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New potential symmetries for some evolution equations
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Abstract

In this paper we derive new potential symmetries that seem not to be recorded in the literature. These potential symmetries are
determined by considering a generalized potential system, rather than the natural potential system or a general integral variable. An
inhomogeneous diffusion equation, a porous medium equation and the Fokker–Planck equation have been considered as application
of this procedure.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that there exists partial differential equations (PDE’s) of physical interest possessing few
symmetries or none at all [14]. It turns out that PDE’s can admit nonlocal symmetries whose infinitesimal generators
depend on integrals of the dependent variables in some specific manner. The case for nonlocal symmetries goes further
than this: anyway they can be used to generate highly nontrivial explicit solutions to PDE’s (which in turn can have
physical interpretation or can be useful for checking numerical schemes [12,17,18]), they appear in the theory of
recursions operators and mastersymmetries, and they are related to Bäcklund and linearizing transformations. This
last property was observed by Bluman, although the work of A.M. Vinogradov, and I.S. Krasil’shchik [22] should not
be ignored.

Krasil’shchik and Vinogradov [10,11,22] gave criteria which must be satisfied by nonlocal symmetries of a
PDE when realized as local symmetries of a system of PDE’s which ‘covers’ the given PDE. Akhatov, Gazizov
and Ibragimov [2] gave nontrivial examples of nonlocal symmetries generated by heuristic procedures. Nonlocal
symmetries have been also studied in Refs. [1,4].

In Ref. [5] Bluman introduced a method to find a new class of symmetries for a PDE. Suppose a given scalar PDE
of second order

F(x, t, u, ux , ut , uxx , uxt , ut t ) = 0, (1)

where the subscripts denote the partial derivatives of u, can be written as a conservation law

D
Dt

f (x, t, u, ux , ut )−
D

Dx
g(x, t, u, ux , ut ) = 0, (2)

E-mail address: marialuz.gandarias@uca.es.

0378-4371/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2007.12.013

http://www.elsevier.com/locate/physa
mailto:marialuz.gandarias@uca.es
http://dx.doi.org/10.1016/j.physa.2007.12.013


M.L. Gandarias / Physica A 387 (2008) 2234–2242 2235

for some functions f and g of the indicated arguments. Here D
Dx and D

Dt are total derivative operators defined by

D
Dx

=
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ · · · ,

D
Dt

=
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ ut t

∂

∂ut
+ · · · .

Through the conservation law (2) one can introduce an auxiliary potential variable v and form an auxiliary potential
system (system approach)

vx = f (x, t, u, ux , ut ), (3)

vt = g(x, t, u, ux , ut ). (4)

For many physical equations one can eliminate u from the potential system (3) and form an auxiliary integrated or
potential equation (integrated equation approach)

G(x, t, v, vx , vt , vxx , vxt , vt t ) = 0, (5)

for some function G of the indicated arguments. Any Lie group of point transformations

v = ξ(x, t, u, v)
∂

∂x
+ τ(x, t, u, v)

∂

∂t
+ φ(x, t, u, v)

∂

∂u
+ ψ(x, t, u, v)

∂

∂v
, (6)

admitted by (3) yields a nonlocal symmetry potential symmetry of the given PDE (2) if and only if the following
condition is satisfied

ξ2
v + τ 2

v + φ2
v 6= 0. (7)

We point out that if we consider a Lie group of point transformations

w = ξ(x, t, v)
∂

∂x
+ τ(x, t, v)

∂

∂t
+ ψ(x, t, v)

∂

∂v
(8)

admitted by (5) the condition

ξ2
v + τ 2

v 6= 0 (9)

is a sufficient but not a necessary condition in order to yield nonlocal symmetries of (2). In Ref. [21] potential
symmetries of a simplified model for reacting mixtures were derived as well as an invertible mapping which linearizes
the reacting mixture model.

Although of course there are some classifications of nonlocal symmetries for some important equations such as
KdV and Burgers [22], and it is well known that if a given PDE system has n conservation laws, then each conservation
law yields potential equations and a corresponding nonlocally related potential system, generally speaking there is no
hope of obtaining all the nonlocal symmetries of a given equation, in sharp contradiction with the local case. All one
can hope for is classifying nonlocal symmetries of a given type or, more rigorously stated, all one can hope for is
classifying nonlocal symmetries defined on a given covering of the equation at hand.

The method introduced by Bluman in Ref. [3] only requires the PDE to be written in a conserved form (2).
Nevertheless, in most papers concerning evolution equations of the form

ut =
D

Dx
g(x, t, u, ux ), (10)

the auxiliary system considered is the so-called natural potential system

vx = u,

vt = g(x, t, u, ux ),
(11)

and a different system is searched only when the given equation is not in a conserved form.
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In Ref. [13] the authors developed a method in order to find potential symmetries which are missed by standard
potential symmetry analysis. These symmetries were determined by using a general integral variable.

The aim of this paper is to develop a procedure to find hidden potential symmetries, which generalizes the method
introduced in Ref. [13]. By using this method we find potential symmetries including those that are missed by standard
potential symmetry analysis as well as a symmetry missed by introducing a general weighted integral variable in
Ref. [13].

We present some nontrivial examples of nonlocal symmetries. This is interesting, since in a nonlocal setting one
cannot use algorithmic methods as in the local symmetry case treated in Ref. [14].

The new procedure proposed in this paper is the following: instead of considering the natural potential system or
the general integral variable we consider a general potential system

vx = f1(x)h1(u),

vt = f2(x)h2(u)ux + f3(x)h3(u).
(12)

By requiring the governing PDE (10) to be equivalent to the potential system (12) we get that functions fi (x) and
hi (u)i = 1, 2, 3 must satisfy several conditions that lead to a hidden potential system. A point symmetry (6) admitted
by this system yields a hidden potential symmetry of the given PDE (2) if this symmetry is not a potential symmetry
derived from the natural potential system and condition (7) is satisfied.

By showing several examples I wish to suggest the readers a procedure to obtain potential symmetries which are
missed by standard potential symmetry analysis and are missed by considering a general integral variable. These
examples are: an inhomogeneous diffusion equation, a porous medium equation and a Fokker–Planck equation. These
three equations have been respectively considered in Refs. [19,13,6,16]. We show that this procedure yields new
hidden potential symmetries for these equations, which as far as we know do not appear in the literature.

2. Inhomogeneous diffusion equation

One of the mathematical models for diffusion processes is the generalized inhomogeneous nonlinear diffusion
equation

f (x)ut = [g(x)unux ]x . (13)

The diffusion processes appear in many physics processes such as plasma physics, kinetic theory of gases, solid state,
metallurgy and transport in porous medium.

In (13) u(x, t) is a function of position x and time t and may represent the temperature, f (x) and g(x) are
arbitrary smooth functions of position and may denote the density and the density-dependent part of thermal diffusion,
respectively.

In Ref. [19], C. Sophocleous has classified the potential symmetries of (13). He proved that potential symmetries
exist only if the parameter n takes the values −2 or −

2
3 and f (x)g(x) = constant or g(x) =

1
f (x) [

∫
f (x)dx]

4. It was
pointed out in Ref. [19] that Eq. (13) is equivalent by means of a point transformation to

ut = [g(x)unux ]x . (14)

Consequently, by considering the natural potential system C. Sophocleous has derived potential symmetries, for

ut = [g(x)u−2ux ]x , (15)

only when g(x) = constant or g(x) = x4. In Ref. [13] hidden nonlocal symmetries were determined by considering
an integrated equation, obtained, using a general integral variable

φ =

∫
k(x)u(x, t)dx + J (t).

In Ref. [13] the authors found extra potential symmetries of (15) for g(x) = x2 that corresponds to the case in which
(15) is linearizable.
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We are considering the more general auxiliary system (12) and we require (15) to be expressed in a conserved form
as this system, leading to the following conditions

h1(u) = k1u + k2, f1(x) =
k3k4

k1

∫
dx

g
,

h2(u) =
k1

u2 , f2(x) = f1g,

h3(u) =
k4

u
+ k5, f3(x) = k3.

(16)

By setting, without loss of generality, k1 = 1, k4 = 1, f1(x) = k(x), k3 = −a, and k2 = 0 system (12) becomes

vx = k(x)u,

vt = k(x)g(x)
ux

u2 −
a

u
,

(17)

with a = constant and

k′(x)g(x)+ a = 0. (18)

If system (17) is invariant under a Lie group of point transformations with infinitesimal generator (6), then

ξ = ξ(x, t, v), τ = τ(t), ψ = ψ(t, v),

φ = −kξvu2
+ (ψv − ξ

k′

k
− ξx )u, (19)

where ξ , τ , ψ and k must satisfy the following equations

gk(2ψv − τt )− 2ξgk′
− ξg′k = 0,

ξvvgk2
− ξt = 0,

−gk2(ψvv − 2ξvx )+ ψt + 2ξvgkk′
+ 2aξvk = 0,

2akψv − ξgkk′′
+ ξg(k′)2 − ξx gkk′

− aξk′
− ξxx gk2

− aτt k − aξx k = 0.

We can distinguish the following two cases:

Case 1. 2gk′
+ g′k = 0. Setting a = 1 we get that k(x) =

1
x , and g(x) = x2. The generators of the Lie algebra are

v1 = ∂t ,

v2 = ∂v,

v3 = 2t∂t + u∂u + v∂v,

v4 =
xv

2
∂x + t∂v −

u2

2
∂u,

v5 = x∂x ,

v6 =

(
xv2

4
+

t x

2

)
∂x + t2∂t + tv∂v −

(
vu2

2
− tu

)
∂u,

vβ = x2β∂x − (xβu + βvxu2)∂u,

(20)

where β(t, v) satisfies a linear diffusion equation βt − βvv = 0. We point out that vβ is an infinite-dimensional
nonlocal symmetry that allows us to linearize Eq. (15).

This function g(x) = x2 was already derived in Ref. [13] by deriving the classical symmetries of an integrated
equation with a general weighted variable. The generators appearing in Ref. [13] are the corresponding generators of
the integrated equation.

By checking (7) we can assure that v4 and v6 are potential generators while v3 projects onto a classical generator.
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Case 2. 2gk′
+ g′k 6= 0 then the corresponding determining equations give rise to

ξ =
gk(ψv − τt )

2gk′ + g′k
, (21)

τ = k3t + k4, (22)

ψ = k1v
2
+

k3

2
v + k6. (23)

After setting k′

k = f , the compatibility of the remaining determining equations leads to

f ′′
−

5
4
( f ′)2

f
−

f f ′

2
−

f 3

4
= 0. (24)

A particular solution of (24) is f =
d
x with d = −1 or d = 3. By setting c = a = 1 we get g(x) = x2 already

considered in Case 1 and g(x) = −
1
x2 . For g(x) = −

1
x2 the generators of the Lie algebra are

w1 = ∂t ,

w2 = ∂v,

w3 = 2t∂t + u∂u + v∂v,

w4 = xv∂x + v2∂v − (x4u2
+ 2uv)∂u,

w5 = x∂x + 2v∂v − 2u∂u .

(25)

We point out that for g(x) = −
1
x2 Eq. (15) admits a new hidden potential symmetry w4 which, as far as we know,

has not been derived by considering the natural potential system [19] nor has been derived by considering the general
weighted integral variable [13]. We have derived this generator by considering the hidden potential system

vx = x3u,

vt = −
ax

3
ux

u2 −
a

u
.

(26)

3. A porous medium equation

The quasi-linear equation

ut = (un)xx + g(x)um
+ f (x)usux (27)

corresponds to porous media with sources or thermal evolution with sources and convection. This equation exhibits a
wide variety of wave phenomena, some of them were studied for f (x) and g(x) constant by Rosenau and Kamin [20].

There is no fundamental reason to assume the spatial-dependent factors in (27) to be constant. Actually, allowing
for their spatial dependence enables us to incorporate additional factors into the study which may play an important
role. For instance, in a porous medium this may account for stationary factors like mediums contamination with
another material or in plasma, this may express the impact that solid impurities coming from the walls, have on the
enhancement of the radiation channel.

In Ref. [6], we have obtained a complete potential symmetry classification for the porous medium equation when
it can be written in a conserved form

ut = [(un)x + f (x)um
]x , (28)

through the point symmetry classification of the natural related potential system

vx = u,

vt = (un)x + f (x)um .
(29)
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We found that (28) admits potential symmetries for n = −1 and n = 1 and some special values of the parameter m
and some special functions f (x). The nonlinear equation (27) with n = −1, m = 1 and n = −1, m = −1, does not
admit an infinite-parameter Lie group of contact transformations, so cannot be linearizable by an invertible contact
(point) transformation. Nevertheless the natural potential system (29) admits some infinite-parameter Lie groups, by
using them we have also linearized (28) by explicit non-invertible mappings [6].

In Ref. [7], we have derived nonclassical symmetries for the porous medium equation with convection

ut = (un)xx +
f (x)

m
(um)x . (30)

We are now considering the more general auxiliary system (12) and we require the governing PDE (30) with m = n
to be expressed in a conserved form by this system, this yields to

vx = a(x)u

vt = a(x)nun−1ux + cun,
(31)

where f (x) =
n(c+a′)

a and c = constant. If system (31), with n = −1, is invariant under a Lie group of point
transformations with infinitesimal generator (6) then

ξ =
aψv
a′

−
ak3

2a′
, τ = τ(t), ψ = ψ(t, v),

φ = −aξvu2
+ (ψv − ξ

a′

a
− ξx )u, (32)

and the following conditions must be satisfied

2a2ψvvv + 2ψtv − τt t = 0,

ψvv(2ca2a′
− 2a3a′′

+ 3a2(a′)2)− (a′)2ψt = 0,

(ca′a′′
+ aa′a′′′

− 2a(a′′)2 + (a′)2a′′)(2ψv − τt ) = 0.

By solving this system we get that in order to get nonlocal symmetries

τ = k3t + k4,

ψ = k1v
2
+

(
k3

2
+ k2

)
v + (k5t + k6),

(33)

where a(x) must satisfy the following equations

ca′a′′
+ aa′a′′′

− 2a(a′′)2 + (a′)2a′′
= 0, (34)

k1(4a3a′′
− 4ca2a′

− 6a2(a′)2)+ k5(a
′)2 = 0. (35)

The compatibility of (34) and (35) requires that k5 = 0 and the solution can be given in implicit form. A particular
exact solution is a(x) = −

2cx
3 , f (x) =

1
2x . The generators of the Lie algebra are

v1 = ∂t ,

v2 = ∂v,

v3 = x∂x − u∂u + v∂v,

v4 = 2xv∂x +

(
4cx2u2

3
− 2uv

)
∂x + v2∂v,

v5 = 2t∂t + u∂u + v∂v.

(36)

Generator v4 induces a nonlocal symmetry admitted by Eq. (30).
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4. The Fokker–Planck equation

The classical symmetries for the Fokker–Planck equation with drift

ut = uxx + [ f (x)u]x , (37)

were derived in Ref. [3]. The authors found [3] that, besides the infinite-dimensional generator, when f (x) satisfies
any of these Riccati equations

f ′

2
−

f 2

4
= ax2

+ bx + c, (38)

f ′

2
−

f 2

4
= a(x + λ)2 + c +

d

(x + λ)2
, (39)

then (37) is invariant under a Lie group with four or two parameters respectively.
The classical potential symmetries were derived by Pucci and Saccomandi in Ref. [16] by using the natural

potential system

vx = u,

vt = ux + f (x)u.
(40)

They found [16] that, besides the infinite-dimensional generator, when f (x) satisfies any of these Riccati equations

f ′

2
+

f 2

4
= ax2

+ bx + c, (41)

f ′

2
+

f 2

4
= a(x + λ)2 + c +

d

(x + λ)2
, (42)

then (37) is invariant under a Lie group with four or two parameters respectively.
In Ref. [15] Priestly and Clarkson found that the solutions arising from the nonclassical symmetries of the

associated potential system of the shallow water equation were obtainable by the nonclassical symmetries of the
shallow water equation. Consequently, it remained as an open problem the existence of nonclassical potential
symmetries, in the sense that they lead to new solutions.

We have studied in Refs. [8,9] the nonclassical symmetries of the Fokker–Planck equation, as well as the
nonclassical potential symmetries.

We are now considering the general auxiliary system (12) and we require the governing PDE (37) to be expressed
in conserved form as this system, and system (12) becomes

vx = a(x)u,

vt = a(x)ux +

(
a(x)a(x)′′

a(x)′
− a(x)′

)
u,

(43)

with f (x) =
a′′(x)
a′(x) . If system (43) is invariant under a Lie group of point transformations with infinitesimal generator

(6) then we get

ξ =
τ ′(t)x

2
+ ϕ(t), ψ = α(x, t)v + β(x, t),

τ = τ(t), φ =

(
ψv − ξx −

a′

a
ξ

)
u +

ξx

a
,

(44)

where α(x, t), β(x, t), a(x), τ(t) and ϕ(t) must satisfy the following equations

(τ ′x + 2ϕ)γ ′
+

[
τ ′

−
a′

a
(τ ′x + 2ϕ)

]
γ + τ ′′x + 2ϕ′

−
a′

a
τ ′

+ 4αx = 0,

aa′αxx + (aa′a′′
− 2(a′)2)αx − aa′αt = 0,
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aa′βxx + (aa′a′′
− 2(a′)2)βx − aa′βt = 0,

with γ (x) =
a(x)′′

a(x)′ −
a(x)′

a(x) . In general it is difficult to find all solutions of the overdetermined nonlinear system of
PDEs. Next we consider the following solution

ξ = 1, τ = c, ψ = tan(x)v,

φ =

(
tan(x)+

2(1 + cos(2x))

2x + sin(2x)

)
u +

k1

4
sec2(x)(2x + sin(2x))v, (45)

with

a = −
4

k1(sin(2x)+ 2x)
, (46)

and

f = −
2(cos(4x)+ 4x sin(2x)+ 8 cos(2x)+ 7)
sin(4x)+ 2 sin(2x)+ 4x cos(2x)+ 4x

.

From generator (45) we obtain the similarity variable and the similarity solution

z = x − ct, v =
h(z)

cos(x)
. (47)

By introducing (47) into the generalized integrated equation

vt − vxx −

(
a(x)′′

a(x)′
−

2a(x)′

a(x)

)
vx = 0, (48)

we get the ODE

h′′
+ ch′

+ h = 0. (49)

Some solutions of (48), for a(x) given by (46) are:

v =
(k2(x − 2t)+ k3)e−(x−2t)

cos(x)
, (50)

v =
e−

c(x−ct)
2

cos(x)
[k2 sinh(k(x − ct))+ k3 cosh(k(x − ct))], (51)

for (c − 2)(c + 2) > 0, k =
1
2

√
c2 − 4,

v =
e−

c(x−ct)
2

cos(x)
[k2 sin(k(x − ct))+ k3 cos(k(x − ct))], (52)

for (c − 2)(c + 2) < 0, k =
1
2

√
4 − c2.

The corresponding solutions for (37) are given by u =
vx
a . It can be checked that f does not satisfy any of the

Riccati equations (38)–(42) consequently generator (45) cannot be derived as a Lie symmetry [3], nor as a potential
symmetry by considering the natural potential system [16]. Generator (45) is a new potential symmetry derived from
the hidden potential system (43).

5. Concluding remarks

In this paper we have proved that by considering a generalized potential system new potential symmetries can
be derived. We have proposed as examples an inhomogeneous diffusion equation, a porous medium equation and a
family of Fokker–Planck equations with drift. These hidden potential symmetries have not been derived in Ref. [16],
for the Fokker–Planck equation by considering the natural potential system, nor for the inhomogeneous nonlinear
equation (15) in Ref. [19], by considering the natural potential system nor in Ref. [13] by considering a general
integral variable.
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