ey
3 A\ ! \ N 3 ~
\“{&w 5 \\\a
A Aboran O\
=3 Island
F%:_ M\ volcanic outcrops —
a3 } \\N sedimentary cover
\Y \ = no data
: 3 AN S
8 NN W= 0t
£ N N \\ -
_________________.—-"
3 \{J/\\ NSNS : i "
e e
o0y
s “Nizse
. o
2
= L.
:—.% 0 100 200 meters
1 I I | | |
495000 495500 496000 496500 497000 497500 498000

@ Springer



Geo-Mar Lett (2008) 28:53—-64

57

size is conditioned by the average size of fractures and the
distance between them. To determine these distances, the
Delaunay triangulation method (Preparata and Shamos
1985) was applied. Each fracture is represented by its
mid-point. The vertices of Delaunay triangles are constitut-
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ed by these mid-points. The distance from each fracture
(point) to its two nearest neighbours is then calculated. The
average distance between three fractures is taken to be the
arithmetic mean of the three sides of the triangle, and
plotted at the centre of each triangle (Fig. 3a), calculated by
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Fig. 4 a Frequency curve of
fracture orientation in volcanic
rock outcrops of the Alboran
Island inner shelf. b Relation-
ship between fracture orientation
and length. Rose diagrams to the
right indicate fracture orienta-
tion by length intervals. ¢ His-
togram of the length distribution
of fractures
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Fig. 5 a Side-scan sonar image
from the north-eastern sector of
the study area (for location, see
Fig. 2). b Fracture sketch iden-
tified in volcanic outcrop where
it is possible to determine the
direction of fracture plane
movement on the basis of the
relative displacement of bed
lines

3977700

3977600

1 1
496500 497000 497500
S
=
§ SEDIMENTARY COVER b
-
3
= "
N
NO DATA \
1 I |
496500 497000 497500

means of an automatic program (Triangle, by J. Bernal,
unpublished data) as the arithmetic mean of the three sides
of each triangle (Fig. 3b). To display the variations of this
distance and the most representative distances from their
distribution over the area, a contour map of average
distances between fractures was drawn (Fig. 3c).

Results

From the analysis of the side-scan sonar mosaic, a total
of 195 fractures were mapped in the volcanic rock outcrops
of the Alboran Island inner shelf (Fig. 2b). The length of
fractures varies from 1.7 to 55 m. Their size distribution is
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Fig. 6 a Variations in fracture
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log-normal, with a mode of 89 m (Fig. 4a). The
orientations of the fractures in the area are represented by
rose diagrams (Fig. 2¢). To avoid the influence of line-
segmentation number, fracture trace length was weighted in
the statistical analysis of fracture direction (Fig. 2d).

Orientation
Maximum orientation of volcanic rock fractures on the
Alboran Island inner shelf is clearly NW-SE, with a

dispersion of about 50° (Fig. 4b); other secondary maxima
are NNE-SSW, NE-SW and ENE-WSW. Moreover, it is

@ Springer

possible to determine the direction of movement of some
fracture planes on the basis of the relative displacement of
bed lines (Fig. 5); NW-SE to NNW-SSE fractures show
right-lateral strike-slip, NNE-SSW fractures left-lateral
strike-slip movement.

Relationships between direction and length (Fig. 4c)
indicate that NW-SE to NNW-SSE fracture orientations,
and fracture lengths from 2 m to longer than 20 m are the
most common. NNE-SSW fractures are dominant in the 2—
10 m interval; also, NE-SW-trending fractures show a
secondary maximum in the same interval. A secondary
maximum of ENE-WSW-trending fractures is evident in
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Fig. 7 a, b Simplified sketch of
fracture patterns in left-lateral
wrench situations: a simple par-
allel wrenching, b block rotation
related to simple parallel
wrenching, and new fracture
patterns associated with simple
parallel wrenching in the block
boundary

a
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the 1020 m interval. Moreover, it was possible to establish
a secondary maximum of WNW-ESE fracture direction for
fracture lengths longer than 20 m. An important aspect of
length—orientation relationships is the decreasing occur-
rence of NNE and NE-ENE fractures with increasing
length.

Spatial variation in fracture orientation was calculated by
means of a grid of square cells, representing the length and
number of fractures in each cell (Fig. 6a). The results show
a ubiquitous pattern of dominant NW-SE direction, with
secondary maxima similar to those obtained in the analysis
of the total data. Fractures with NW-SE direction are
present in the entire study area. Nevertheless, there are
other fracture directions which characterize certain loca-
tions: (1) fractures with NNW—SSE orientation are situated
in the southwest (between horizontal reference lines
3977302 and 3977422, Fig. 6a) and the west (between
vertical reference lines 497265 and 497445, Fig. 5a); (2)
fractures with WNW-ESE orientation are observed in the
north (between horizontal reference lines 3977542 and
3977722, Fig. 6a) and the west (between vertical reference
lines 497265 and 497325, Fig. 6a); (3) in some places in
the north, a NE-SW direction becomes more evident
(between horizontal reference lines 3977602 and 3977722,
Fig. 6a).

Density

The mean average distance between fractures in the
continental shelf volcanic outcrops is 30 m (Fig. 3b). The
mode of about 7 m is very similar to that of the fracture
length (Fig. 4a). The cumulative percentage Pgs is about
55 m. The contour map of distance between fractures
(Fig. 3c) shows that, in most parts of the study area, the
distance between lineaments varies between 1 and 60 m.

For a density map to be geologically meaningful, the
minimum cell size must be greater than the distance
between fractures previously calculated (Cortés et al.
2003). To calculate fracture density, several tests were
made with cells of different sizes. Within this context, it
should be noted that a contour map drawn from a cell size
which is obviously too small (30x30 m) is no better than a
simple fracture map, since about 41% of cell values are
null. We eventually chose a cell size of 60x60 m (about
two times the average spacing of fractures) in order to draw
a geologically meaningful outcrop-scale map (Fig. 6b),
thereby achieving reasonable accuracy and a minimum of
cells with null values between fractures (cf. only 15% of
cell values were null).

Several fracture density minima (west and southeast of
the island) are the result of poor signal quality of the side-
scan sonar images. Fracture density maxima within volca-
nic outcrops on the inner continental shelf are located
(Fig. 6b) on the south-western border and along the
northern and eastern edge.

Discussion

Fracture density variations in the study area can be
correlated with underlying macrostructures associated with
the pre-Neogene basement (see Fig. 1a). The relationship is
made particularly clear by comparing the fracture density
maximum with macrostructure orientation. In this area,
fracture density is higher in certain zones, with contours
elongate and parallel to the dominant NW-SE structures
described by several authors in the vicinity (e.g. Woodside
and Maldonado 1992; Véazquez et al. 2000; Marin-Lechado
et al. 2005). Such a relationship may be the result of large
structures acting as inhomogeneities and ‘stress raising
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zones’ (Pollard and Segall 1987; Sassi et al. 1993; Sassi
and Faure 1997).

Although fracture orientation in the volcanic outcrops is
variable (see Fig. 2b), the NW-SE absolute maximum of
fracture orientation is evident throughout the study area.
This directional maximum correlates well with one of the
two fault and fold maxima mapped in the basement rock
(Fig. 1la). Since these orientations coincide, fracture
formation in the Upper Miocene probably relates to basin
floor anisotropy. Reactivation of faults in pre-Neogene
rocks during the Upper Miocene—Quaternary has been
observed in several onshore and offshore areas of the
Alboran Sea (among others, by Gensous et al. 1986; De
Larouziére et al. 1988; Woodside and Maldonado 1992;
Watts et al. 1993). That the basin basement fault pattern
should be the same as that of the volcanic outcrops seems a
reasonable assumption.

Given the fracture orientation, we propose that these
faults are the result of reactivation of similarly oriented
basement faults in the Alboran Basin. The basement fault
relationship with counterparts in the Upper Miocene
volcanic cover cannot, however, be inferred directly.
Analogue model studies suggest that basement fault
movement produces a set of minor tectonic structures in
the cover. Fractures/faults in the cover, not necessarily
located directly above the basement fault, may have
occurred within an upward-opening fan of minor faults
(Horsfield 1977; Naylor et al. 1986; Mandl 1988; Withjack
et al. 1990). At the surface, these fractures develop along a
band located over the main basement fault. Their orienta-
tion depends on (1) the strike-slip/dip—slip relationships of
the basement fault, (2) the mechanical and geometrical
characteristics of the cover, and (3) the magnitude of the
stress-inducing deformation.

The late Tortonian and Messinian stress field direction
was shown, from meso-structural analysis, to reflect
roughly NNW-SSE to N-S compression (Montenat et al.
1987; Sanz de Galdeano 1990). The left-lateral northeast
strike-slip faults were activated at that time. Intense tectonic
deformation occurred along the Alboran Ridge, which has
reacted by transpression, as would be the case in an
enormous positive flower structure (Bourgois et al. 1992).
The N-S Recent stress field direction has also favoured
left-lateral movement along the northeast-trending faults
(Philip 1987). Wrenching produced two main sets of
intersected vertical fractures along the wrench zone. One
set, the low-angle fractures, has angles between 10 and 30°
relative to the wrench strike, and the same displacement
direction as that of the main wrench zone and final wrench
fault. The other set, i.e. the high-angle fractures, intersects
the wrench at angles of between 70 and 90°, and has a
displacement direction opposite to that of the wrench.
These conjugate fractures can take the form of either joints
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or faults, or both, depending on the magnitude of
wrenching (Wilcox et al. 1973). The low- and high-angle
conjugate fractures have been termed Riedel shears (R) and
conjugate Riedel shears (R’) respectively by Tchalenko and
Ambraseys (1970).

If fractures affecting volcanic rock around the Alboran
Island originated from simple shear movement along the
ENE-WSW Alboran Ridge edge faults, then Riedel shears
would trend NE and N (see Fig. 7a). However, in our case
the NE-SW fracture (R) direction of movement is left-
lateral, whereas the N-S fracture (R") direction of move-
ment is right-lateral. This fracture pattern is not coincident
with the fracture pattern observed in the volcanic outcrops.
Nevertheless, if previous anisotropy were oriented oblique-
ly to the wrench direction, then movement of the main
faults would produce external rotational deformation of the
individualized crustal blocks (Fig. 7b). Wrenching forces,
which result from simple regional shear, act in opposite
directions, as if on separate parallel lines, so as to form a
couple. The resulting deformation is generally restricted to
a linear wrench zone, parallel to the couple and to the edges
of the moving crustal blocks. A left-lateral wrench has an
external direction of rotation which is counter-clockwise.
Edges between blocks act as individualized wrench zones,
and tend to deform somewhat independently. Therefore, if
shear is concentrated along WNW-ESE faults reactivated
by left-lateral strike-slip movement of faults located in
Alboran Ridge margins, then orientation of the main
conjugate Riedel fractures will trend NW to NNW (R, with
right-lateral strike-slip movement) or NNE (R’, with left-
lateral strike-slip movement). The foregoing would explain
the orientation and direction of fracture movement observed
in the volcanic outcrops on the inner continental shelf of
Alboran Island.

Conclusions

Study of side-scan sonar imagery of volcanic outcrops on
the inner continental shelf of Alboran Island proved useful
in the analysis of recent, visually inspected fracture
patterns.

The absolute maximum of fractures, NW-SE with a
dispersion of about 50°, is fairly ubiquitous in the study
arca. Other relative maxima are NNE-SSW, NE-SW and
ENE-WSW.

Average distances between fractures, ranging from 1 to
60 m, were calculated by means of triangulation. The best-
fitting grid square with which to calculate geologically
meaningful density (length of fractures per km?) was found
to be 60x60 m.

Density contour maxima elongation in the NW-SE
direction, coincident with one main structural orientation,
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suggests that fracture density is controlled by large
structures underlying volcanic rock outcropping around
Alboran Island.

Fracturing in Upper Miocene volcanic rock could result
from reactivation of faults trending NE and WNW to NW
within the Alboran basin basement. Left-lateral strike-slip
displacement of NE-SW-oriented faults along the Alboran
Ridge edges caused the counter-clockwise rotation of the
various blocks which compartmentalize the ridge. These
blocks are bounded by WNW-ESE and NW-SE fractures
which were reactivated with right-lateral strike-slip move-
ment. Wrenching caused two main sets of conjugate
fractures trending NNW and NNE. NNW-SSE fracture
movement is right-lateral strike-slip, associated with Riedel
shear fractures (R). NNE-SSW fracture movement has a
left-lateral strike-slip component, and can be related to
conjugate Riedel shear fractures (R’). As inferred from fault
population analysis, reactivation of faults was probably due
to a NW-SE-oriented compressional stress field regime
active during the late Tortonian and Messinian, or in more
recent times.
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