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Abstract

We study the relationship between the multivariate dispersive orders based on the standard construction. In particular

those given by Shaked and Shanthikumar [1998. Two variability orders. Probab. Eng. Inform. Sci. 12, 1–23] and

Fernández-Ponce and Suárez-Llorens [2003. A multivariate dispersion ordering based on quantiles more widely separated.

J. Multivariate Anal. 85, 40–53]. In order to reach our objective we define a new weaker multivariate dispersive notion.

Random vectors with a common copula and positive dependence properties are analyzed.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the context of stochastic orders, several orders have been defined to compare two univariate random
quantities in terms of their variability or dispersion. In particular, one of the most widely used in the literature
is the dispersive order introduced by Lewis and Thompson (1981), see Shaked and Shanthikumar (1994) as an
excellent handbook to study all its properties.

Based on the properties and characterizations of the univariate dispersive order several authors have
proposed different multivariate extensions, namely Shaked and Shanthikumar (1998) and Fernández-Ponce
and Suárez-Llorens (2003) propose multivariate dispersive orders based on the standard construction.

In this paper, we analyze the relationship between these multivariate dispersion notions. The organization is
the following. First in Section 2 we present some well known characterizations of the univariate dispersion
order and discuss how they have been used to define several multivariate dispersion orderings under the
standard construction. Second in Section 3 we propose a new multivariate dispersion order which will be used
later in Section 3 to relate the multivariate dispersion orders defined in Section 2. Third in Section 4 we show
e front matter r 2007 Elsevier B.V. All rights reserved.
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the relationship among the multivariate dispersion concepts introduced in the previous sections. In particular,
some interesting results are obtained for random vectors with a common copula and positive dependence
properties. Finally, in Section 5 we present how those relationships can be applied and used to simplify some
known results in the literature.

In this paper for any random variable X and an event A, we let fX jAg denote any random variable whose
distribution is the conditional distribution of X given A. Expected values are assumed to exist whenever they
are mentioned. By ¼st we denote equality in law.
2. The univariate dispersion order: characterizations and generalizations

A formal definition of the univariate dispersive order is based on the notion of quantile. Given a random
variable X with distribution function F , we define the univariate quantile as QX ðuÞ � F�1X ðuÞ ¼

inffx : F X ðxÞXug, for all real value u 2 ð0; 1Þ (for definition and characterizations of the dispersive order
see Shaked and Shanthikumar, 1994, Section 2.B.2). Given two random variables X and Y , we say that X is
less in the dispersive order than Y , denoted by XpdispY , if

QX ðvÞ �QX ðuÞpQY ðvÞ �QY ðuÞ for all 0oupvo1. (1)

Clearly, this is a dispersive order notion because it requires the distance between any two quantiles of X to
be less separated than the corresponding quantiles of Y .

An interesting characterization is given in terms of expansion functions. A real valued function f is said to
be an expansion function if fðx0Þ � fðxÞXx0 � x whenever x0Xx. If f is differentiable then f is an expansion
function if dfðxÞ=dxX1 for all x. We have that XpdispY if, and only if,

Y¼stfðX Þ for some expansion function f. (2)

Also, from the definition, it is easy to see that XpdispY if, and only if,

fðxÞ ¼ QY ðF X ðxÞÞ is an expansion function. (3)

In addition, if the distribution functions of X and Y are strictly increasing, then the function f defined in (3),
is the only one that satisfies (2). To finalize we present another characterization which we will use later. Given
two random variables X and Y , with absolutely continuous distribution functions, and density functions f X

and f Y , then XpdispY if, and only if,

f X ðQX ðuÞÞXf Y ðQY ðuÞÞ for all u 2 ð0; 1Þ. (4)

Based on these characterizations several authors have proposed different extensions to the multivariate case.
Important contributions in this case have been made by Oja (1983) and Giovagnoli and Wynn (1995). Clearly,
inspired in (2), those authors define multivariate dispersion orders through the existence of a multivariate
function k which maps stochastically a random vector X to another one Y, that is Y¼stkðXÞ. It is well known
that there are different transformations that map a multivariate random vector to another one. For this reason
Shaked and Shanthikumar (1998) and Fernández-Ponce and Suárez-Llorens (2003) consider a particular one
based on the standard construction. First we need some definitions. From now on, we will assume that the
multivariate distribution function is an absolutely continuous function.

Let X be a random vector and let u ¼ ðu1; . . . ; unÞ in ½0; 1�n. The standard construction for X,
denoted by

x̂ðuÞ ¼ ðx̂1ðu1Þ; x̂2ðu1; u2Þ; . . . ; x̂nðu1; . . . ; unÞÞ

is defined as follows:

x̂1ðu1Þ ¼ QX1
ðu1Þ,

x̂iðu1; . . . ; uiÞ ¼ Q

Xi j
Ti�1
j¼1

Xj¼x̂j ðuj Þ

( )ðuiÞ for i ¼ 2; . . . ; n.
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This known construction is widely used in simulation theory and plays the role of the quantile in the
multivariate case. The following result, it is well known (see Li et al., 1996)

x̂ðUÞ¼stX, (5)

where U is a random vector with n independent uniform distributed components on ½0; 1�.
By ‘‘inverting’’ the standard construction, we can express the independent uniform random variables Ui’s as

functions of the X i’s. Let us denote

x
%

ðxÞ ¼ ðx
%

1ðx1Þ; . . . ; x
%

nðx1; . . . ;xnÞÞ

as the vector given by

x
%

1ðx1Þ ¼ FX1
ðx1Þ,

x
%

iðx1; . . . ; xiÞ ¼ F

Xi j
Ti�1
j¼1

Xj¼xj

( )ðxiÞ for i ¼ 2; . . . ; n.

It is also well known, see for instance Shaked and Shanthikumar (1998) that

x
%

ðXÞ¼stU. (6)

Let us consider the n-dimensional function fðxÞ ¼ ðf1ðx1Þ; . . . ;fnðx1; . . . ; xnÞÞ defined as

f1ðx1Þ ¼ ðŷ1 � x
%

1Þðx1Þ ¼ QY1
ðF X1
ðx1ÞÞ, ð7Þ

fiðx1; . . . ; xiÞ ¼ ðŷi � x
%

iÞðx1; . . . ;xiÞ ¼ Q

Yi j
Ti�1
j¼1

Yj¼fj ðx1;...;xj Þ

( ) F

Xi

Ti�1
j¼1

Xj¼xj

( )ðxiÞ

0BBB@
1CCCA, ð8Þ

for i ¼ 2; . . . ; n.
It is clear from (5) and (6) that f maps stochastically X to Y, that is fðXÞ¼stY. It is also apparent that the

standard construction can be seen as a generalization of the univariate quantile function.
Let X and Y be two random vectors on Rn and let x̂ð�Þ, ŷð�Þ the corresponding standard constructions.

Shaked and Shanthikumar (1998) considered the following condition:

ŷðuÞ � x̂ðuÞ is increasing in u 2 ð0; 1Þn, (9)

as a multivariate generalization of (1). To maintain a coherent notation, we will say that X is less than Y in
variability if (9) holds, and we will denote it as XpvarY. Note that (9) can be rewritten in terms of the function
f defined in (7) and (8)

fðx̂ðuÞÞ � x̂ðuÞ is increasing in u 2 ð0; 1Þn.

Another multivariate generalization based on the standard construction was given recently by Fernández-
Ponce and Suárez-Llorens (2003). Given two n-dimensional random vectors X and Y, we say that X is less in
the multivariate dispersive order than Y, denoted by XpdispY, if, and only, if

kx̂ðvÞ � x̂ðuÞk2pkŷðvÞ � ŷðuÞk2

for all u; v 2 ½0; 1�n, where k � k2 means the Euclidean distance. Note that the last inequality can be considered
as a multivariate extension of (1). Also Fernández-Ponce and Suárez-Llorens (2003) proved that the pdisp

order is equivalent to check if the function f defined in (7) and (8) is a multivariate expansion function, where
multivariate expansion means that jjfðxÞ � fðx0Þjj2Xjjx� x0jj2 for all x;x0 in Rn, and therefore can be also
seen as a multivariate generalization of (3).
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3. The conditional dispersive order

In this section, we present a new multivariate dispersion order as a generalization of (3) for the univariate
case. The purpose of this order is to relate thepdisp andpvar orders as we will see later on in Section 4. On the
other hand, it will also give a meaningful interpretation in terms of dispersion to both orders.

Definition 1. Let X and Y be two n-dimensional random vectors. We consider the function f defined in (7) and
(8) which maps X onto Y. We say that X is less in the conditional dispersive order than Y, denoted by
Xpc�dispY, if fiðx1; . . . ;xiÞ is an expansion function in xi in the univariate sense, for all i ¼ 1; . . . ; n.

Roughly speaking, the conditional dispersive order is defined through a function which maps stochastically
a vector to another one and satisfies that ith component is an expansion function in xi when x1; . . . ;xi�1

remains fixed. We observe that from (7), (8) and (3) we have that f1ðx1Þ is an expansion function in x1 if, and
only if,

X 1pdispY 1 (10)

and for fixed ðx1; . . . ;xi�1Þ 2 Ri�1, fiðx1; . . . ;xiÞ is an expansion function in xi, if, and only if,

X i

\i�1
j¼1

X j ¼ x̂jðu1; . . . ; ujÞ

�����
( )

pdisp Y i

\i�1
j¼1

Y j ¼ ŷjðu1; . . . ; ujÞ

�����
( )

, (11)

for i ¼ 2; . . . ; n and for all ui such that 0ouio1, i ¼ 1; . . . ; n.
Therefore the conditional dispersive order can be checked by the univariate dispersive order. The conditions

Eqs. (10) and (11) provide a geometrical interpretation for the pc�disp order which we present in the bivariate
case.

Fernández-Ponce and Suárez-Llorens (2003) provided the notion of corrected orthant associated with the
standard construction and studied the accumulated probability in all of them. Let X ¼ ðX 1;X 2Þ be a bivariate
random vector and let ðu1; u2Þ in ½0; 1�

2. The intersection between the curve x2 ¼ x̂2ð�; u2Þ, where u2 is fixed, and
the line x1 ¼ x̂1ðu1Þ is achieved at the point x̂ðu1; u2Þ ¼ ðx̂1ðu1Þ; x̂2ðu1; u2ÞÞ and this intersection provides four
corrected orthants (2n on Rn) which we represent in Fig. 1.

In order to clarify the understanding of the corrected orthant concept, we show the definition of the left
lower corrected orthant one

fðx1;x2Þ : x1px̂1ðu1Þ; x2px̂2ðFX1
ðx1Þ; u2Þg.

The result states that the accumulated probability in all corrected orthants depend on u1 and u2 (see Fig. 1).
Note that the conditional function x2 ¼ x̂2ð�; u2Þ represents the extreme behavior of the dependent variable X 2

conditional on the explanatory variable X 1.
Let us consider now ðu1; u2Þ and ðv1; v2Þ 2 ½0; 1�

2 where uiovi, i ¼ 1; 2. According to the previous
discussion is easy to see that Fig. 2 represents a bivariate central region for the random vector X given
by the conditional function. Let consider now Y ¼ ðY 1;Y 2Þ such that Xpc�dispY. Then it holds by
 

ˆ

Fig. 1. The four corrected orthants and accumulated probabilities.
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Eqs. (10) and (11) that

x̂1ðv1Þ � x̂1ðu1Þpŷ1ðv1Þ � ŷ1ðv1Þ,

x̂2ðu; v2Þ � x̂2ðu; u2Þpŷ2ðu; v2Þ � ŷ2ðu; u2Þ,

for all 0puipvip1, i ¼ 1; 2, u 2 ½0; 1�. Then it is easy to note that the central region for X represented in Fig. 2
is less widely separated than the corresponding for Y. Therefore the interpretation of pc�disp in terms of
dispersion is clear: we have found a wider region that accumulates the same probability.

To continue with the interpretation we observe that given an n-dimensional random vector X with density
function f X then

f Xðx̂ðuÞÞ ¼ f 1ðx̂ðu1ÞÞ
Yn

i¼2

f ij1;...;i�1ðx̂iðu1; . . . ; ui�1ÞÞ,

for all u 2 ½0; 1�n, where f 1 is the density function of X 1 and f ij1;...;i�1 is the density function of ðX ij\
i�1
j¼1

X j ¼ x̂jðu1; . . . ; ujÞÞ. Therefore from Eqs. (10), (11) and (4), it is clear that if Xpc�dispY then

f Xðx̂ðuÞÞXf YðŷðuÞÞ 8u 2 ½0; 1�
n.

Hence the multivariate density functions evaluated at standard constructions are ordered as a clear
generalization of (4).

We observe that pc�disp is not invariant under the permutation of the marginal distributions because the
standard construction depends on the choice of the ordering of the marginal distributions. This is also the case
of the pdisp and pvar orders. On the other hand it is easy to prove that pc�disp is location invariant.

The pc�disp order can be also interpreted in terms of local volume elements. Let X and Y two n-dimensional
random vectors. Oja (1983) defined that Y is more scattered than X, denoted by XpDY, if there is a function
k : Rn 7�!Rn such that Y¼stkðXÞ and for all fx1; . . . ;xnþ1g � Rn it holds that

Dðkðx1Þ; . . . ; kðxnþ1ÞÞXDðx1; . . . ;xnþ1Þ, (12)

where Dðx1; . . . ;xnþ1Þ is the volume of the ‘‘simplex’’ with vertices at x1; . . . ;xnþ1.
Note that although condition (12) seems to be a strict one, in practice, it is only necessary to check if the

absolute value of the determinant of the Jacobian matrix of k is bigger than 1 (see Giovagnoli and Wynn,
1995), i.e.

absðDetðJkðxÞÞÞX1 for all x 2 Rn. (13)

Let us consider two n-dimensional random vectors X and Y such that Xpc�dispY. From the characterization
of the univariate expansion functions it easily holds that qfi=qxiX1 for i ¼ 1; . . . ; n. Due to the fact that f has
a lower triangular Jacobian matrix it is apparent that DetðJfÞX1. Hence from (13) it holds that
pc�disp )pD.

Fernández-Ponce and Suárez-Llorens (2003) proved in Theorem 3.1 that if we take a function k such that
Y¼stkðXÞ and k has a lower triangular matrix with diagonal elements strictly positive then k has the form of
the function f. From this result there are many possible distributions which can be compared in the pc�disp
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ordering. If we consider a random vector X ¼ ðX 1; . . . ;X nÞ and a transformation Y ¼ fðXÞ, such that
Y i ¼ f iðX iÞ þ giðX 1; . . . ;X i�1Þ, where f i is an strictly increasing differentiable expansion function and gi is any
differentiable function for all i ¼ 1; . . . ; n, then it is apparent that Xpc�dispY. As a particular case, this result
holds for f iðxÞ ¼ aix where ai41, for i ¼ 1; . . . ; n.

To finish this section we present a result for the preservation of the conditional dispersive order under
conjunction of independent random vectors ordered in the conditional dispersive order.

Theorem 1. Let X1;X2; . . . ;Xm be a set of independent random vectors where the dimension of Xi is ni, i ¼

1; 2; . . . ;m and let Y1;Y2; . . . ;Ym be another set of independent random vectors where the dimension of Yi is ni,
i ¼ 1; 2; . . . ;m. If Xipc�dispYi for i ¼ 1; 2; . . . ;m then

ðY1;Y2; . . . ;YmÞpc�dispðY1;Y2; . . . ;YmÞ.

4. The relationships among pdisp, pvar and pc�disp orders

In this section we study the relationships among thepdisp,pvar andpc�disp orders. The relationship among
the pdisp and conditions Eqs. (10) and (11) was given by Fernández-Ponce and Suárez-Llorens (2003) (see
Corollary 3.1), and therefore the following result holds.

Theorem 2. Let X and Y be two n-dimensional random vectors. If XpdispY then Xpc�dispY.

We want to emphasize that Fernández-Ponce and Suárez-Llorens (2003) did not consider Eqs. (10) and (11) as
a multivariate dispersive order and they just studied the relationship among these conditions and the pdisp

order.
Next we show that the variability order is stronger than the conditional dispersive order.

Theorem 3. Let X and Y be two n-dimensional random vectors. If XpvarY then Xpc�dispY.

Proof. Let X and Y be two n-dimensional random vectors and let x̂ð�Þ, ŷð�Þ the corresponding standard
constructions. In particular, condition (9) implies that

ŷiðu1; u2; . . . ; uiÞ � x̂iðu1; u2; . . . ; uiÞ is increasing in ui 2 ð0; 1Þ for i ¼ 1; 2; . . . ; n.

Note that if we fix u1; . . . ; ui�1 then ŷiðu1; . . . ; uiÞ and x̂nðu1; . . . ; uiÞ are the univariate quantile functions
of ðX ij\

i�1
j¼1X j ¼ x̂jðu1; . . . ; ujÞÞ and ðY ij\

i�1
j¼1Y j ¼ ŷjðu1; . . . ; ujÞÞ, respectively. Hence the proof follows from

Eqs. (10) and (11). &

Next we show that previous implications are strict and also we show the pdisp and pvar orders, in general,
are not related.

Example 1. Let X�Nðð0; 0Þ;SXÞ and Y�Nðð0; 0Þ;SYÞ be two bivariate normal distributions where

SX ¼
s1X s12X
s12X s2X

 !
and SY ¼

s1Y s12Y
s12Y s2Y

 !
.

Note that without lack of generality the mean vectors can be considered with components equal to zero. It is
well known that the conditional distributions for multivariate normal distribution are also normal
distributions. Then, the distribution of X 2 conditioned to X 1 is given by

ðX 2jX1¼x1
Þ�N x1

s12X
s21X

;s2X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2XÞ

q� �
,

where rX represents the correlation coefficient of X 1 and X 2. Analogously for Y 2 conditioned to Y 1.
First, we consider the pc�disp ordering. It is a well known result that two univariate normal distributions

are ordered in the univariate dispersion sense if, and only if their variances are ordered. Hence using Eqs. (10)
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and (11) it easily holds that Xpc�dispY if, and only if

s1YXs1X,

s2Y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2Y

q
Xs2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2X

q
. ð14Þ

Now we consider the pdisp order. Fernández-Ponce and Suárez-Llorens (2003) studied the Jacobian matrix
of the function f given in (7) and (8) for the bivariate normal distribution and they obtained a 2	 2 lower
triangular matrix of the form

Jf ¼

s1Y
s1X

0

s2Y
s1X

rY � rX

ffiffiffiffiffiffiffiffiffiffiffi
ð1�r2

Y
Þ

pffiffiffiffiffiffiffiffiffiffiffi
ð1�r2

X
Þ

p !
s2Y

ffiffiffiffiffiffiffiffiffiffiffi
ð1�r2

Y
Þ

p
s2X

ffiffiffiffiffiffiffiffiffiffiffi
ð1�r2

X
Þ

p
0BB@

1CCA.

Giovagnoli and Wynn (1995) characterized a multivariate expansion function in terms of its Jacobian matrix.
Let kð�Þ be a continuously differentiable function. Then kð�Þ is a multivariate expansion function if, and only if
the matrix JkðxÞ

tJkðxÞ � In is nonnegative definite 8x 2 Rn; where Jk ¼ fqki=qxjg is the Jacobian matrix of kð�Þ

and In is the identity matrix of order n. Under a straightforward computation of the eigenvalues of the matrix
JfðxÞ

tJfðxÞ � I2 we obtain that this one is nonnegative definite if, and only if the inequalities given by (14)
hold and

s22Y rY
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2X

q
� rX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2Y

q� �2

pðs21Y � s21XÞðs
2
2Yð1� r2YÞ � s22Xð1� r2XÞÞ. (15)

Let us consider now the pvar order. Given that we deal with conditional normal distributions, the standard

construction for X is easily given by x̂1ðu1Þ ¼ QZðu1Þs1X and x̂2ðu1; u2Þ ¼ QZðu1ÞrXs2X þQZðu2Þs2X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2XÞ

q
where Z is distributed as Nð0; 1Þ and analogously for Y. Then XpvarY holds if, and only if the inequalities
given by (14) hold and

s2YrYXs2XrX. (16)

Note that from (16) the pvar ordering depends on the signs of the correlation coefficients.
Now we present some detailed cases in order to study the strict implications among the different dispersion

orders. If we take siX ¼ siY, for i ¼ 1; 2, then (14) holds if, and only if jrXjXjrYj. If we take rX ¼ �0; 7 and
rY ¼ 0; 4, then Xpc�dispY holds and from (16) XpvarY also holds. However from (15) XpdispY does not hold.
Under the same assumption for the marginal variances and taking rX ¼ 0; 7 and rY ¼ 0; 4, Xpc�dispY holds.
However from (15) and (16) neither XpdispY nor XpvarY hold, respectively. On the other hand if we take
rX ¼ rY and siXosiY, for i ¼ 1; 2. Then from (14) and (15), both Xpc�dispY and XpdispY hold, respectively.
However the pvar ordering depends on the signs of the correlation coefficients. In particular if we consider
rX ¼ rYo0 does not hold.

To summarize we have the following chains of strict implications:

pdisp )pc�disp ) pD

*

pvar.

Following Müller and Scarsini (2001), Khaledi and Kochar (2005), and Arias-Nicolás et al. (2005), a natural
question arises: Whether the pc�disp order holds under the dispersive order of the marginals, for random
vectors with the same copula?

A copula C is a cumulative distribution function with uniform margins on ½0; 1�. Furthermore, it has been
shown that if H is a n-dimensional distribution function, with marginal distribution functions F1; . . . ;F n then
there exists a n-copula C such that for all ðx1; . . . ; xnÞ 2 Rn; it holds that Hðx1; . . . ;xnÞ ¼ CðF1ðx1Þ; . . . ;FnðxnÞÞ.
Moreover, if F1; . . . ;F n are continuous then C is unique (for details about copulas see Nelsen, 1999). It follows
that if X ¼ ðX 1; . . . ;X nÞ and Y ¼ ðY 1; . . . ;Y nÞ are two n-dimensional random variables, then they have the
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same copula if, and only if ðX 1; . . . ;X nÞ¼stðQX1
ðFY1
ðY 1ÞÞ; . . . ;QXn

ðFYn ðY nÞÞÞ. To summarize the copula
allows us to separate the effect of the dependence from effects of the marginal distributions. With this settings,
we can formulate the following theorem.

Theorem 4. Let X ¼ ðX 1; . . . ;X nÞ and Y ¼ ðY 1; . . . ;Y nÞ be two n-dimensional random vectors such that they

have the same copula. Then Xpc�dispY if and only if X ipdispY i for all i ¼ 1; . . . ; n.

Proof. Arias-Nicolás et al. (2005) showed that, for two random vectors with the same copula, the function f
can be expressed as

fiðx1; . . . ;xiÞ ¼ QYi
ðF Xi
ðxiÞÞ, (17)

for i ¼ 1; . . . ; n. Hence in light of (3) the result holds. &

Therefore given two n-dimensional random vectors X and Y, with the same copula, then

XpdispY 3 Xpc�dispY 3 X ipdispY i 8i ¼ 1; 2; . . . ; n.

*

XpvarY. ð18Þ

Looking at the last discussion of the Example 1 and from the well known fact that two bivariate normal
distributions have a common copula if, and only if they have the same correlation coefficient then it is
apparent a strict implication for pvar holds. As a special case of distribution functions having the same
structure dependence are two random vectors X and Y having independent components.

The strict implication in (18) for the pvar ordering is not surprising if we take into account that the pvar

ordering seems to be associated with the positive dependence structure of the random vectors. Those
considerations lead us to assume some dependence properties for the random vectors. To simplify the notation
we will say that the random vector ðX 1; . . . ;X nÞ is conditionally increasing in quantile, denoted by CIQ in order
to simplify, if the standard construction x̂ðuÞ is increasing in u 2 ð0; 1Þn.

The CIQ notion is related to the following property. The random vector ðX 1; . . . ;X nÞ is said to be
conditionally increasing in sequence (CIS) if (see Barlow and Proschan, 1975), X i"stðX 1; . . . ;X i�1Þ, i ¼ 2; . . . ; n,
that is, if

½X ijX 1 ¼ x1; . . . ;X i�1 ¼ xi�1�pst½X ijX 1 ¼ x01; . . . ;X i�1 ¼ x0i�1�

whenever xjpx0j ; j ¼ 1; 2; . . . ; i � 1.

Rubinstein et al. (1985) proved that the CIS property implies the CIQ property. Also the CIQ property is
preserved by strictly increasing transformations of each component.

Theorem 5. Let X and Y be two n-dimensional random vectors with the same copula. If X is CIQ then XpvarY if,

and only if X ipdispY i for all i ¼ 1; . . . ; n.

Proof. Note that from (18) it is only necessary to show the sufficient condition. Under the expression of f for
random vectors with the same copula given by Eq. (17) and the fact that f maps the standard construction of
X to the corresponding of Y it easily holds that QYi

ðF Xi
ðx̂iðu1; . . . ; uiÞÞ ¼ ŷiðu1; . . . ; uiÞ for all i ¼ 1; . . . ; n.

Hence

FXi
ðx̂iðu1; . . . ; uiÞÞ ¼ F Yi

ðŷiðu1; . . . ; uiÞÞ for all i ¼ 1; . . . ; n. (19)

From (19) if X is CIQ is apparent that Y is also CIQ. If we take ðv1; . . . ; viÞXðu1; . . . ; uiÞ then

ŷiðv1; . . . ; viÞXŷiðu1; . . . ; uiÞ,

x̂iðv1; . . . ; viÞXx̂iðu1; . . . ; uiÞ,

for i ¼ 1; . . . ; n. On the other hand, from (19) it holds that x̂iðu1; . . . ; uiÞ and ŷiðu1; . . . ; uiÞ provide the same
univariate quantile for the marginal variables X i and Y i, respectively. By hypothesis assumption the marginal
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distributions are ordered in dispersion. Then

ŷiðv1; . . . ; viÞ � ŷiðu1; . . . ; uiÞXx̂iðv1; . . . ; viÞ � x̂iðu1; . . . ; uiÞ,

for all ðv1; . . . ; viÞXðu1; . . . ; uiÞ. Then we obtain condition (9). Hence XpvarY. &

Therefore from (18) and Theorem 5, given two random vectors X and Y, with the same copula and with the
CIQ property, then we have the following chain of equivalences:

XpdispY 3X pc�dispY 3 XpvarY 3 X ipdispY i 8i ¼ 1; . . . ; n. (20)

We would like to emphasize that the equivalences given by (20) simplify the conditions where the pvar

ordering can be verified which, from a practical viewpoint, can be very complicated to compute. Specifically,
we can take advantage of (20) in the applications of the pvar ordering.

5. Applications

5.1. Models of ordered random variables

An interesting application of the implications given by (20) can be given for several models of ordered
random variables with applications in statistics and reliability. For instance, the order statistics from a sample
of i.i.d. random variables, the random vector of the first n epoch times of a nonhomogeneous Poisson process,
k records and order statistics under multivariate imperfect repair. A general concept where the previous
models are included is the concept of generalized order statistics see Kamps (1995). Formally, let n 2 N, kX1,
m1; . . . ;mn�1 2 R, Mr ¼

Pn�1
j¼r mj, 1prpn� 1, be parameters such that gr ¼ k þ n� rþMrX1 for all

r 2 1; . . . ; n� 1, and let em ¼ ðm1; . . . ;mn�1Þ, if nX2 ( ~m 2 R arbitrary, if n ¼ 1). We call uniform generalized
order statistics to the random vector ðU ð1;n; ~m;kÞ; . . . ;U ðn;n; ~m;kÞÞ with joint density function

hðu1; . . . ; unÞ ¼ k
Yn�1
j¼1

gj

 ! Yn�1
j¼1

ð1� ujÞ
mj

 !
ð1� unÞ

k�1

on the cone 0pu1p � � �punp1. Now given a distribution function F we call generalized order statistics
(GOS) based on F to the random vector

ðX ð1;n; ~m;kÞ; . . . ;X ðn;n; ~m;kÞÞ � ðF
�1ðU ð1;n; ~m;kÞÞ; . . . ;F

�1ðU ðn;n; ~m;kÞÞÞ. (21)

Note that if F is an absolutely continuous distribution then F�1 is strictly increasing. Therefore it is
apparent from (21) that two random vectors of GOS with the same parameters, and possibly, based on
different absolutely continuous distributions F and G, have the same copula. In addition, a random vector of
GOS has the CIS property (this follows from the Markovian property of GOS and the transition
probabilities), so it also has the CIQ property.

Under the previous arguments and using (20) it holds that two random vectors of GOS ðX ð1;n; ~m;kÞ; . . . ;
X ðn;n; ~m;kÞÞ and ðY ð1;n; ~m;kÞ; . . . ;Y ðn;n; ~m;kÞÞ, based on absolutely continuous distribution functions F and G,
respectively, are ordered in the pdisp, pc�disp and pvar multivariate dispersive orderings if, and only if the
marginals are ordered in the univariate dispersive order, that is if X ðr;n; ~m;kÞpdispY ðr;n; ~m;kÞ, for all r : 1; . . . ; n. The
last condition holds under the assumption FpdispG (see Belzunce et al. (2005), Theorem 3.12). With a simpler
argument, this result simplifies Theorem 3.11 by Belzunce et al. (2005), Theorem 2.3 by Belzunce et al. (2003)
and Theorem 3.1 by Belzunce and Ruiz (2002).

5.2. Variability ordering of convolutions

Convolutions appear naturally in several context such as risk theory, reliability and statistics. For example
consider an insurance company with a number n of clients, with individual risks X 1; . . . ;X n then the company
bears the risk S ¼

Pn
i¼1X i. In reliability theory convolutions appear when a failed unit is replaced by a new

one and the total life is obtained by the addition of the two lifelength. Also several statistics are linear
combinations of random variables. In the literature one can find several results on variability comparisons of
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convolutions. Most of these results are given for some parametric models (uniform and gamma distributions)
of independent random variables see for example Kochar and Ma (1999a, b), Korwar (2002), and Khaledi and
Kochar (2002, 2004) in the case of the dispersive order. For dependent components a simple but elegant result
is provided by Bäuerle (1997), Bäuerle and Rieder (1997) and Müller (1997), which prove that the convolution
of the components of two random vectors, ordered in the supermodular order, are ordered in the increasing
convex order.

One of the most interesting properties of the pvar ordering is given by the study of conditions for the
variability ordering of increasing directionally transformations of the random vectors. Recall from
Rüschendorff (1983) that a real function j on Rn is said to be directionally convex if for any xi 2 Rn,
i ¼ 1; 2; 3; 4, such that x1px2px4, x1px3px4 and x1 þ x4 ¼ x2 þ x3, one has

jðx2Þ þ jðx3Þpjðx1Þ þ jðx4Þ. (22)

Shaked and Shanthikumar (1998) in Theorem 4.2 proved that given two nonnegative n-dimensional random
vectors X and Y, with the CIS property, if XpvarY then jðXÞpst:icxjðYÞ, for all increasing directionally convex
functions j. Where the pst:icx ordering means that E½hðjðXÞÞ�pE½hðjðYÞÞ� for all increasing functions h for
which the expectations exists (that is, if jðXÞpstjðYÞ) and Var½hðjðXÞÞ�pVar½hðjðYÞÞ� for all increasing
convex functions h for which the variances exist. The pst:icx ordering is of interest because it lets you to
compare the variances.

Note that Shaked and Shanthikumar (1998) assume the pvar ordering between two nonnegative random
vectors and the CIS property. If we consider random vectors with a common copula, using Theorem 5 and the
mentioned fact that CIS implies CIQ, in this case the pvar ordering can be easily checked just comparing in
dispersion the marginal distributions. Hence from the fact that the function jðxÞ ¼

Pn
i¼1xi is increasing

directionally convex we can state the following general result.

Corollary 1. Let X ¼ ðX 1; . . . ;X nÞ and Y ¼ ðY 1; . . . ;Y nÞ be two n-dimensional nonnegative CIS random vectors

with a common copula. If X ipdispY i for every i ¼ 1; . . . ; n, then
Pn

i¼1X ipst:icx
Pn

i¼1Y i.

In particular we have that Var½hð
Pn

i¼1X iÞ�pVar½hð
Pn

i¼1Y iÞ�, for every increasing convex function h,
provided the previous variances exist, and therefore we can compare the variability of convolutions of random
variables not necessarily independent.
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