

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 428 (2008) 2955-2960

www.elsevier.com/locate/laa

A. Fernández Valles

Department of Mathematics, University of Cádiz, Polígono río san Pedro s/n, 11510 Puerto Real, Spain

Received 10 October 2007; accepted 22 January 2008 Available online 10 March 2008 Submitted by M. Tsatsomeros

Abstract

Let $T = (T_1, ..., T_N)$ be a system of N commuting contractions defined on a infinite dimensional separable Hilbert space H. In this article, we will prove that if $(1, ..., 1) \in \sigma_{He}(T) \cap \mathbb{T}^N$, where $\sigma_{He}(T)$ denotes the essential Harte spectrum of T and \mathbb{T}^N the unit politorus, respectively, then there exists a nontrivial cone C invariant for each contraction T_j ; $j \in \{1, ..., N\}$. This result complements recent results of Tsatsomeros and co-workers [Roderick Edwards, Judith J. McDonald, Michael J. Tsatsomeros, On matrices with common invariant cones with applications in neural and gene networks, Linear Algebra Appl. 398 (2005) 37–67; Michael Tsatsomeros, A criterion for the existence of common invariant subspaces of matrices, Linear Algebra Appl. 322 (1–3) (2001) 51–59]. © 2008 Published by Elsevier Inc.

© 2008 Published by Elsevier Inc.

AMS classification: Primary 47B37; Secondary 47B38, 47B99

Keywords: Common invariant closed cones; N-tuples of operators

1. Introduction

Let $T = (T_1, ..., T_N)$ be a *N*-tuple of commuting contractions defined on a Hilbert space *H*. We say that $C \subset H$ is a cone of *H* if $rC + sC \subset C$ for each $r, s \ge 0$. We say that *T* has a non-trivial invariant closed cone if there exists a closed cone $C \subset H, C \ne H, \{0\}$ such that $T_j(C) \subset C$ for each $j \in \{1, ..., N\}$.

² Partially supported by Junta de Andalucía FQM-260 and Vicerrectorado de investigación UCA. *E-mail address:* aurora.fernandez@uca.es

Similary we say that $T = (T_1, ..., T_N)$ has a non-trivial invariant closed subspace if there exists $F \subset H$, $F \neq H$, {0} closed subspace such that $T_j(F) \subset F$ for each $j \in \{1, ..., N\}$.

If H is finite dimensional, the existence of common invariant cones and subspaces have been studied previously in [1,6]. This problem is very interesting for its applications to neural and gene networks.

From a theoretical point of view, we study the existence of common invariant cones for commuting contractions on the infinite dimensional setting. The problem turns really complicated when H is infinite dimensional. In fact, it is not even known the existence of a non-trivial closed invariant subspace or cone for a single operator defined on a separable Hilbert space. This is know as "The invariant subspace problem".

Let *T* be a bounded linear operator defined on a separable Banach space *X*. Let us say that *T* is cyclic if there exists $x \in X$ such that

Linear Span{ $T^n x: n \in \mathbb{N}$ }

is dense in X. In this case x is called a cyclic vector for T. With this new terminology in hand, an operator T has a non-trivial invariant closed subspace if and only if T has a non-cyclic vector x.

On the other hand we say that *T* is supercyclic if there exists $x \in X$ such that $\{\lambda T^n x; \lambda \in \mathbb{C}, n \in \mathbb{N}\}$ is dense in *X*. In this case *x* is called a supercyclic vector for *T*. The existence of a non-supercyclic vector is in general a weaker condition than the existence of a invariant closed cone. For *N*-tuple of operators the existence of a non-trivial supercyclic vector and the existence of a invariant closed cone are not related. In [7] it was proved that under some hypothesis about the Harte spectrum of $T = (T_1, \ldots, T_N), T_1, \ldots, T_N$ have a common non-supercyclic vector. For supercyclic operators and related questions we refer to the survey by Montes–Salas (see [3]).

The next section is devoted to prove our main result (Theorem 2.2). From our main result we being able to give a spectral sufficient condition which guarantees the existence of a common invariant closed cone for T_1, \ldots, T_N and complements the results by Tsatsomeros an co-workers (see [1,6]).

2. Main result

Let T be a contraction defined on a Hilbert space H. Let us consider the subspaces

$$M_1 = \{x \in H : T^n x \to 0\}$$

and

$$M_2 = \{ x \in H : (T^*)^n x \to 0 \}.$$

 M_1 and M_2 are invariant closed subspaces for T and T^* , respectively. To find a non-trivial invariant closed subspace is sufficient to consider the cases $M_1 = \{0\}$, H and $M_2 = \{0\}$, H. Depending of the posibles combinations of M_1 and M_2 , the classes C_{00} , C_{10} , C_{01} , C_{11} are defined. For example $T \in C_{11}$ if $M_1 = M_2 = H$. Concretely in this case a result of Nagy–Foias guarantee the existence of a hyperinvariant closed subspace for T (see [5]).

In the case of an *N*-tuple $T = (T_1, ..., T_N)$, after the same reduction we have the cases $T_j \in C_0$ or $T_j \in C_0$. We will guarantee the existence of a non-trivial invariant closed cone for the cases $T_j \in C_0$, $j \in \{1, ..., N\}$ or $T_j \in C_0$, $j \in \{1, ..., N\}$, and under some spectral sufficient conditions.

Now we will see our main result. We will need the following technical lemma whose proof can be found in [4].

Lemma 2.1. There exists a sequence of positive numbers (c_i) , $i \in \mathbb{N}$ such that $\sum_{i=1}^{\infty} c_i^2 = 1$ and $\sum_{i=k+1}^{\infty} c_i^2 > 3c_k$ for all $k \ge 1$.

Theorem 2.2. Let $T = (T_1, \ldots, T_N)$ be a N-tuple of commuting contractions such that $(1, \ldots, 1) \in$ $\sigma_{He}(T) \cap \mathbb{T}^N$ and $T_i \in C_0$ for each $j \in \{1, \dots, N\}$. If $\{\alpha_n\} \subset [0, 1]$ is a sequence of real positive numbers converging to zero, then there exists $x_0 \in H \setminus \{0\}$ such that for all multi-index n = (n_1,\ldots,n_N) with $n_j \ge 1$ for each $j \in \{1,\ldots,N\}$

$$\operatorname{Re}\langle T_1^{n_1}\ldots T_N^{n_N}x_0,x_0\rangle \geq \alpha_{j(n)}$$

where j(n) is defined by $j(n) = \max\{n_1, \dots, n_N\}$.

Proof. Since T_1, \ldots, T_N are contractions, the point $(1, \ldots, 1)$ is a boundary point, that is, $(1, \ldots, 1) \in \partial \sigma_{He}(T)$ and therefore, $(1, \ldots, 1) \in \sigma_{\pi e}(T)$, here $\sigma_{\pi e}(T)$ denotes the upper semi-Fredholm spectrum. Therefore, for all $\varepsilon > 0$ and $M \subset H$ of finite codimension, there exists $v \in M$ of norm 1 such that

 $||T_i v - v|| < \varepsilon; \quad j \in \{1, \dots, N\}.$

We can suppose without loss of generality that the sequence (α_n) is decreasing, in other case we will replace it for the sequence (sup{ α_i : $j \ge n$ }). Let (c_n) be another real numbers sequence satisfying the conditions of Lemma 2.3. Let (δ_n) be a sequence of real numbers satisfying

$$\delta_i < \frac{1-\alpha_1}{2^i}$$

and

$$\delta_i < \min\left\{\frac{c_k}{1-2^{i-k+1}}k \in \{1,\ldots,i+1\}\right\}.$$

Since $\alpha_i \to 0$, then there exists m_0 such that $\alpha_{m_0} < \sum_{i=2}^{\infty} c_i^2 - 3c_i$. We will construct by induction two sequences $(m_k)_{k=1}^{\infty} \subset \mathbb{N}$ and $(x_i)_{i=1}^{\infty} \subset H$ from the following form.

Let us suppose that $k \in \mathbb{N}$, and that $x_i \in H$ and $m_i \in \mathbb{N}$ have been already constructed for i < k. We take $M = \{v \in H : v \perp T_1^{n_1} \dots T_N^{n_N} x_i \text{ for } 0 \leq n_j \leq m_{k-1} \text{ and } i < k\}$. since M is of finite codimension, there exists x_k of norm 1 such that

$$x_k \perp T_1^{n_1} \ldots T_N^{n_N} x_i$$

for $0 \leq n_i \leq m_{k-1}$ and i < k and such that

$$\|T_1^{n_1}\ldots T_N^{n_N}x_k-x_k\|\leqslant \delta_k$$

By hypothesis $T_i \in C_0$. Let us consider $m_k > m_{k-1}$ large enough such that

$$||T_{j}^{n}x_{i}|| < \delta_{k}, \quad j \in \{1, \dots, N\}$$
 (1)

for all $n \ge m_k$ and all $j \in \{1, \ldots, N\}$, and

$$\alpha_{m_k} < \sum_{i=k+2}^{\infty} c_i^2 - 3c_{k+1}$$

However, since T_1, \ldots, T_N are contractions, we deduce from (1) that

$$||T_1^{s_1}\dots T_N^{s_N}x_i|| \leq \delta_k \quad \text{for all } i \leq k$$

and whenever $\max\{s_1, \ldots, s_N\} \ge m_k$.

Let us suppose that the sequences (m_k) and (x_k) have been constructed. Let us consider the vector $x_0 = \sum_{i=1}^{\infty} c_i x_i$. Since the sequence (x_i) is orthonormal $||x_0|| = 1$.

Given $n = (n_1, \ldots, n_N)$ a multi-index such that $j(n) = \max\{n_1, \ldots, n_k\} \leq m_0$, then we have

$$\operatorname{Re}\langle T_{1}^{n_{1}} \dots, T_{N}^{n_{N}} x_{0}, x_{0} \rangle = \operatorname{Re} \sum_{i=1}^{\infty} c_{i} \langle T_{1}^{n_{1}} \dots T_{N}^{n_{N}} x_{i}, x_{0} \rangle$$

$$= \operatorname{Re} \sum_{i=1}^{\infty} c_{i} \left(\langle x_{i}, x_{0} \rangle - \left\langle \sum_{i=1}^{\infty} x_{i} - T_{1}^{n_{1}} \dots T_{N}^{n_{N}} x_{i}, x_{0} \right\rangle \right)$$

$$\geqslant \sum_{i=1}^{\infty} c_{i}^{2} - \sum_{i=1}^{\infty} c_{i} \| x_{i} - T_{1}^{n_{1}} \dots T_{N}^{n_{N}} x_{i} \|$$

$$\geqslant 1 - \sum_{i=1}^{\infty} c_{i} \delta_{i} > 1 - \sum_{i=1}^{\infty} \frac{1 - \alpha_{1}}{2^{i}} \geqslant \alpha_{j(n)}.$$
(2)

We use the inequality $||T_1^{n_1} \dots T_N^{n_N} x_k - x_k|| \leq \delta_k$ in the third line of (2), and the inequality $\delta_i < \frac{1-\alpha_1}{2i}$ in the fourth line.

Now let us suppose that $m_{k-1} < j(n) \le m_k$ for $k \ge 1$, where $j(n) = \max\{n_1, \ldots, n_N\}$ and $n = (n_1, \ldots, n_N)$:

$$\operatorname{Re}\langle T_{1}^{n_{1}} \dots T_{N}^{n_{N}} x_{0}, x_{0} \rangle = \operatorname{Re} \sum_{i=1}^{k-1} c_{i} \langle T_{1}^{n_{1}} \dots T_{N}^{n_{N}} x_{i}, x_{0} \rangle$$

$$+ \operatorname{Re} c_{k} \langle T_{1}^{n_{1}} \dots T_{N}^{n_{N}} x_{k}, x_{0} \rangle + \sum_{i=k+1}^{\infty} \operatorname{Re} c_{i} \langle T_{1}^{n_{1}} \dots T_{N}^{n_{N}} x_{i}, x_{0} \rangle$$

$$\geqslant \sum_{i=1}^{k-1} c_{i} \delta_{k-1} - c_{k} + \sum_{i=k+1}^{\infty} c_{i} ||x_{i} - T_{1}^{n_{1}} \dots T_{N}^{n_{N}} x_{i} ||$$

$$\geqslant -(k-1)\delta_{k-1} - c_{k} + \sum_{i=k+1}^{\infty} \delta_{i}$$

$$\geqslant \sum_{i=k+1}^{\infty} c_{i}^{2} - 3c_{k} \geqslant \alpha_{m_{k-1}} \geqslant \alpha_{j(n)}.$$
(3)

We use the inequality $\alpha_{m_k} < \sum_{i=k+2}^{\infty} c_i^2 - 3c_{k+1}$ in the last line of (3). Therefore, the proof is complete. \Box

Using Theorem 2.2, we can obtain the following consequence which complement the results by Tsatsomeros and co-workers [1,6] in the finite dimensional setting.

Corollary 2.3. Let $T = (T_1, ..., T_N)$ be a *N*-tuple of commuting contractions, and let us suppose that $(1, ..., 1) \in \sigma_{He}(T) \cap \mathbb{T}^N$ and $T_j \in C_0$ for each $j \in \{1, ..., N\}$. Then there exists a closed cone *C* such that $T_j(C) \subset C$ for each $j \in \{1, ..., N\}$.

Proof. We can deduce from Theorem 2.2 the existence of $x_0 \in H \setminus \{0\}$ such that

$$\operatorname{Re}\langle T_1^{n_1} \dots T_N^{n_N} x_0, x_0 \rangle > 0 \tag{4}$$

2958

for all $n_j \ge 1$, $j \in \{1, ..., N\}$. Let us denote by \mathscr{P}_N the set of polynomials p in N variables, such that the summands of p have the form

$$cx_1^{n_1}\ldots x_N^{n_N}$$

with $n_j \ge 1$ for all $j \in \{1, ..., N\}$ and c > 0. Let us consider the cone

$$C = \{p(T_1,\ldots,T_N)(x_0) : p \in \mathscr{P}_N\}.$$

It is clear that C is invariant under each T_j , $j \in \{1, ..., N\}$ and by (4) C is non-trivial.

Corollary 2.4. Let $T = (T_1, ..., T_N)$ be a N-tuple of commuting contractions, and let us suppose that $(1, ..., 1) \in \sigma_{He}(T) \cap \mathbb{T}^N$ and $T_j \in C_{\cdot 0}$ for each $j \in \{1, ..., N\}$. Then there exists a non-trivial closed cone C such that $T_j(C) \subset C$ for each $j \in \{1, ..., N\}$.

Proof. Since $T_i \in C_{.0}$, then by Theorem 2.2

$$\operatorname{Re}\langle (T_1^*)^{n_1} \dots (T_N^*)^{n_N} x_0, x_0 \rangle \geq \alpha_{j(n)} \Leftrightarrow \operatorname{Re}\langle x_0, T_1^{n_1} \dots T_N^{n_N} x_0 \rangle \geq \alpha_{j(n)}.$$

Therefore

 $C = \{p(T_1, \ldots, T_N)(x_0) : p \in \mathscr{P}_N\}$

is a common invariant closed cone. \Box

3. Concluding remarks and open problems

Let $T = (T_1, T_2)$ a 2-tuple of contractions. If we change the hypothesis $(1, 1) \in \sigma_{He}(T) \cap \mathbb{T}^2$ by $(\mu_1, \mu_2) \in \sigma_{He}(T) \cap \mathbb{T}^2$ we can only get to

 $T_j(C) \subset \mu_j C, \quad j \in \{1, 2\}.$

It would be interesting if in this case we can find a common non-trivial invariant closed cone.

If $T_1 \in C_0$ and $T_2 \in C_0$, with $(1, 1) \in \sigma_{He}(T_1, T_2)$ the existence of a common invariant closed cone is not known.

Let us consider the subspaces

$$M_1 = \{x \in H \text{ such that } T_1^n T_2^n x \to 0\}$$

$$M_2 = \{x \in H \text{ such that } (T_1^*)^n (T_2^*)^n x \to 0\}.$$

 M_1 and M_2 are invariant closed subspaces for T_j and T_j^* ; $j \in \{1, 2\}$, respectively, therefore, M_2^{\perp} is invariant by T_1, T_2 . Hence, we can suppose that M_1 and M_2 are trivial, that is $\{\theta\}$ or H.

Let us suppose that $M_1 = H = M_2$, then we said that $T = (T_1, T_2)$ is of class K_{11} and in this case there exists a common non-trivial invariant subspaces for T_1 , T_2 (see [2]).

If $M_1 = \{0\}$ we say that T belongs to the class $K_{0.}$, and if $M_2 = \{0\}$ T belongs to the class and $K_{.0}$. These cases are non-trivial. It would be interesting to investigate if Theorem 2.2 is true if $T \in K_0$ or $K_{.0}$.

References

- Roderick Edwards, Judith J. McDonald, Michael J. Tsatsomeros, On matrices with common invariant cones with applications in neural and gene networks, Linear Algebra Appl. 398 (2005) 37–67.
- [2] Marek Kosiek, Functional Calculus and Common Invariant Subspaces, Uniwersytetu Jagielloskiego, Krakóv, 2001.

- [3] Alfonso Montes-Rodríguez, Héctor N. Salas, Supercyclic subspaces, Bull. London Math. Soc. 35 (6) (2003) 721-737.
- [4] V. Müller, Power bounded operators and supercyclic vectors, Proc. Amer. Math. Soc. 131 (12) (2003) 3807–3812. (electronic).
- [5] Béla Sz. Nagy, Ciprian Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland Publishing Co., Amsterdam, 1970 (Translated from the French and revised).
- [6] Michael Tsatsomeros, A criterion for the existence of common invariant subspaces of matrices, Linear Algebra Appl. 322 (1–3) (2001) 51–59.
- [7] A. Fernández Valles, Common non-supercyclic vectors for commuting contractions, Studia Sci. Math. Hungar., in press.