

About the statistical uniform convergence

Antonio Aizpuru and Marina Nicasio-Llach

Abstract. In this work we study the concept of statistical uniform convergence. We generalize some results of uniform convergence in double sequences to the case of statistical convergence. We also prove a basic matrix theorem with statistical convergence.

Keywords: statistical convergence, double sequences, statistical uniform convergence. **Mathematical subject classification:** 40A05.

1 Introduction

The concept of statistical convergence was introduced by Steinhaus [11] and by Fast [5] in 1951.

Other works about the study of statistical convergence are [6], [7] and [9]. In [8] Kolk begins the study of the applications of the statistical convergence to the Banach spaces. In [4] there are important results that relate the statistical convergence to classical properties of Banach spaces. In [2], the weakly unconditionally Cauchy series are characterized by the statistical convergence.

Let *A* be a set of natural numbers. Denote by |A| the cardinal of *A* and if $n \in \mathbb{N}$ we denote $A(n) = \{i \in A : i \leq n\}$. The density of *A* is defined by $dt(A) = \lim_{n \to \infty} \frac{1}{n} |A(n)|$, in case it exists.

In this work we denote by X a metric space with a metric d. Consider $(x_n)_n$ a sequence in X. $(x_n)_n$ is said to be statistically convergent to some $x \in X$, we write $st - \lim_n x_n = x$, if for each $\varepsilon > 0$, $dt(\{i \in \mathbb{N} : d(x_i, x) < \varepsilon\}) = 1$.

A sequence $(x_n)_n$ of X is said to be statistically Cauchy if for each $\varepsilon > 0$ and $n \in \mathbb{N}$ there exists an integer $m \ge n$ such that $dt(\{i \in \mathbb{N} : d(x_i, x_m) < \varepsilon\}) = 1$.

Fridy [7] proved that a sequence $(x_n)_n$ is statistically convergent if and only if it is statistically Cauchy.

Salat [10] proved that $st - \lim_n x_n = x$ if and only if there exists $A \subset \mathbb{N}$ with dt(A) = 1 and $\lim_{n \in A} x_n = x$.

Received 18 May 2006.

Let $(x_{ij})_{i,j}$ be a double sequence in X. It is said that $(x_{ij})_{i,j}$ converges to x_0 (in Pringsheim's sense) if for each $\varepsilon > 0$ there exist $p, q \in \mathbb{N}$ such that $d(x_{ij}, x_0) < \varepsilon$, if $i \ge p$ and $j \ge q$. It is said that $(x_{ij})_{i,j}$ is Cauchy (in Pringsheim's sense) if for each $\varepsilon > 0$ there exist $p, q \in \mathbb{N}$ such that $d(x_{pq}, x_{ij}) < \varepsilon$, if $i \ge p, j \ge q$.

If *X* is complete we have that a double sequence $(x_{ij})_{i,j}$ is Cauchy if and only if it is convergent. Observe that a double sequence $(x_{ij})_{i,j}$ which is Cauchy is not necessarily bounded.

Let *A* be a subset of $\mathbb{N} \times \mathbb{N}$. It is said that the density of *A* is $\alpha \in [0, 1]$ if there exists the double limit

$$dt_2(A) = \lim_{p,q} \frac{|A(p,q)|}{pq} = \alpha,$$

where $A(p,q) = \{(i, j) \in A : i \le p, j \le q\}, (p,q) \in \mathbb{N} \times \mathbb{N}.$

It is said that the double sequence $(x_{ij})_{i,j}$ is statistically convergent to x_0 if for each $\varepsilon > 0$ it is satisfied that $dt_2(\{(i, j) : d(x_{ij}, x_0) < \varepsilon\}) = 1$. A double sequence $(x_{ij})_{i,j}$ is said to be statistically Cauchy if for each $\varepsilon > 0$ there exist $p, q \in \mathbb{N}$ such that $dt_2(\{(i, j) \in \mathbb{N} \times \mathbb{N} : d(x_{ij}, x_{pq}) < \varepsilon\}) = 1$.

Moricz, in [9], proved that if X is complete then every double sequence $(x_{ij})_{i,j}$ which is Cauchy is also convergent. He also proved that $st - \lim_{i,j} (x_{ij}) = x_0$ if and only if there exists $A \subset \mathbb{N} \times \mathbb{N}$ with $dt_2(A) = 1$ and such that $(x_{ij})_{(i,j) \in A}$ is convergent to x_0 (in Pringsheim's sense).

If we use the completion CX of the metric space X we deduce that:

- i) If $(x_i)_i$ is a statistically Cauchy sequence of X then there exists a subset $A \subset \mathbb{N}$ such that dt(A) = 1 and $(x_i)_{i \in A}$ is Cauchy.
- ii) If $(x_{ij})_{i,j}$ is a statistically Cauchy double sequence then there exists $A \subset \mathbb{N} \times \mathbb{N}$ with $dt_2(A) = 1$ and such that $(x_{ij})_{(i,j) \in A}$ is Cauchy.

In this work we introduce the following concepts:

We say that $(x_{ij})_{i,j}$ is strongly statistically convergent to x_0 and we write $Sst - \lim x_{ij} = x_0$ if there exists $K \subset \mathbb{N}$ with dt(K) = 1 and such that $(x_{ij})_{(i,j)\in K\times K}$ is convergent to x_0 .

We say that $(x_{ij})_{i,j}$ is strongly statistically Cauchy if there exists $K \subset \mathbb{N}$ with dt(K) = 1 and such that $(x_{ij})_{(i,j)\in K\times K}$ is Cauchy.

This concept is more exigent than the double statistical limit of a sequence but it will allow us obtain better results related to uniform convergence.

It is clear that if $K \subset \mathbb{N}$ and dt(K) = 1 then $dt_2(K \times K) = 1$, so if $(x_{ij})_{i,j}$ is strongly statistically convergent (or strongly statistically Cauchy) then $(x_{ij})_{i,j}$ is statistically convergent (or statistically Cauchy).

But the converse is not true as we see in the next example:

Consider $N_1 = \{1, 3, 5, 7, \ldots\}$, $N_2 = \{1, 2, 3, 5, 6, 7, 9, \ldots\}$, ..., $N_k = \mathbb{N} \setminus \{m2^k : m \in \mathbb{N}\}$. We have that $dt(N_k) = 1 - \frac{1}{2^k}$ if $k \in \mathbb{N}$. Consider $A = \{(i, j) : j \in N_i\}$. We have that $dt_2(A) = 1$. Suppose that there exists $K \subset \mathbb{N}$ with dt(K) = 1 and $K \times K \subset A$. Fix $i \in K$, then for each $j \in K$ it will be $(i, j) \in K \times K \subset A$, so $j \in N_i$ and $K \subset N_i$, but this is a contradiction because $dt(N_i) = 1 - \frac{1}{2^i}$.

If we fix a vector x_0 in the metric space X and consider the double sequence $(x_{ij})_{i,j}$ in X where

$$x_{i,j} = \begin{cases} x_0 & \text{if } (i,j) \in A \\ 0 & \text{otherwise} \end{cases}$$

we have that $(x_{ij})_{i,j}$ is statistically convergent to x_0 but it is false that $(x_{ij})_{i,j}$ is strongly statistically convergent to x_0 . It is also easy to find examples of double sequences that are statistically Cauchy whereas not strongly statistically Cauchy.

In this work we will obtain a double sequence result related to uniform convergence. We can find it partially and without proof in [1] and here we will give a simple proof of it.

Our purpose is to finish the work with a section where we will study double sequences results for the statistical convergence.

2 Uniform convergence of double sequences

Theorem 1. Let $(x_{ij})_{i,j}$ be a double sequence in a metric space X such that $\lim_{j} x_{ij} = x_{i0}$, for each i and $\lim_{i} x_{ij} = x_{0j}$, for each j. Then the following assumptions are equivalent:

- 1. $\lim_{i} x_{ii} = x_{i0}$, uniformly on *i*.
- 2. $\lim_{i} x_{ii} = x_{0i}$, uniformly on *j*.
- 3. $(x_{ii})_{i,i}$ is Cauchy in Pringsheim's sense.

In this situation we have that the sequences $(x_{i0})_i$ and $(x_{0j})_j$ are Cauchy and in the completion CX of X it is satisfied that $\lim_i x_{i0} = \lim_j x_{0j} = \lim_{ij} x_{ij}$, *i.e., we have that* $\lim_i \lim_j x_{ij} = \lim_j \lim_i x_{ij} = \lim_i x_{ij}$. **Proof.** $1 \Rightarrow 2$. Let $\varepsilon > 0$. We have that there exists j_0 such that if $p, q \ge j_0$ then $d(x_{ip}, x_{iq}) < \frac{\varepsilon}{4}$ for each *i*, so we deduce that $d(x_{0p}, x_{0q}) < \frac{\varepsilon}{4}$ if $p, q \ge j_0$. Fix $p > j_0$. Since $x_{ip} \xrightarrow[i \to \infty]{} x_{0p}$ we have that there exists i_1 such that if $i \ge i_1$ then

$$d(x_{ip}, x_{0p}) < \frac{\varepsilon}{4}$$
, so
 $d(x_{ij}, x_{0j}) \le d(x_{ij}, x_{ip}) + d(x_{ip}, x_{0p}) + d(x_{0p}, x_{0j}) \le \varepsilon$

if $j > j_0$ and $i \ge i_1$.

For $j \in \{1, ..., j_0\}$ there exists i_2 such that if $i \ge i_2$ then $d(x_{ij}, x_{0j}) < \varepsilon$, so if $i \ge i_0 = \max\{i_1, i_2\}$ it is $d(x_{ij}, x_{0j}) < \varepsilon$ for every $j \in \mathbb{N}$.

In the same manner we can see that $2 \Rightarrow 1$.

It is easy to prove that $3 \Rightarrow 1$ and we are going to see that 1 and 2 implies 3. Let $\varepsilon > 0$. We have that there exists j_0 such that if $p, q \ge j_0$ it is $d(x_{ip}, x_{iq}) < \varepsilon/2$ for each *i* and there also exists i_0 such that if $p, q \ge i_0$ it is $d(x_{pj}, x_{qj}) < \varepsilon/2$ for each *j*.

Let $N = \max(i_0, j_0)$. If p > N and q > N we have that $d(x_{NN}, x_{pq}) \le d(x_{NN}, x_{pN}) + d(x_{pN}, x_{pq}) < \varepsilon$.

In the situation of 1, 2 and 3 we will prove that $(x_{i0})_i$ is Cauchy. Let $\varepsilon > 0$. We have that there exists N such that if $p, q \ge N$ then $d(x_{NN}, x_{pq}) < \frac{\varepsilon}{2}$, so if $p, p', q, q' \ge N$ then $d(x_{pq}, x_{p'q'}) \le d(x_{pq}, x_{NN}) + d(x_{NN}, x_{p'q'}) \le \varepsilon$. So, if $q' \longrightarrow \infty$ we deduce that $d(x_{pq}, x_{p'0}) \le \varepsilon$ if $p, q, p' \ge N$ and if $q \longrightarrow \infty$ we deduce that $d(x_{p0}, x_{p'0}) \le \varepsilon$ if $p, p' \ge N$.

Let $x_0 \in CX$ be such that $\lim_i x_{i0} = x_0$. Let $\varepsilon > 0$. We now apply the same argument as before to obtain that there exists N such that if $p, q, p' \ge N$ then $d(x_{pq}, x_{p'0}) \le \varepsilon$, so if $p' \longrightarrow \infty$ we deduce that $d(x_{pq}, x_0) < \varepsilon$ if $p, q \ge N$.

Analogously we prove that $(x_{0j})_j$ is Cauchy, so there exists $y_0 \in CX$ such that $\lim_j x_{0j} = y_0$ and in the same manner we can see that $\lim_j (x_{ij}) = y_0$, so $x_0 = y_0$.

Remark 1. If X is a metric space and $(x_{ij})_{i,j}$ is a double sequence such that for each *i*, $(x_{ij})_{i,j}$ is Cauchy and for each *j*, $(x_{ij})_{i,j}$ is a Cauchy sequence, it is satisfied that the following sentences are equivalent:

- i) $(x_{ij})_{i,j}$ in uniformly Cauchy on *i*.
- ii) $(x_{ij})_{i,j}$ is uniformly Cauchy on *j*.
- iii) $(x_{ij})_{i,j}$ is Cauchy in Pringsheim's sense.

To prove this we only need to consider the completion CX of X.

3 Uniform statistical convergence

Let $(x_{ij})_{i,j}$ be a double sequence in *X*. Consider $(x_{i0})_i$, a sequence in *X*. We say that $(x_{ij})_{i,j}$ is strongly uniformly statistical convergent (susc) to $(x_{i0})_i$ if there exists $K \subset \mathbb{N}$ with dt(K) = 1 such that for each $\varepsilon > 0$, $dt(\{j : d(x_{ij}, x_{i0}) < \varepsilon \text{ for each } i \in K\}) = 1$.

In [6], A. Freedman and J.J. Sember prove the following result:

Let $\{A_i : i \in I\}$ be a countable collection of subsets of \mathbb{N} such that $dt(A_i) = 1$ for each $i \in I$. Then there is a set $A \subset \mathbb{N}$ such that dt(A) = 1 and $|A \setminus A_i| < \infty$ for all $i \in I$.

Theorem 2. Let X be a metric space and consider $(x_{ij})_{i,j}$, a double sequence in X such that for each i, $(x_{ij})_{i,j}$, is statistical convergent and for each j, $(x_{ij})_{i,j}$, is statistical convergent. Then the following assumptions are equivalent:

- 1. For each i, $(x_{ij})_{i,j}$, is susc.
- 2. For each j, $(x_{ij})_{i,j}$, is susc.
- 3. The double sequence $(x_{ij})_{i,j}$ is strongly statistically Cauchy.

Proof. Let us first prove that 1 implies 2. Let $K \subset \mathbb{N}$ be with dt(K) = 1 and such that if $\varepsilon > 0$ then $dt(\{j : d(x_{ij}, x_{i0}) < \varepsilon \text{ for each } i \in K\}) = 1$.

If $j \in \mathbb{N}$ we define $K_j = \{n \in \mathbb{N} : d(x_{in}, x_{i0}) < 1/j \text{ for each } i \in K\}$.

An analysis similar to that used by Salat [10] is the following one: Let $v_1 \in K_1$. There exists $v_2 \in K_2$ with $v_2 > v_1$ such that if $n \ge v_2$ and $n \in K_2$ then

$$\frac{|K_2(n)|}{n} \ge 1 - \frac{1}{2}, \quad \text{where} \quad K_2(n) = \left\{ i \in K_2 : i \le n \right\}.$$

We obtain by induction the sequence $v_1 < v_2 < \dots$ such that if $n \ge v_j$ then $\frac{|K_j(n)|}{n} \ge 1 - \frac{1}{i}$.

n

Observe that $K_1 \supset K_2 \supset \ldots \supset K_j \supset \ldots$ and we define

$$K_0 = (1, v_1) \cup ((v_1, v_2) \cap K_1) \cup \ldots \cup ((v_j, v_{j+1}) \cap K_j) \cup \ldots$$

It follows easily that $dt(K_0) = 1$ and $\lim_{j \in K_0} x_{ij} = x_{i0}$ uniformly in $i \in K$. For each *j* there exists $B_j \subset \mathbb{N}$ with $dt(B_j) = 1$ and $\lim_{i \to \infty} x_{ij} = x_{0j}$.

Applying [6] we deduce that there exists $B \subset \mathbb{N}$ with dt(B) = 1 and such that $|B \setminus B_i| < \infty$ if $j \in \mathbb{N}$. If $A = K \cap K_0 \cap B$ we have that dt(A) = 1 and

for each *i*, $(x_{ij})_{(i,j)\in A\times A}$ is uniformly convergent to x_{i0} if $i \in A$, so for each *j*, $(x_{ij})_{(i,j)\in A\times A}$ is uniformly convergent to x_{0j} if $j \in A$. Also it is satisfied that $(x_{ij})_{(i,j)\in A\times A}$ is Cauchy.

Then $1 \Rightarrow 2$ and $1 \Rightarrow 3$ are proved.

We can see that $2 \Rightarrow 1$ as we have seen that $1 \Rightarrow 2$. An easy computation shows that $3 \Rightarrow 1$.

Remark 2. Under the same hypotheses of the last theorem we deduce that there exists $x_0 \in CX$ such that $st - \lim_i x_{i0} = st - \lim_j x_{0j} = Sst - \lim_i x_{ij} = x_0$, i.e., we have that $st - \lim_i st - \lim_j x_{ij} = st - \lim_j st - \lim_i x_{ij} = Sst - \lim_i x_{ij}$.

Definition 1. Let $(x_{ij})_{i,j}$ be a double sequence in X and $(x_{i0})_i$ a sequence. We say that $(x_{ij})_{i,j}$ is uniformly statistically convergent to $(x_{i0})_i$ if for each $\varepsilon > 0$ it is satisfied that $dt_2(\{(i, j) : d(x_{ij}, x_{i0}) < \varepsilon\}) = 1$.

If $(x_{0j})_j$ is a sequence in X we say that $(x_{ij})_{i,j}$ is uniformly statistically convergent to $(x_{0j})_j$ if for each $\varepsilon > 0$ it is satisfied that $dt_2(\{(i, j) : d(x_{ij}, x_{0j}) < \varepsilon\}) = 1$.

Theorem 3. Let X be a metric space and consider $(x_{ij})_{i,j}$, a double sequence in X such that for each i it is $st - \lim_j x_{ij} = x_{i0}$ and for each j it is $st - \lim_i x_{ij} = x_{0j}$. Then the following assumptions are equivalent:

- 1. $(x_{ij})_{i,j}$ is uniformly statistically convergent to $(x_{i0})_i$, for each *i* and $(x_{i0})_i$ is statistically convergent to x_0
- 2. $(x_{ij})_{i,j}$ is uniformly statistically convergent to $(x_{0j})_j$ for each j and $(x_{0j})_j$ is statistically convergent to x_0
- 3. $st \lim_{i,j} (x_{ij}) = x_0$

Proof. We first prove that 1 implies 3. We can proceed analogously to the work of Moricz in [9]. Let $(n_r)_r$ be a sequence of natural numbers such that $2n_r \leq n_{r+1}$ if $r \in \mathbb{N}$ and $1/(pq)|\{(i, j) : i \leq p, j \leq q \text{ and } d(x_{ij}, x_{i0}) > 2^{-r}\}| < 1/(2^{2r})$ if $p, q \geq n_r$. Define the double sequence $(\alpha_{ij})_{i,j}$ as follows:

If min(*i*, *j*) < n_1 it is $\alpha_{ij} = x_{ij}$. If *p*, *q* satisfy that $n_p \le i < n_{p+1}, n_q \le j < n_{q+1}$ it is

$$\alpha_{ij} = \begin{cases} x_{ij} & \text{if } d(x_{ij}, x_0) < \frac{1}{2^{\min(p,q)}} \\ x_{i0} & \text{if } d(x_{ij}, x_0) > \frac{1}{2^{\min(p,q)}} \end{cases}$$

Bull Braz Math Soc, Vol. 39, N. 2, 2008

Consider $K = \{(i, j) : x_{ij} = \alpha_{ij}\}$. As in [9] we can prove that $dt_2(K) = 1$ and for $(x_{ij})_{(i,j)\in K}$ it is satisfied that if we consider $\varepsilon > 0$ there exists n_0 such that if $i \ge n_0$, $j \ge n_0$ and $(i, j) \in K$ then $d(x_{ij}, x_{i0}) < \varepsilon$.

We have, by hypothesis, that there exists $K' \subset \mathbb{N}$ with dt(K') = 1 and $\lim_{i \in K'} x_{i0} = x_0$.

Let $K_0 = \{(i, j) \in K : i \in K'\}$. It is easy to check that $dt_2(K_0) = 1$.

Finally we have that, for $\varepsilon > 0$, there exists n_0 such that if $(i, j) \in K_0$, $i \ge n_0$ and $j \ge n_0$ then $d(x_{ij}, x_{i0}) < \frac{\varepsilon}{2}$ and $d(x_{i0}, x_0) < \frac{\varepsilon}{2}$, so $d(x_{ij}, x_0) < \varepsilon$ if $i, j \ge n_0$ and $(i, j) \in K_0$.

Then $st - \lim(x_{ij}) = x_0$.

Let us prove that 3 implies 1. The equivalence between 3 and 2 would be proved analogously.

We have that there exists n_0 such that if $i, j \ge n_0$, $(i, j) \in K$ then $d(x_{ij}, x_0) < \varepsilon/2$. Consider $H = \{i \in \mathbb{N} : dt(\{j : (i, j) \in K\}) \neq 0\}.$

It is easy to check that dt(H) = 1 and if $K_0 = \{(i, j) \in K, i \in H\}$ it is satisfied that $dt_2(K_0) = 1$.

Fix $i \in H$ with $i \ge n_0$. We have that $d(x_{ij}, x_0) < \varepsilon/2$ if $j \ge n_0$ with $(i, j) \in K_0$. If $j \longrightarrow \infty$ we deduce that $d(x_{i0}, x_0) < \varepsilon/2$ if $i \ge i_0$. So, if $(i, j) \in K_0$ and $i \ge n_0$, $j \ge n_0$ it is $d(x_{ij}, x_{i0}) \le d(x_{ij}, x_0) + d(x_{i0}, x_0) < \varepsilon$. Then $(x_{ij})_{i,j}$ is uniformly statistically convergent to $(x_{i0})_i$.

Remark 3.

- a) Observe that with the same hypotheses of the last theorem it is satisfied that $st \lim_{i} (st \lim_{j} x_{ij}) = st \lim_{j} (st \lim_{i} x_{ij}) = st \lim_{i,j} x_{ij}$.
- b) We do not know whether the last theorem remains true if in 1 we do not consider the hypothesis $(x_{i0})_i$ is statistically convergent to x_0 and in 2 we do not consider $(x_{0i})_i$ is statistically convergent to x_0 .

4 The Basic Matrix Theorem for the statistical convergence

In this section we denote by X a normed space.

In [3] and [12] it is proved the well known Antosik-Swartz Basic Matrix Theorem, which states:

Let $(x_{ij})_{i,j}$ be a double sequence in a normed space X such that:

- i) $\lim_{i \to j} x_{ij} = x_j$ if $j \in \mathbb{N}$.
- ii) If B is an infinite subset of \mathbb{N} then there exists an infinite subset $C \subset B$ such that the sequence $\left(\sum_{i \in C} x_{ij}\right)_i$ is Cauchy.

Then it is satisfied that $\lim_{i \to j} x_{ij} = x_j$ uniformly in $j \in \mathbb{N}$.

The following theorem is a version of this one but with statistical convergence. If $\sum_i x_i$ is a series in X and C is an infinite subset of N we say that the statistical summation of $\sum_{i \in C} x_i$ is x_0 , and we write $st - \sum_{i \in C} x_i = x_0$, if

$$st - \lim_{n} \left(\sum_{i \in C \cap \{1, \dots, n\}} x_i \right) = x_0.$$

Theorem 4. Let X be a normed space and consider $(x_{ij})_{i,j}$ a double sequence in X that satisfies:

- i) $st \lim_{i} x_{ii} = 0$ for each *i*.
- ii) $(x_{ij})_i$ is a statistically Cauchy sequence for each j.
- iii) For each infinite subset $B \subset \mathbb{N}$ there exists an infinite subset $C \subset B$ such that the sequence $(st \sum_{i \in C} x_{ij})_i$ is Cauchy.

Then the double sequence $(x_{ij})_{i,j}$ is strongly uniformly statistically Cauchy.

Proof. From [6] we deduce that there exists $A \subset \mathbb{N}$ with dt(A) = 1 and such that $\lim_{j \in A} x_{ij} = 0$ if $i \in A$ and $(x_{i,j})_{i \in A}$ is Cauchy if $j \in A$.

If we prove that $(x_{i,j})_{i \in A}$ is uniformly Cauchy in $j \in \mathbb{N}$ it will be proved the theorem.

On the contrary there exists $\varepsilon > 0$ such that for each $i \in A$ there exists k > i, $k \in A$ and $j \in A$ such that $||x_{ij} - x_{kj}|| > \varepsilon$.

In the rest of the proof the natural numbers considered belong to A.

For $i_1 = 1$ there exists $k_1 > i_1$ and j_1 such that $||x_{i_1j_1} - x_{k_1j_1}|| > \varepsilon$.

On the other hand there exists $l_1 > j_1$ such that

$$\|x_{i_1j}-x_{k_1j}\|<\frac{\varepsilon}{3\cdot 2}\quad \text{if}\quad j\geq l_1.$$

Since $(x_{ij})_{i,j}$ is Cauchy if $j \in \{1, ..., l_1\}$, we have that there exists $p_1 > i_1$ such that if $p, q \ge p_1$ then $\sum_{j \in C} ||x_{pj} - x_{qj}|| < \frac{\varepsilon}{3}$ if $C \subset \{1, ..., l_1\} \cap A$.

For $i_2 > p_1$ there exist $k_2 > i_2$ and j_2 such that $||x_{i_2j_2} - x_{k_2j_2}|| > \varepsilon$.

It is clear that $j_2 > l_1$ and there exists $l_2 > j_2$ such that

$$||x_{i_1j} - x_{k_1j}|| < \frac{\varepsilon}{3 \cdot 2^2}$$
 and $||x_{i_2j} - x_{k_2j}|| < \frac{\varepsilon}{3 \cdot 2^2}$ if $j > l_2$.

Bull Braz Math Soc, Vol. 39, N. 2, 2008

Inductively we obtain the following sequences in A:

$$i_1 < k_1 < i_2 < k_2 < \ldots < i_r < k_r < \ldots$$

 $j_1 < l_1 < j_2 < l_2 < \ldots < j_r < l_r < \ldots$

If r > 1 we have that:

- i) $\sum_{j \in C} \|x_{i_r j} x_{k_r j}\| < \frac{\varepsilon}{3}$ if $c \subset \{j_1, \dots, j_{r-1}\} \cap A$.
- ii) $||x_{i_rj_r} x_{k_rj_r}|| > \varepsilon$.
- iii) $||x_{i_r j_{r+h}} x_{k_r j_{r+h}}|| < \frac{\varepsilon}{3 \cdot 2^{r+h}}$ if $h \ge 1$.

If $B = \{j_1, \ldots, j_r, \ldots\}$ there exists $C \subset B$ infinite such that the sequence $(st - \sum_{j \in C} x_{ij})_{i \in \mathbb{N}}$ is Cauchy. So there exists n_0 such that if $r > n_0$ then

$$\left\| st - \sum_{j \in C} x_{i_r j} - st - \sum_{j \in C} x_{k_r j} \right\| < \frac{\varepsilon}{5}$$

but if $j = j_{r+h}$ then $||x_{i_r j_{r+h}} - x_{k_r j_{r+h}}|| < \frac{\varepsilon}{3 \cdot 2^{r+h}}$.

Since $st - \sum_{j \in C} x_{i_r j}$ exists and $st - \sum_{j \in C} x_{k_r j}$ exists we have that $st - \sum_{j \in C} (x_{i_r j} - x_{k_r j})$ exists too but since $\sum_{j \in C} ||x_{i_r j} - x_{k_r j}|| < \infty$ it is easy to deduce that $\sum_{j \in C} (x_{i_r j} - x_{k_r j})$ exists and is the same as $st - \sum_{j \in C} (x_{i_r j} - x_{k_r j})$, but if $r > n_0$ we have that

$$\left\|\sum_{j \in C} (x_{i_r j} - x_{k_r j})\right\| = \left\|\sum_{j \in \{j_1, \dots, j_{r-1}\}} (x_{i_r j} - x_{k_r j}) + (x_{i_r j_r} - x_{k_r j_r}) + \sum_{j \in \{j_{r+1}, \dots\}} (x_{i_r j} - x_{k_r j})\right\| \ge \varepsilon - \frac{2\varepsilon}{3} = \frac{\varepsilon}{3}$$

and this is a contradiction.

References

- A. Aizpuru and A. Gutiérrez-Dávila. Unconditionally Cauchy series and uniform convergence on Matrices. Chinese Ann. Math. Ser B, 25(3) (2004), 335–346.
- [2] A. Aizpuru, M. Nicasio-Llach and F.J. Pérez-Fernández. Statistical convergence and weakly unconditionally Cauchy series. Preprint 2006.

 \square

- [3] P. Antosik and C. Swartz. *Matrix Methods in Analysis*. Lecture notes in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, 1985.
- [4] J. Connor, M. Ganichev and V. Kadets. A characterization of Banach spaces with separable duals via weak statistical convergence. J. Math. Anal. Appl., 244 (2000), 251–261.
- [5] Fast. Sur la convergence statistique. Colloq. Math., 2 (1951), 241–244.
- [6] A.R. Freeman and J.J. Sember. *Densities and summability*. Pacific J. Math., 95 (1981), 293–305.
- [7] J. Fridy. On statistical convergence. Analysis, 5 (1985), 301–313.
- [8] E. Kolk. The statistical convergence in Banach spaces. Tartu. Ul Toimetised, 928 (1991), 41–52.
- [9] F. Moricz. *Statistical convergence of multiple sequences*. Arch. Math., **81** (2003), 82–84.
- [10] T. Salat. On statistically convergent sequences of real numbers. Math. Slovaca, 30(2) (1980), 139–150.
- [11] H. Steinháus. Sur la convergence ordinarie et la convergence asymptotique. Colloq. Math., 2 (1951), 73–74.
- [12] C. Swartz. *The Schur lemma for bounded multiplier convergent Series*. Math. Ann., 263 (1983), 283–288.

A. Aizpuru

Departamento de Matemáticas Universidad de Cádiz, Apdo. 40 11510-Puerto Real (Cádiz) SPAIN

E-mail: antonio.aizpuru@uca.es

M. Nicasio-Llach

Departamento de Matemáticas Universidad de Cádiz, Apdo. 40 11510-Puerto Real (Cádiz) SPAIN

E-mail: marina.nicasio@uca.es