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Abstract

In this paper we study the existence of weakly efficient solutions for some nonsmooth and nonconvex vector optimization
problems. We consider problems whose objective functions are defined between infinite and finite-dimensional Banach
spaces. Our results are stated under hypotheses of generalized convexity and make use of variational-like inequalities.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The connection between variational inequalities and optimization problems is well known (e.g. [1,6,11,12])
and have been extensively investigated in the recent years by several authors. One of the main works in this
direction was done by Giannessi [8], where many existence results for optimization problems were obtained by
using variational inequalities.

For multiobjective optimization problems, Giannessi proved in [9] that there exists an equivalence between
efficient solutions of differentiable convex optimization problems and the solutions of a variational inequality
of Minty type. He also established similar results for efficient solutions. On the other hand, using subdifferen-
tials, Lee showed in [13] that analogous results are true for nonsmooth convex problems defined between
finite-dimensional spaces.

For some nonconvex differentiable vector problems defined between infinite-dimensional Banach spaces,
Chen and Craven [4] proved the equivalence of weakly efficient solutions and the solutions of a certain
0096-3003/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.amc.2007.11.027

* Corresponding author.
E-mail addresses: lucelina@mat.ufpr.br (L.B. Santos), marko@ueubiobio.cl (M. Rojas-Medar), gabriel.ruiz@uca.es (G. Ruiz-Garzón),

rufian@us.es (A. Rufián-Lizana).

mailto:lucelina@mat.ufpr.br
mailto:marko@ueubiobio.cl
mailto:gabriel.ruiz@uca.es
mailto:rufian@us.es


548 L.B. Santos et al. / Applied Mathematics and Computation 200 (2008) 547–556
variational-like inequality. Using this characterization they proved an existence result for weakly efficient
solutions.

In this work we consider the following two problems.

1. An infinite-dimensional problem:
Minimize f ðxÞ
subject to x 2 K;

ðP1Þ
where X and Y are two Banach spaces, f : X ! Y is a given function and K is a nonempty subset of X.
2. A finite-dimensional problem:
Minimize f ðxÞ :¼ ðf1ðxÞ; . . . ; fpðxÞÞ
subject to x 2 X ;

ðP2Þ
where fi : Rn ! R ði ¼ 1; . . . ; pÞ are given functions and X is a nonempty subset of Rn.

For both problems, by ‘‘minimize” we mean ‘‘find the weakly efficient solution of the problem” Our objec-
tive is to solve problem (P1) without assuming hypotheses of differentiability, which extends early results by
Chen and Craven [4], and to solve problem (P2) under assumptions of generalized convexity, which extends
early results by Lee [13].

This paper is organized as follows: In Section 2 we fix the notation and recall some facts from nonsmooth
analysis. In Section 3 we consider the problem (P1) and establish our existence result. In Section 4 we consider
the problem (P2).

2. Preliminaries

Let X and Y be two real Banach spaces. We will denote by k � k the norm in Y. Let K be a nonempty sub-
set of X and P � Y a pointed convex cone (i.e. P

T
ð�PÞ ¼ f0g) such that int P 6¼ ;. Also, let f : X ! Y be a

given function. We consider the problem (P1) given in the previous section. The notion of optimality (or
equilibria) that we consider here is the weak efficiency. We say that x0 2 K is a weakly efficient solution of
(P1) if
f ðxÞ � f ðx0Þ 62 �int P ; 8x 2 K:
In particular, for the problem (P2), the definition of weakly efficient solution is done by taking P ¼ Rp
þ in the

previous definition, that is, x0 2 X is a weakly efficient solution of (P2) if does not exist x 2 X such that
fiðxÞ < fiðx0Þ; 8 i ¼ 1; . . . ; p:
Now, we recall some notions and results from nonsmooth analysis. Let / be a locally Lipschitz function from
a Banach space X into R. The Clarke generalized directional derivative of /, at a point �x 2 X , and in the direc-
tion d 2 X , denoted by /0ð�x; dÞ, is given by:
/0ð�x; dÞ ¼ lim sup
y!�x
t#0

/ðy þ tdÞ � /ðyÞ
t

and the Clarke generalized gradient of / at �x is given by
o/ð�xÞ ¼ fx� 2 X � : /0ð�x; dÞP hx�; di; 8d 2 Xg;

where X � denotes the topological dual of X and h�; �i is the canonical bilinear form pairing X � and X.

The next proposition establish some properties of the generalized directional derivative and the generalized
gradient of Clarke.

Proposition 1. Let f : X! R be a locally Lipschitz function with Lipschitz constant k. Then the following

assertions are true:
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1. The function v 7! f 0ðx; vÞ is finite, sublinear and satisfies
jf 0ðx; vÞj 6 kkvk:

2. For each x 2 X; of ðxÞ is a w�-compact and nonempty subset of X �. Furthermore, knk 6 k, for all n 2 of ðxÞ,

where
knk ¼ sup
x2X
kxk61

hn; xi; n 2 X �:
3. For each v 2 X , we have
f 0ðx; vÞ ¼ maxfhn; vi : n 2 of ðxÞg:

4. One has n 2 of ðxÞ if and only if f 0ðx; vÞP hn; vi for each v 2 X .

5. The function ðx; vÞ 7! f 0ðx; vÞ is upper semicontinuous.

A function f : X! R is called regular (or Clarke regular) at x 2 X, if

(i) For each v 2 X , there exists the usual directional derivative of f at x, in the direction v, denoted by
f 0ðx; vÞ.

(ii) For all v 2 X ; f 0ðx; vÞ ¼ f 0ðx; vÞ.

Furthermore, if f is regular at x 2 X, for each x 2 X, then we say that f is regular in X. The following result
holds (see [5]).

Proposition 2. These following assertions are true:

(a) If fi are regular at x 2 X, then o
Pn

i¼1fi

� �
ðxÞ ¼

Pn
i¼1ofiðxÞ. (The inclusion � is true, without the regularity

assumption).

(b) If f is convex and Lipschitz near x 2 X then f is regular at x.

(c) If f is continuously differentiable at x 2 X, then of ðxÞ ¼ ff 0ðxÞg, where f 0 is the usual derivative.
We note that if C is a nonempty subset of X, then the distance function dC : E! R, defined by
dCðxÞ ¼ inffkx� ck : c 2 Cg, is not differentiable, but it is (globally) Lipschitz, with Lipschitz constant equal
to 1.

Let C be a nonempty subset of X and x 2 C. We say that v 2 X is a tangent vector to C at x if d0ðx; vÞ ¼ 0.
We denote by T CðxÞ the set of tangent vectors to C at x and T CðxÞ is called tangent cone of C at x. The normal
cone of C at x is defined by
NCðxÞ ¼ fn 2 X � : hn; vi 6 0; 8v 2 T CðxÞg:
It can be proved that, for each x 2 C; T CðxÞ is a convex cone, closed in X, and NCðxÞ is a convex cone,
w�-closed in X �.

The following Proposition establishes a necessary condition for optimality.

Proposition 3. Let f : X! R be a locally Lipschitz function and let x� be a minimum of f in C � X. Then
0 2 of ðx�Þ þ NCðx�Þ: ð1Þ

Note that the condition (1) is equivalent to
f 0ðx�; vÞP 0; 8v 2 T Cðx�Þ: ð2Þ
For more details on nonsmooth analysis, we refer the reader to the book by Clarke [5].
Next, we recall the definition of strongly compactly Lipschitz function, which is very important for the

analysis of the infinite-dimensional problem (P1).
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Definition 4 [19]. A function h : X ! Y is said to be strongly compactly Lipschitz at �x 2 X if there exists a
multifunction, that is, a point-to-set-map, R : X ! CompðY Þ, where CompðY Þ denotes the set of all compact
subsets of Y, and there exists a function r : X � X ! Rþ satisfying

(i) limx!�x
d!0

rðx; dÞ ¼ 0.

(ii) Exists a P 0 such that
t�1½hðxþ tdÞ � hðxÞ� 2 RðdÞ þ kdkrðx; tÞBY

for all x 2 �xþ aBY and t 2 ð0; aÞ, where BY denotes the closed unit ball around the origin of Y.

(iii) Rð0Þ ¼ f0g and R is an upper semicontinuous multifunction.

Moreover, we say that h is a strongly compactly Lipschitz function if it is strongly compactly Lipschitz at all
�x 2 X .

If Y has finite dimension, then h is strongly compactly Lipschitz at �x if and only if it is locally Lipschitz near
�x. If h is strongly compactly Lipschitz, then ðu� � hÞðxÞ ¼ hu�; hðxÞi is locally Lipschitz, for all u� 2 Y �. This fact
is very important because it allows us to extend some results of the nonsmooth analysis to functions defined
between infinite-dimensional spaces. For more details about strongly compactly Lipschitz functions, we refer
the reader to [19].

3. The infinite-dimensional problem (P1)

We recall some definitions of generalized convexity for functions defined between Banach spaces. Given a
cone P � Y , the dual cone of P is defined by
P � ¼ fn 2 Y � : hn; xiP 0; 8x 2 Pg:

It can be proved that, if P is a convex cone, with intP 6¼ ;, then hn; vi > 0, for all v 2 int P (see [10]). We will
need the following concepts of generalized convexity:

Definition 5 [15]. We say that a locally Lipschitz function h : K � X ! R is invex on K, with respect to g, if
for any x; y 2 K, there exists a vector gðx; yÞ 2 T KðyÞ such that
hðxÞ � hðyÞ � h0ðy; gðx; yÞÞP 0:
Definition 6 [2]. Let X and Y be two Banach spaces and suppose that P � Y is a convex cone. We say that
f : K � X ! Y is P-invex on K, with respect to g, if x� � f : K ! R is invex on K with respect to g, for each
x� 2 P �.

Certainly, if f : K � X ! R is differentiable and convex on K, then f is invex and gðx; yÞ ¼ x� y.
Note that when K is open, or more generally, if y 2 int K, we have T KðyÞ ¼ X and, in this case, the above

definition coincides with that given by Weir and Jeyakumar [20]. Moreover, when Y is infinite-dimensional
and f is differentiable, the Definition 6 is the same to that given by Santos et al. in [17]. Recall that the set
K is called invex with respect to g if the vector y þ agðx; yÞ is in K for each x; y 2 K and a 2 ½0; 1�.

In the sequence, we suppose that X and Y are two Banach spaces, K is a nonempty subset of X and P � Y is
a convex cone such that int P 6¼ ;.

We consider the following vector variational-like inequality.

ðVIÞ Find x0 2 K such that, for each x 2 K, there exists x� 2 P � n f0g such that
ðx� � f Þ0ðx0; gðx; x0ÞÞP 0:
Under suitable hypotheses, each solution of ðVIÞ is a weakly efficient solution of (P1). In effect we have.

Theorem 7. Let K be an invex set with respect to g and f : K � X ! Y be a P-invex function with respect to g.
Then each solution of ðVIÞ is a weakly efficient solution of (P1).
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Proof. Suppose that x0 is solution of ðVIÞ which is not a weakly efficient solution of (P1). Then there exists
x 2 K such that
f ðxÞ � f ðx0Þ 2 �intP : ð3Þ

On the other hand, there exists x� 2 P � n f0g such that ðx� � f Þ0ðx0; gðx; x0ÞÞP 0. Since f is P-invex, it follows
from (3) that
x� � f ðxÞ � x� � f ðx0ÞP ðx� � f Þ0ðx0; gðx; x0ÞÞP 0: ð4Þ

On the other hand, it follows from (3) that
x�ðf ðxÞ � f ðx0ÞÞ ¼ x� � f ðxÞ � x� � f ðx0Þ < 0;
which contradicts (4). h

The following Lemma will be useful in the proof of our main result of this section.

Lemma 8 (KKM-Fan Theorem [7]). Let X be a topological vector space, E � X be a nonempty set and

F : E� X a multifunction such that for each x 2 E, the set F ðxÞ is closed and nonempty. Moreover, suppose that

there exists some x 2 E such that F ðxÞ is compact. If for each finite subset fx1; . . . ; xng of E one has
cofx1; . . . ; xng �
[n

i¼1
F ðxiÞ;
where cofx1; . . . ; xng is the convex hull of fx1; . . . ; xng, then
\
x2E

F ðxÞ 6¼ ;:
Now we establish our existence result for (P1).

Theorem 9. Let X be a reflexive Banach space and K a closed, convex and bounded subset of X. Let f : K ! Y be

a strongly compactly Lipschitz function, P-invex respect to g. Suppose that for each x 2 K and each

x� 2 P � n f0g, the sets
Uðx;x�Þ :¼ fy 2 K : ðx� � f Þ0ðx; gðy; xÞÞ < 0g

are convex. Furthermore, assume that g is continuous and gðx; xÞ ¼ 0 for each x 2 K. Then problem (P1) has a

weakly efficient solution.

Proof. For y 2 K and x� 2 P � n f0g we define
F ðy;x�Þ :¼ fx 2 K : ðx � f Þ0ðx; gðy; xÞÞP 0g:

By Theorem 7, it is sufficient to prove that the variational-like inequality ðVIÞ has a solution, that is,
\

y2K

[
x�2P�nf0g

F ðy;x�Þ 6¼ ;:
To this end, we will prove that
\
y2K

\
x�2P�nf0g

F ðy;x�Þ 6¼ ;:
Consider the multifunction G : K � X , defined by
GðyÞ ¼
\

x�2P�nf0g
F ðy;x�Þ:
We will prove that
T

y2KGðyÞ 6¼ ; by using of Lemma 8. Suppose that the space X is equipped with the weak
topology. Note that GðyÞ is nonempty for all y 2 K. In fact, gðy; yÞ ¼ 0 and thus y 2 F ðy;x�Þ for all
x� 2 P � n f0g. Hence y 2 GðyÞ. Furthermore, GðyÞ is closed. In fact, let y 2 K and ðxkÞ � GðyÞ be a sequence
such that xk ! x. Then ðx� � f Þðxk; gðy; xkÞÞP 0 for all x� 2 P � n f0g. Fixed x� 2 P � n f0g, we have
lim sup
k!1
ðx� � f Þ0ðxk; gðy; xkÞÞP 0: ð5Þ
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But the function ðx� � f Þ0ð�; �Þ is upper semicontinuous (see Proposition 1). Hence, it follows from (5) that
ðx� � f Þ0ðx; gðy; xÞÞP 0;
that is, x 2 GðyÞ and thus GðyÞ is closed. But GðyÞ is convex and hence, weakly closed.
On the other hand, K is weakly compact, because it is a convex, closed and bounded subset of X and X is a

reflexive space. So GðyÞ is weakly compact.
Now, take x1; . . . ; xn 2 K. We should prove that cofx1; . . . ; xng �

Sn
i¼1GðxiÞ.

Suppose that this is false. Then there exist ai P 0, i ¼ 1; . . . ; n, such that
Pn

i¼1ai ¼ 1 and
x :¼

Pn
i¼1aixi 62

Sn
i¼1GðxiÞ. Hence, for each i, there exists x�i 2 P � n f0g such that x 62 F ðxi;x�i Þ, that is,

ðx�i � f Þ0ðx; gðxi; xÞÞ < 0.
Next we construct a x� 2 P � n f0g such that xi 2 Xðx;x�Þ for all i, which will contradict the convexity of

Xðx;x�Þ since gðx; xÞ ¼ 0.
Define for i; j 2 f1; . . . ; ng;m 2 N,
xðmÞi;j ¼
x�j if ðx�j � f Þ0ðx; gðxi; xÞÞ < 0;

1
m x�j if ðx�j � f Þ0ðx; gðxi; xÞÞP 0;

(

xðmÞi ¼
Xn

j¼1

xðmÞi;j :
Clearly xðmÞi are linear, and for each m;xðmÞi are not all zeros, for i ¼ 1; . . . ; n. Furthermore, xðmÞi are con-
tinuous. In fact, define
J 1 ¼ fj : ðx�j � f Þ0ðx; gðxi; xÞÞ < 0g; a1 ¼ #J 1;

J 2 ¼ fj : ðx�j � f Þ0ðx; gðxi; xÞÞP 0g; a2 ¼ #J 2;

M ¼ max
j¼1;...;n

kx�jk;
where #J is the number of elements of J.
Then, for all u 2 Y , we have
jxðmÞi ðuÞj ¼
X
j2J1

x�j ðuÞ þ
1

m

X
j2J2

x�j ðuÞ
�����

����� 6X
j2J1

kx�jkkuk þ
1

m

X
j2J 2

kx�jkkuk ¼ a1 þ
1

m
a2

� �
Mkuk
that is, xðmÞi 2 Y �. Furthermore, xðmÞi ðuÞP 0, for each u 2 P (because xðmÞi is a nonnegative linear combination
of functionals in P �).

On the other hand,
ðxðmÞi � f Þ0ðxi; gðxi; xÞÞ ¼
X
j2J1

x�j � f þ 1

m

X
j2J2

x�j � f

" #0

ðx; gðxi; xÞÞ

6

X
j2J1

ðx�j � f Þ0ðx; gðxi; xÞÞ þ
1

m

X
j2J2

ðx�j � f Þ0ðx; gðxi; xÞÞ
and hence, by taking m sufficiently big, say, m P mðiÞ, we have
ðxðmÞi � f Þ0ðxi; gðxi; xÞÞ 6
X
j2J1

ðx�j � f Þ0ðx; gðxi; xÞÞ < 0; 8m P mðiÞ:
Take M ¼ max16i6nmðiÞ and define xðMÞ ¼
Pn

i¼1x
ðMÞ
i . Then we have xðMÞ is in P � n f0g and
ðxðMÞ � f Þ0ðx; gðxi; xÞÞ 6
X
ðxðMÞi � f Þ0ðx; gðxi; xÞÞ < 0
and so xi 2 Uðx; xðMÞÞ for all i ¼ 1; . . . ; n. But Uðx; xðMÞÞ is convex and thus x 2 Uðx; xðMÞÞ. This contradicts
gðx; xÞ ¼ 0. Therefore, it follows from Lemma 8, that

T
y2KGðyÞ 6¼ ;. The proof is complete. h
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Remark 10. We notice that if K is compact and f is continuous, then (P1) has a weakly efficient solution (see
Sawaragi et al. [18]). Thus, if we apply Theorem 9 to the problem (P2), we do not obtain any new result,
because the hypotheses considered there imply that K is compact and f is continuous (see Brézis [3]).
4. The finite-dimensional problem (P2)

In this Section, we will consider a variational-like inequality of (weak) Minty type and we establish a char-
acterization of weakly efficiency for (P2), in terms of the solutions of that inequality. Using this result and a
fixed point theorem for multifunctions, we establish our existence result for (P2).

Our variational-like inequality is:

ðWMVLIÞ Find y 2 X such that, for each x 2 X and each ni 2 ofiðxÞ; i ¼ 1; . . . ; p,
ðnT
1 gðx; yÞ; . . . ; nT

p gðx; yÞÞ 62 �intRp
þ:
In [16], Santos et al. proved that, under certain hypotheses, the solutions of ðWMVLIÞ are weakly efficient
solutions of (P2).

Proposition 11 [16]. Let X be a nonempty set of Rn, invex with respect to g, and fi : Rn ! R; i ¼ 1; . . . ; p are

invex functions, locally Lipschitz with respect to g. Suppose that g is skew (that is, gðx; yÞ ¼ �gðy; xÞ; 8x; y 2 X ).

Then y 2 X is a weakly efficient solution of (P2) if and only if y 2 X is a solution of ðWMVLIÞ.

Now, we recall a fixed-point theorem of Fan–Browder, whose proof can be found in Park [14].

Lemma 12 [14]. Let X be a nonempty convex subset of a Hausdorff topological vector space E and let K be a

nonempty compact subset of X. Suppose that A;B : X � X are multifunctions satisfying the following conditions:

1. Ax � Bx for all x 2 X ,

2. Bx is a convex set for all x 2 X ,

3. Ax 6¼ ; for all x 2 K,

4. A�1y ¼ fx 2 X ; y 2 Axg is an open set for each y 2 X ,

5. for each finite subset N of X, there exists a compact, convex and nonempty subset LN of X such that LN 	 N
and Ax

T
LN 6¼ ; for all x 2 LN n K.

Then there is a �x 2 B�x (that is, �x is a fixed point of B).

Next, we will use Proposition 11 and Lemma 12 to establish our result about the existence of weakly effi-
cient solution for nonsmooth invex vectorial problem, under a weaker compactness hypothesis on the feasible
set X.

Theorem 13. Let X be a nonempty and invex subset of Rn with respect to g, and fi : Rn ! R; i ¼ 1; . . . ; p, invex
and locally Lipschtz functions with respect to the same g. Assume that g is skew and such that gð�; yÞ is convex and

continuous, for each y 2 X . Moreover, suppose that there exists a compact, convex and nonempty set LN � X ,

such that LN 	 N and for all x 2 LN n K, there is z 2 LN such that there exist ni 2 ofiðzÞ; i ¼ 1; . . . ; p satisfying
ðnT
1 gðz; xÞ; . . . ; nT

p gðz; xÞÞ 2 �intRp
þ:
Then problem (P2) has a weakly efficient solution.

Proof. For sake of readability, we give a proof using a concise notation. We denote by of ðxÞ the set
of1ðxÞ � . . . ofpðxÞ; x 2 X . Let s ¼ ðs1; . . . ; spÞ, where si 2 Rn; i ¼ 1; . . . ; p. We denote by sTgðx; yÞ the vector
ðsT
1 gðx; yÞ; . . . ; sT

p gðx; yÞÞ 2 Rp:
Let A;B : X � X be multifunctions defined by:
Ax :¼ fz 2 X : 9t 2 of ðzÞ; tTgðz; xÞ 2 �intRp
þg;

Bx :¼ fz 2 X : 8t 2 of ðxÞ; tTgðz; xÞ 2 �intRp
þg:
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We will prove (by using of Lemma 12) that exists y 2 K such that Ay ¼ ;, that is, y is solution of (WMVLI).
By Proposition 11, this is sufficient to prove our result.

First we prove that the multifunctions A and B satisfy the conditions (1), (2), (4) and (5) of Lemma 12 and
that B does not have a fixed point. So, Lemma 12 will imply the existence of y 2 K such that Ay ¼ ;.

We show that the condition (1) of Lemma 12 holds. Take x 2 X and z 2 Ax. Then, exists t ¼ ðn1; . . . ; npÞ 2
of ðzÞ such that
ðnT
1 gðz; xÞ; . . . ; nT

p ðz; xÞÞ 2 �intRp
þ: ð6Þ
Let s ¼ ðbn1; . . . ; bnpÞ 2 of ðxÞ. By using of the invexity of functions fi and the skewness of g, we have that, for
each i ¼ 1; . . . ; p,
bnigðz; xÞ 6 f 0

i ðx; gðz; xÞÞ 6 fiðzÞ � fiðxÞ ¼ �ðfiðxÞ � fiðzÞÞ 6 �nT
i gðx; zÞ ¼ nT

i gðz; xÞ: ð7Þ

Follows from (6) and (7),
ðbnT
1 gðz; xÞ; . . . ; bnT

p ðz; xÞÞ 2 �intRp
þ;
and so z 2 Bx.
Now, we will see that the second condition of Lemma 12 holds: Let x 2 X ; z1; z2 2 Bx and k 2 ½0; 1�. Then,

for each s ¼ ðn1; . . . ; npÞ 2 of ðxÞ, we have
ðnT
1 gðz1; xÞ; . . . ; nT

p gðz1; xÞÞ; ðnT
1 gðz2; xÞ; . . . ; nT

p gðz2; xÞÞ 2 �intRp
þ: ð8Þ
For each j ¼ 1; . . . ; p, we consider nj ¼ ðnð1Þj ; . . . ; nðnÞj Þ, where nðkÞj 2 R; gðx; yÞ ¼ ðg1ðx; yÞ; . . . ; gnðx; yÞÞ;
gkðx; yÞ 2 R. Then, from the convexity of gk and (8), we obtain
nT
j gðkz1 þ ð1� kÞz2; xÞ ¼

Xn

k¼1

nðkÞj gkðkz1 þ ð1� kÞz2; xÞ 6
Xn

k¼1

nðkÞj ½kgkðz1; xÞ þ ð1� kÞgkðz2; xÞ�

¼ knT
j gðz1; xÞ þ ð1� kÞnT

j gðz2; xÞ < 0;
for each j ¼ 1; . . . ; p. Hence kz1 þ ð1� kÞz2 2 Bx.
The fourth condition is proved as follows. For all z 2 X , we will show that the set ðA�1zÞc is closed. To do

this, consider a sequence ðxnÞ � ðA�1zÞc such that xn converges to x. Then xn 62 A�1z; 8n 2 N. Let
t ¼ ðn1; . . . ; npÞ 2 of ðzÞ be such that
ðnT
1 gðz; xnÞ; . . . ; nT

p gðz; xnÞÞ 62 �intRp
þ: ð9Þ
Because gð�; zÞ is continuous and skew, we have that gðz; �Þ is also continuous and skew and, since ð�intRp
þÞ

c is
a closed set, by taking n!1 in (9) we obtain
ðnT
1 gðz; xÞ; . . . ; nT

p gðz; xÞÞ 62 �intRp
þ;
and thus x 2 ðA�1zÞc.
From the hypotheses, condition (5) of Lemma 12 also holds.
However, B does not have a fixed point, because otherwise it would exists some x 2 X such that s 2 of ðxÞ

and sTgðx; xÞ ¼ 0 2 �intRp
þ, which is an absurd. Thus, from Lemma 12, it follows that exists y 2 K such that

Ay ¼ ;. h

We have the following consequence of Theorem 13.

Corollary 14. Let X be a nonempty subset of Rn, invex with respect to g, and suppose that g is skew and such that

gð�; yÞ is convex and continuous. Moreover, assume that
K ¼ fx 2 X : ðf 0
1 ðz0; gðz0; xÞÞ; . . . ; f 0

p ðz0; gðz0; xÞÞÞ 62 �intRp
þg;
is compact for some z0 2 X . Then (P2) has a weakly efficient solution.
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Proof. Let N be a nonempty and finite subset of X. Define LN ¼ coðN
S

KÞ (where co denotes the closed
convex hull of A). Then, for each x 2 LN n K we have
ðf 0
1 ðz0; gðz0; xÞÞ; . . . ; f 0

p ðz0; gðz0; xÞÞÞ 2 �intRp
þ: ð10Þ
Take z ¼ z0 2 K � LN and ni 2 ofiðzÞ. We have
nT
i gðz0; xÞ 6 f 0

i ðz0; gðz0; xÞÞ; i ¼ 1; . . . ; p; ð11Þ

and from (10) and (11), we obtain
ðnT
1 gðz; xÞ; . . . ; nT

p gðz; xÞÞ 2 �intRp
þ:
Thus, by Theorem 13, (P2) has a weakly efficient solution. h
5. Conclusions

In this paper, we obtain an existence theorem for weakly efficient solutions of vector optimization problems
defined between infinite dimensional Banach spaces whose objective function is invex and strongly compactly
Lipschitz. We characterize the solutions of this problem in terms of the solutions of a variational-like inequal-
ity and, by applying this characterization and the KKM-Fan Theorem, we establish our result. The approach
that we used here is similar to the one employed by Chen and Craven [4], where the authors considered a dif-
ferentiable problem.

Also, we consider the vector problem defined between finite-dimensional spaces, and for this problem we
also obtain a result on the existence of weakly efficient solution. Our approach is analogous to the one used
by Lee [13], where it was considered the non-differentiable convex case. We use a characterization of the
weakly efficiency in terms of the solutions of the (weak) Minty type inequalities and a fixed point theorem
for multifunctions to prove our result.

The results that we present in this paper generalize those obtained by Chen and Craven [4] and Lee [13].
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