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Abstract

The region of the Bay of Algeciras is a very industrialized area where very few air pollution studies have been carried out. The main
objective of this work has been the use of artificial neural networks (ANNs) as a predictive tool of high levels of ambient carbon mon-
oxide (CO). Two approaches have been used: multilayer perceptron models (MLPs) with backpropagation learning rule and k-Nearest
Neighbours (k-nn) classifiers, in order to predict future peaks of carbon monoxide. A resampling strategy with twofold cross-validation
allowed the statistical comparison of the different topologies and models considered in the study. The procedure of random resampling
permits an adequate and robust multiple comparisons of the tested models and allow us to select a group of best models.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Bay of Algeciras region has one of the main industrial
estates of Andalusia and Spain, with urban areas that reach
more than 250000 inhabitants (‘agglomeration’ in the sense
of 96/62 EU Directive). This important industrial activity
requires the necessary control of its environmental impact.
Thus, 96/62 EU Directive states that Member States shall
take the necessary measures to ensure compliance with
the limit values and shall draw up action plans indicating
the measures to be taken in the short term where there is
a risk of the limit values and/or alert thresholds being
exceeded, in order to reduce that risk and to limit the dura-
tion of such an occurrence. Therefore, the prediction of air
pollutants has become an important task in the recent
years, because the estimation of ground level concentra-
tions gives valuable information for air pollution reduction
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policies. The dispersion mechanism of atmospheric pollu-
tants in urban areas is quite complex and it depends on dif-
ferent factors: meteorological conditions, orography, ‘heat
island’ effect, etc. All these factors, some of which are out
of human control, are decisive in air quality conditions.
It is well-known that air pollution episodes can cause
important toxic effects especially on high-risk population.
Then, the ability to predict the occurrence of peak concen-
trations will contribute to reduce these effects, either reduc-
ing emissions or warning population.

The main purpose of the present work is the application
of classification techniques, such as artificial neural net-
works (ANNs) and k-nn method to identify peaks of car-
bon monoxide (CO) concentrations in the Bay of
Algeciras region, for the period 1999–2001. The impor-
tance of input weights has been determined in order to
study the relevance of input variables to neural models
(Garson, 1991).

A procedure of resampling simulation was designed
to avoid variation coming from different sources, thus
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Fig. 1a. CO daily mean concentration (1999, 2000 and 2001).

Fig. 1b. CO daily mean concentration for working days and weekends
(1999).
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independence and randomness was guaranteed. In order to
estimate the error produced by different models, we adopt
the procedure of twofold cross-validation.

A detailed overview of the application of neural tech-
niques on atmospheric sciences can be found in the work
of Gardner and Dorling (1998). These authors conclude
that models based on ANNs give better results than linear
methods, especially when the problem under study is non-
linear. Different methods have been used in the prediction
of atmospheric pollution: persistence models (Perez et al.,
2000), regression models (Comrie and Diem, 1999), ANNs
(Jorquera et al., 1998; Elkamel et al., 2001; Kolehmainen
et al., 2001; Kukkonen et al., 2003; Brunelli et al., 2007;
Dutot et al., 2007). Comrie and Diem (1999) studied the
factors that influence CO concentrations in the area under
study (meteorological variables, previous concentrations,
traffic density) in order to develop a multiple regression
model. Pelliccioni and Poli (2000) used multilayer percep-
tron models (MLP) for the prediction of CO and nitrogen
dioxide (NO2). Viotti et al. (2002) used an ANN model
with a hidden layer to predict short-term and medium-term
air pollutant concentrations (CO, ozone and benzene) in an
urban area. Kolehmainen et al. (2001) compared different
prediction models from meterological and NO2 concentra-
tion data measured in the city of Stocolm for the period
1994–1998. These authors conclude that MLP models pre-
dict with a better accuracy than linear and Self Organising
Map (SOM) models. Perez (2001) introduced a study to
predict hourly mean sulphur dioxide (SO2) concentrations
in the city of Santiago de Chile. They compared the predic-
tions made by persistence models, linear regression models
and ANNs. The input variables were SO2 concentrations,
temperature, relative humidity and wind speed. Prediction
errors were between 30% and 60%, for short-term and
long-term predictions, respectively.
2. Meteorological and air pollution data

CO is a primary air pollutant produced by incomplete
combustion processes. In urban areas, traffic is its main
source, while its reaction with the OH radical is the main
removal mechanism. CO concentrations are usually well
correlated with traffic density. 2000/69 EU Directive sets
the maximum 8-h CO concentration in 10000 lg m�3.
CO concentration in a given time t, CO(t), depends on
three main factors: dispersion capacity of the atmosphere,
emissions, and previous CO concentrations (accumulated
CO) (Maffeis, 1999). CO emissions depend on ambient
temperature and source features. This gaseous pollutant
exhibits a clear cyclical behaviour, with a characteristic
variation in the daytime and night-time and during the
week (González Gallero, 2003). Two significant peaks can
be observed during working days, which correspond with
the hours of higher traffic intensity, the first between 8:00
and 10:00 am and the second one between 7:00 and
9:00 pm (Fig. 1a). In contrast, weekends are characterized
by lower CO concentration levels during day-time and
higher levels during night-time (Fig. 1b).

Data used in this work have been provided by the ‘Con-
sejerı́a de Medio Ambiente’ from the Andalusian Regional
Government for a period of three years (1999–2001). CO
concentration data are from the monitoring station located
at the town of Algeciras, which gives data every half an
hour. Only the exogen variables measured at the same
monitoring station have been used in the present study:
wind speed (V) and wind direction (D), temperature (T)
and NO concentration. In order to avoid discontinuities,
wind direction was transformed using the expression
1 + sin (D + p/4) (Chelani et al., 2002).

The maximum 8-h CO concentration of 10000 lg m�3

established by the 2000/69 EU Directive has not been sur-
passed during the period of analysis. However, local
authorities are very interested in assessing the impact of
urban traffic on air quality in Algeciras.

In a first step, data have been validated removing data
measured during periods of malfunction of the monitoring
station. Linear interpolation was used to fill data series
when gap was not too large.
3. Prediction models

The classification analysis allows the development of
models that are able to predict if one object belongs to a
specific class or category, considering different features of
the object. The data matrix has at least one categorical



Table 1
Autoregressive scheme (T: temperature, V: wind speed, D: wind direction,
NO: nitric oxide concentration, h: hour of day , d: weekday)

Input variables Output

T(t � n), V(t � n), D(t � n), NO(t � n), h(t � n), d(t � n),
CO(t � n)...T(t � 1), V(t � 1),

Peak(t)

D(t � 1), NO(t � 1), h(t � 1), d(t � 1), CO(t � 1) Yes/No

Table 2
Prediction models used in this study (k: number of neighbours; nhiddens:
number of units in the hidden layer).

k-means ANNs 3 layers

Model 1-knn1, 2-knn3, 3-knn5 4-BP1, 5-BP2, 6-BP4, 7-BP10, 8-BP20
k = 1, 3, 5 nhiddens = 1, 2, 4, 10, 20
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variable, which sets the category the object belongs to and
that is the variable to be predicted, and one or more vari-
ables that describe other features of the objects and are
used as predictive variables. In the present study, the cate-
gory represents the occurrence (or not) of an episode with
maximum levels of a given air pollutant. The two tech-
niques applied here are described below.

3.1. k-nn method

k-nn method is a non-parametric classification tech-
nique, based on the calculation of the distance of the pat-
tern one wants to classify (here, the occurrence or not of
a peak of concentration) from the k nearest neighbours,
each of which are grouped or classified. k is generally a
small even number (1, 3, or 5). Finally, the pattern will
be associated with the group with more neighbour patterns.
This algorithm strongly depends on the initial classification
that is a known input. If these patterns are sufficiently rep-
resentative of what is happening in the universe of patterns,
the algorithm will perform better. This method does not
require of a specific training stage (Duda et al., 2001),
but it needs a sufficient number of reference points for
the different classes. The Euclidean distance between the
pattern and the reference points is calculated in order to
find the nearest neighbours. Once the distances are
ordered, the classes with the smallest distances are finally
selected. A usually high computation time is the main
drawback of this method.

3.2. Multilayer neural network with backpropagation

Multilayer perceptron (MLP) with learning based on
error backpropagation (Backpropagation neural network,
BPNN) is the most widely used neural method. This learn-
ing model can be applied to regression or classification
problems (Bishop, 1995), in which there is no a priori
knowledge of the model. In this model, the network is a
dynamical system that changes as the learning algorithm
sets. This algorithm tries to find the weights that codify
the knowledge the network must has. Once this knowledge
is learnt, the network is used with new input vectors to
which the system will give a response with different out-
puts. The network will then have a generalization capabil-
ity that must be measured. The network used in the present
study has been trained using the Levenberg–Marquardt
algorithm, minimizing the mean squared error (MSE) of
the difference between the value obtained by the network
in each step and the objective value.
Table 3
Correlation coefficient (R) values between CO concentration at time t and
lagged imput variables

Lag CO T V D NO h d

1 0.350 �0.307 �0.315 0.306 0.270 0.260 0.004
3 0.560 �0.274 �0.307 0.044 0.003 �0.166 �0.011
6 0.370 �0.013 0.043 0.002 �0.025 �0.003 �0.007
4. Methodology

Two non-parametric classification techniques have been
applied, k-nn and ANNs, based on autoregressive schemes,
as shown in Table 1. The models tested have been described
in Table 2.
The aim of this study is to present the capability to pre-
dict peaks higher than an established threshold, doing dif-
ferent experiments with different values of the following
factors: (i) Size (lag) of the autoregressive window; (ii)
selection of the input variables: meteorological variables
and other air pollutant concentrations.
4.1. Analysis of input relevance

The study of the relevance of the input variables for the
forecasting of CO peaks has been done using correlation
analysis and the calculation of the relative importance of
each input to the neural models through the network
weights.

From the correlation analysis it can be observed that the
highest correlation values are found for a lag which equals
1, in contrast to the values 3 and 6, also calculated, as
shown in Table 3. CO concentration shows a negative cor-
relation with temperature (R = �0.307 and �0.274 for t �
1 and t � 3, respectively) and wind speed (R = �0.307 and
�0.274 for t � 1 and t � 3, respectively). Similarly, it is
found a positive correlation between 8 h CO mean concen-
tration values and the previous CO and NO concentra-
tion values (t � 1) (R = 0.350 and 0.270, respectively).
Although the correlation values are not very high, it seems
reasonable to include these variables as model input vari-
ables due to the tendencies found. However, the correlation
analysis results should not be determinant for the selection
of variables as they only show the individual relationships
between each pair of variables (Elkamel et al., 2001).

The connection weights of the artificial neural net-
work were used to determine the relative importance of
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the meterological variables (T, V, and D) and the pollutant
concentrations (NO and CO) lagged at different times.
Additionally, two new variables have been included: time
of the day (h) and day of the week (d).

To assess the relative importance of the different predic-
tor variables quantitatively, the connection weights of the
prepared neural network model are used according to the
procedure developed by Garson (1991). The procedure
essentially involves partitioning of the connection weights
of each hidden neuron into components associated with
each input neuron (Elkamel et al., 2001). The equation pro-
posed by Garson for determining the relative importance
of an input is given by

IMðX pÞ ¼
PN

j¼1½ðjW jpj

PNp

k¼1jW jpj;kÞjOjj�
PNp

i¼1f
PN

j¼1½ðjW jpi;j

PNp

k¼1jW jpi;j;kÞjOjj�g

where IM(Xp) is the importance measure for the pth input
variable Xp. Np is the number of input variables to the neu-
ral network. The term |W|pj is the absolute value of the
weight in the neural network corresponding to the pth in-
put variable and the jth hidden layer (j = 1, 2,..., N). The
term |O|j is the absolute value of the output layer weight
corresponding to the jth hidden layer.
4.2. Selection procedure of the best model

In order to assess the generalization capability of the dif-
ferent models tested, the size of the autoregressive window
has been chosen from the autocorrelation function of the
data series. As shown in Fig. 2, the higher autocorrelation
values are found for lags equal to 1, 3 and 6. A threshold of
1500 lg/m�3 has been considered. This election assures a
minimum 10% of data over the threshold. Then, a first
experiment was developed to prove the model efficiency
when only the lagged CO signal for n = 1, 3 and 6 was used
as input variable. Afterwards, a second experiment was
done, in which models were tested using the available exo-
gen variables (T, D, V and NO) as additional input vari-
ables. As mentioned before, h and d were also included.
These two variables were transformed to cyclic ones using
sine components in order to avoid any non-physical
discontinuities.

Statistical methods analyze how the models behave on
average. Furthermore, it is necessary to consider the per-
formance of a model over all the training sets that might
Fig. 2. Autocorrelation function for 8-h CO concentration series.
be drawn from the underlying distribution. Only a limited
sample of data is available and a complete strategy of
experiments must be described to guarantee the indepen-
dence of the results. In accordance with the work of Pizarro
et al. (2002), a randomised procedure has been designed to
control the different sources of variation in order to com-
pare the different models.

There are many methods to estimate the generalization
performance of a model (hold-out, cross-validation,
leave-one-out, penalization strategies,...). The complete
strategy used in this paper repeats 30 times a similar pro-
cess: random splitting of data into a pair of equal sized por-
tions (training and test sets) and twofold cross-validation
for the estimation of the generalization classification suc-
cess index (CSI), i.e. the total sum of peaks/no peaks suc-
cessfully classified for each case. The parameters of each
model were estimated using one of the groups (the training
set) while its performance was tested using the remaining
one (the test set). Therefore, the performance was mea-
sured over test data not used in the training or design of
the model. This process was repeated twice each time,
swapping the sets and averaging the results over these
two runs. For a given training and test set, each algorithm
is trained for 10 times (to avoid internal randomness).

Analysis of variance (ANOVA) (Scheffe, 1959) has been
used to test the null hypothesis taking into account certain
assumptions, i.e. all populations are approximately normal
and the samples from each population should be random
and independent. The first assumption has been verified
using the Kolmogorov–Smirnov test. Bonferroni multiple
comparison procedure (Jobson, 1991) has been used to
decrease the probability of making at least one Type I
error. This approach is a follow-up method to ANOVA
based on the following: if c comparisons are to be made,
each one with confidence coefficient (1 � a/c), then the
maximum value of overall probability of making one or
more Type I errors is a (statistical significance is fixed at
0.1). If the difference between the sample means exceeds a
critical threshold, there is sufficient evidence to conclude
that the population means differ.

5. Results and discussion

Table 4 shows the results obtained for the 8 hours ahead
prediction of the 8-h CO concentrations higher than the
threshold 1500 lg m�3. It gives the values from the differ-
ent models tested, without the information provided by
the exogenous variables. On the other hand, Table 5 shows
the results for 8 h ahead prediction of the 8-h CO concen-
trations but using the different exogenous variables selected
(wind speed and wind direction, temperature and NO con-
centration). In both cases, results are shown for lags n = 1,
3 and 6.

A significant improvement is obtained when exogenous
information is used as input variables in the models tested.
Regarding the autoregressive window (previous CO val-
ues), the best results are obtained for n = 3, that is, if the



Table 4
Results of the different models without exogenous information (prediction
horizon: 8 h)

Model n = 1 n = 3 n = 6

CSI r CSI r CSI r

1-knn1 0.5593 0.0114 0.6891 0.0112 0.7180 0.0148
2-knn3 0.5695 0.0135 0.7242 0.0108 0.7547 0.0094
3-knn5 0.5878 0.0143 0.7389 0.0148 0.7689 0.0151
4-BP1 0.6329 0.0093 0.7389 0.0110 0.7411 0.0221
5-BP2 0.6320 0.0126 0.7405 0.0201 0.7493 0.0209
6-BP4 0.6255 0.0112 0.7528 0.0141 0.7479 0.0194
7-BP10 0.6098 0.0170 0.7394 0.0174 0.7265 0.0175
8-BP20 0.6055 0.0146 0.7117 0.0266 0.6918 0.0215

CSI: classification success index and r: Standard deviation of CSI.

Table 5
Results of the different models with exogenous information (prediction
horizon: 8 h)

Model n = 1 n = 3 n = 6

CSI r CSI r CSI r

1-knn1 0.6982 0.0108 0.7287 0.0156 0.7160 0.0129
2-knn3 0.7393 0.0146 0.7662 0.0167 0.7488 0.0164
3-knn5 0.7533 0.0161 0.7826 0.0138 0.7602 0.0144
4-BP1 0.7724 0.0136 0.7887 0.0151 0.7732 0.0176
5-BP2 0.7647 0.0133 0.7847 0.0175 0.7592 0.0150
6-BP4 0.7552 0.0148 0.7572 0.0169 0.7361 0.0277
7-BP10 0.7270 0.0161 0.7284 0.0165 0.,6924 0.0347
8-BP20 0.6846 0.0214 0.6471 0.0284 0.6735 0.0418

CSI: classification success index and r: standard deviation of CSI.

Table 7
Results of the Bonferroni criteria

Model Mean No significantly different

4-BP1 0.7917051 7 3 2 5 6 4
6-BP4 0.7885945 7 3 2 5 6 4
5-BP2 0.7879032 7 3 2 5 6 4
2-knn3 0.7799539 1 7 3 2 5 6 4
3-knn5 0.7774194 1 7 3 2 5 6 4
7-BP10 0.7732719 1 7 3 2 5 6 4
1-knn1 0.7591014 1 7 3 2
8-BP20 0.7169355 8

Table 8
Relative importance of the input variables to the ANN model

Variable Relative importance

CO(t � 1) 34.40
T(t � 1) 30.44
V(t � 1) 11.00
NO(t � 1) 10.17
h(t � 1) 6.51
D(t � 1) 5.12
d(t � 1) 2.35
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values of the latter three 8-h CO concentration values are
considered. Table 6 shows the results for the models that
use the former exogenous variables as well as the cyclical
daily and weekly behaviour of the CO concentrations. Bet-
ter results are obtained in this case for n = 1, that is, con-
sidering the preceding 8-h CO concentration value of the
prediction (peak/no peak occurrence). Results of the
ANOVA test applied to the eight models described in
Table 6 (n = 1), show that mean values are significantly dif-
ferent (F = 55.63). Then, the Bonferroni criteria were used
(Table 7).

It can be inferred that the best system of regression is
obtained for models 4, 6 and 5, which have the higher cor-
Table 6
Results of the different models with exogenous information and cyclical
behaviour of the CO concentrations (prediction horizon: 8 h)

Model n = 1 n = 3 n = 6

CSI r CSI r CSI r

1-knn1 0.7591 0.0246 0.7500 0.0174 0.7325 0.0174
2-knn3 0.7800 0.0215 0.7711 0.0115 0.7514 0.0119
3-knn5 0.7774 0.0226 0.7855 0.0106 0.7672 0.0153
4-BP1 0.7917 0.0139 0.7791 0.0156 0.7820 0.0219
5-BP2 0.7879 0.0213 0.7604 0.0160 0.7717 0.0271
6-BP4 0.7886 0.0138 0.7706 0.0219 0.7596 0.0287
7-BP10 0.7733 0.0201 0.7428 0.0201 0.7355 0.0338
8-BP20 0.7169 0.0160 0.6698 0.0406 0.7048 0.0364

CSI: classification success index and r: standard deviation of CSI.
relation coefficients. As the Bonferroni criterion sets, once
the models are not significantly different, the simplest one
must be selected. Then, model 4 has been selected, which
is a neural network with one hidden unit. Models 2 and 3
in Table 2, which are not significantly different from model
4, have a higher computation time.

Once the best neural model is selected, that is, the one
that gets the best generalization for test patterns, an anal-
ysis of the relevance of the input variables in terms of the
neural weights has been developed. The results are shown
in Table 8. As it can be seen, the variables with a higher rel-
ative contribution are CO (34.40%) and T (30.44%) for lag
n = 1. The reason is that the highest CO concentration val-
ues are likely to occur during the coldest periods of the
year, when traffic emissions are usually higher and thermal
inversions are stronger. The relative contribution of wind
speed (11.00%) seems to confirm the dispersive effect of
mechanically induced turbulence on CO levels. Further-
more, the effect of NO concentration series (10.17%) over
the prediction of CO peaks can be explained considering
that they are both primary gaseous pollutants being urban
traffic their main emission source. Wind direction shows a
significantly smaller contribution (5.12%), though it should
not be removed from the models as it seems to show the
slight directional dependence on CO emission sources. Cyc-
lic variables (h and d) have also been included to capture
the daily and weekly variation of CO concentration
induced by traffic volume fluctuations (Maffeis, 1999).
Besides, better results are obtained when these two vari-
ables are considered, as shown in Tables 4–6.

6. Conclusions

This study describes a suitable classification methodol-
ogy for the prediction of maximum CO atmospheric
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concentration levels. It is shown how the models can be
improved by including the exogenous information of differ-
ent variables and the cyclical behaviour of the CO concen-
trations. Errors are about 20% for the best models based
on ANNs. The random procedure applied in the study pre-
sented here leads to safer results, minimizing the uncer-
tainty associated to the natural data randomness. When
these strategies are adequately applied to the obtained
error rates in a well designed experiment, and the needed
assumptions are verified, it is possible to determine the
optimal complexity, o even, to determine which model fits
better the samples. These results show how statistical meth-
ods can be successfully employed for the topology determi-
nation of neural networks architectures. Finally, the
methodology presented here, together with a suitable selec-
tion of the informative variables, can also be applied to the
prediction of the maximum levels of other atmospheric
pollutants.
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Jorquera, H., Pérez, R., Aldo, C., Espejo, A., Letelier, M.V., Acuña, G.,
1998. Forecasting oxone daily maximum levels at Santiago, Chile.
Atmos. Environ. 32 (20), 3415–3424.

Kolehmainen, M., Martikainen, H., Ruuskanen, J., 2001. Neural
networks and periodic components used in air quality forecasting.
Atmos. Environ. 35, 815–825.

Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H.,
Kolehmainen, M., Niska, H., Dorling, S., Chatterton, T., Foxall, R.,
Gavin, C., 2003. Extensive evaluation of neural networks models for
the prediction of NO2 and PM10 concentrations, compared with a
deterministic modelling system and measurement in central Helsinki.
Atmos. Environ. 37, 4539–4550.

Maffeis, G., 1999. Prediction of carbon monoxide acute air pollution
episodes. Model formulation and first application in Lombardy.
Atmos. Environ. 33, 3859–3872.

Pelliccioni, A., Poli, U., 2000. Use of neural net models to forecast
atmospheric pollution. Environ. Monit. Assess. 65, 297–304.

Perez, P., 2001. Prediction of sulphur dioxide concentrations at a site near
downtown Santiago, Chile. Atmos. Environ. 35, 4929–4935.

Perez, P., Trier, A., Reyes, J., 2000. Prediction of PM2,5 concentrations
several hours in advance using neural networks in Santiago, Chile.
Atmos. Environ. 34, 1189–1196.

Pizarro, J., Guerrero, E., Galindo, P., 2002. Multiple comparison
procedures applied to model selection. Neurocomputing 48,
155–173.

Scheffe, H., 1959. Analysis of Variance. Wiley, New York.
Viotti, P., Liuti, G., Di Genova, P., 2002. Atmospheric urban pollution:

applications of an artificial neural network (ANN) to the city of
Perugia. Ecol. Model. 148, 27–46.


	Prediction of CO maximum ground level concentrations in the Bay of Algeciras, Spain using artificial neural networks
	Introduction
	Meteorological and air pollution data
	Prediction models
	k-nn method
	Multilayer neural network with backpropagation

	Methodology
	Analysis of input relevance
	Selection procedure of the best model

	Results and discussion
	Conclusions
	Acknowledgements
	References


