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Abstract The ‘Campo de Gibraltar’ region is a very
industrialized area where very few air pollution
studies have been carried out. Up to date, no model
has been developed in order to predict air pollutant
levels in the different towns spread in the region.
Carbon monoxide (CO), Sulphur dioxide (SO2) and
suspended particulate matter (SPM) series have been
investigated (years 1999–2000–2001). Multilayer
perceptron models (MLPs) with backpropagation
learning rule have been used. A resampling strategy

with two-fold crossvalidation allowed the statistical
comparison of the different models considered in this
study. Artificial neural networks (ANN) models were
compared with Persistence and ARIMA models and
also with models based on standard Multiple Linear
Regression (MLR) over test sets with data that had
not been used in the training stage. The models based
on ANNs showed better capability of generalization
than those based on MLR. The designed procedure of
random resampling permits an adequate and robust
multiple comparison of the tested models. Principal
component analysis (PCA) is used to reduce the
dimensionality of data and to transform exogenous
variables into significant and independent compo-
nents. Short-term predictions were better than medi-
um-term predictions in the case of CO and SO2 series.
Conversely, medium-term predictions were better in
the case of SPM concentrations. The predictions are
significantly promising (e.g., dSPM 24-ahead=0.906,
dCO 1-ahead=0.891, dSO2 1-ahead=0.851).
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Introduction

The forecasting of air pollutant trends has received
much attention in recent years. It is an important and
popular topic in environmental science, as concerns
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have been raised about the health impacts caused by
unacceptable ambient air pollutant levels. Hence, the
study of the influence and the trends relating to these
pollutants are extremely significant to the public
health and the image of the cities.

Predicting atmospheric pollutant concentrations in
both urban and industrial areas is of great significance
for decision-making. The present study considers the
possibility of using neural techniques to identify
models for atmospheric pollutant prediction. Specifi-
cally, carbon monoxide (CO), sulphur dioxide (SO2)
and suspended particulate matter (SPM) have been
considered in different points of the area under study
(Campo de Gibraltar region, at Andalusia, in the
South of Spain). This is a very industrialized area
with the highest emissions of these pollutants in the
Andalusian region.

In urban areas, anthropogenic sources, including
fossil fuel combustion, industrial activities, biomass
burning and anthropogenic hydrocarbons, contribute far
more to the concentration of CO than the natural
sources. SO2 is a prominent anthropogenic pollutant
and contributes to the formation of sulphuric acid, the
formation of sulphate aerosols and the deposition of
sulphate and SO2 at the ground surface. SPM (or TSP,
total suspended particulates) are the general term used
for a mixture of solid particles and liquid droplets
found in the air. These particles, which come in a wide
range of sizes, originate from many different stationary
and mobile sources as well as natural sources. The
danger represented by these air pollutants has been
largely demonstrated from toxicological studies both
for short and long exposition times (Schwartz et al.
1996; Wilson and Suh 1997; Goldberg et al. 2001).

The study presented here is essentially focused on the
power of neural techniques for the identification of
short-term and medium-term prediction models based
on recorded time-series data. The potential of ANNs as a
predictive tool has also been tested in this work. ANNs
require no priori assumptions about the model in terms
of mathematical relationships or data distribution.
Neural networks have found many applications on time
series prediction in the literature. The most widespread
ANN design is a multilayer perceptron (MLP) with a
learning procedure based on the backpropagation
algorithm (Bishop 1995; Rumelhart et al. 1986).

In general, ANNs are currently recognized as state-
of-the-art approach for statistical prediction of air
quality. Nunnari et al. (1998) compared MLP models

with a neuro-fuzzy approach and a traditional
ARMAX model. The results confirmed the superior-
ity of MLP predictors. The results obtained showed
that neural techniques have a good capacity for
modelling air pollution when they are compared with
the traditionally used autoregressive prediction mod-
els. Gardner and Dorling (1999) showed that MLP-
based models give better results compared with linear
regression methods. Perez et al. (2000) compared the
forecasting produced by three different methods:
MLP, multiple linear regression (MLR) and persis-
tence methods. They concluded that the MLP models
achieved more accurate regression results and better
predictions. Different modelling approaches for the
forecasting of CO concentrations can be found in the
literature. Pelliccioni and Poli (2000) study MLP-
based models in the forecasting of the CO and NO2

concentration levels in Rome’s urban city centre using
standard R-correlation coefficient to measure the
performance. Viotti et al. (2002) proposed an ap-
proach based on ANN to forecast 1 h-ahead CO
concentrations with good results.

Chelani et al. (2002) also considered ANN ap-
proach for the forecasting of short-term (1-h and
daily) SO2 average concentrations. Nunnari et al.
(2004) compared ANN, Fuzzy Logic and other
statistical approaches for SO2 predictions.

Regarding Particulate Matter (PM) forecasting,
Kukkonen et al. (2003) showed improved performance
for the MLP models compared with linear and deter-
ministic models. Other studies of PM predictions are
given by Corani (2005) and Grivas and Chaloulakou
(2006).

The main objective of the present work has been
the comparison of the ability of ANN models and
classical models (Persistence, ARIMA and MLR) to
forecast air pollution. The inputs of each model were
the pollutant concentrations and some additional
exogenous variables in an autoregressive arrange-
ment, while the time in the past (the depth of the
model) was another variable parameter.

Another objective was the development of a
multiple comparison scheme. Many model selection
algorithms have been proposed in the literature
(Zucchini 2000). The existing procedures can roughly
be categorized as analytical or resampling based
methods. Analytical approaches require certain
assumptions of the underlying statistical model.
Resampling based methods involve much more
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computation, but they remove the risk of making
faulty statements due to unsatisfied assumptions
(Feelders and Verkooijen 1996). With the computer
power currently available, this does not seem to be an
obstacle. Although there is an active debate within the
research community regarding the best method for
comparison, statistical model selection is a reasonable
approach (Mitchell 1997, Pizarro et al. 2002). A
procedure of random resampling simulation was
designed to avoid variation coming from different
sources, thus independence and randomness were
guaranteed (Pizarro et al. 2002). The results obtained
were statistically analyzed and compared through
analysis of variance (ANOVA) (Jobson 1991) and
Bonferroni method (Hochberg and Tambane 1987).

In the following section, the database collection
procedure used in this work will be formulated.
Principal component analysis (PCA) is described in
“Principal component analysis”. The well-known
Persistence, ARIMA and multiple linear regression
models are briefly outlined in “Persistence models”,
“Box-Jenkins ARIMA models” and “Multiple linear
regression models”, respectively, and the ANN ap-
proach is presented in “Backpropagation neural
networks models”. “Experimental procedure” discusses
the experimental procedure developed to assure the
best generalization performance of the models. These
models will be analyzed and compared by the way of
statistical methods in “Results and discussion”. Finally,
the conclusions are shown in “Conclusions”.

Study area and methods

Area description

About 300,000 inhabitants live in the different towns
spread in the ‘Campo de Gibraltar’ (Fig. 1), the
southern most region of Andalusia (Spain). It is a
complex industrial scenario, where many stationary
sources are present: an oil-refinery and some petro-
chemical factories close to it, a coal-fired power plant,
a fuel-oil power plant, a large steel factory and a
paper factory. Traffic is especially concentrated in the
urban areas and the main road of the region (N-340)
which surrounds the Bay of Algeciras. The port of
Algeciras, one of the most important ship-trading
ports in Europe, is another possible source of
particulate and gaseous air pollution in the area. It is

known that air pollution has direct effects on human
health through exposure to high concentration of
ambient pollutants. Then, air pollution control and the
associated prediction of pollutant levels are needed to
take preventive and evasive actions during episodes
of high air pollution. The monitoring stations (tri-
angles on the map of Fig. 1) used for the hourly
measurements of SO2, CO, nitrogen monoxide (NO),
nitrogen dioxide (NO2), ozone (O3) and SPM con-
centrations are controlled by the Enviromental Agen-
cy of the Andalusian Government. AL (within the
town of Algeciras, with about 130,000 inhabitants)
and LL (within the town of La Linea, with about
70,000 inhabitants) stations are located on a relatively
flat terrain of urban areas, with many buildings
around. The altitudes of AL and LL are about 20
and 2 m (a.s.l.), respectively. The nearest obstacles are
about 5 m. CA (within Campamento urban area, with
about 2,000 inhabitants) station is located on a flat
terrain [about 8 m of altitude (a.s.l.)] of suburban
areas which are close to the industrial sites.

SPM levels are measured by automatic beta
radiation attenuation monitors. Gaseous pollutants
are monitored by chemical analyzers. Specifically,
SO2 and CO concentrations are measured by ultravi-
olet (UV) fluorescence and infrared absorption,
respectively. SO2, NO, NO2 and SPM are measured
at all the stations, while CO and O3 are only measured
at AL and LL stations, respectively. Detailed infor-
mation about the methodology followed for the
analysis of SO2, CO and NOx concentrations can be
found elsewhere (Hofzumahaus et al. 2006). The
calibration process of all the sampling monitors is
supervised by the Enviromental Agency of the
Andalusian Government.

Data collection

During the period of analysis (1999–2001), the
variables that showed the highest percentage of
validated hourly data, and finally considered in this
study, were: CO at AL site (95%), SO2 at AL and LL
(98 and 99%, respectively) and SPM at CA (93%).
Therefore, artificial data were a very small part of the
whole data. Missing values were replaced by linear
interpolation (Junninen et al. 2004). Pollutant con-
centrations were measured in μg/m3.

The choice of the exogenous variables was done
considering a previous study of correlation between
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all the air pollutant and meteorological variables
measured at the monitoring stations (Gonzalez
2004). As an example, daily mean values of CO
showed a statistically significant (at a 99% level)
negative correlation with air temperature and wind
speed, and a positive correlation with wind direction.
Thus, for the prediction of CO concentrations at AL
site, the following exogenous variables have been
considered: three meteorological variables (wind
direction, wind speed and air temperature) and NO
concentrations measured at the AL station. It is
interesting to note that CO and NO concentrations
have a significant positive correlation (R2=0.65). This
indicates that both pollutants are emitted by the same
source, that is, urban traffic. Therefore, the knowledge

of NO concentrations could be helpful to the
prediction process. The former three meteorological
variables (wind direction, wind speed and air temper-
ature) were also used as exogenous variables for the
SO2 and SPM predictions at AL and LL sites. NO, as
a measure of traffic emissions, was also considered
for SO2 prediction at AL, while O3 concentrations
were used for SO2 prediction at the LL station. The
relationship between SO2 and O3 is based on
atmospheric chemistry. Thus, in the presence of
O3 under wet conditions, the SO2 dry-deposition
velocity and oxidation from SO2 to sulphate is
enhanced (Sakamoto et al. 2004). Furthermore, in
the presence of H2O2 and wet aerosols, SO2 does
participate in the chemistry of ozone by the absorp-

Fig. 1 Location of the
towns, large factories and
the monitoring stations in
the ‘Campo de Gibraltar’
region (Spain)
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tion of light within the ultraviolet region (Gupta et al.
1986, Ruiz Suárez et al. 1995). Due to the high solar
radiation and relative humidity in the area under
investigation, the two former phenomena are likely to
be strengthened.

It is interesting to observe the transformation
considered to avoid the discontinuity wind direction
variable could cause. The experiments presented here
use the same expression as Ziomas et al. (1995).

The database of samples used to teach the forecasting
models was arranged in the form of autoregressive data
(see Fig. 2), where n was the width of the observation
window in the past (lags). This information was used
to make the prediction, as it is done in autoregressive
models. nh was the time when pollutant concentration
is predicted. That is, nh=24 means 24-ahead average
prediction. The predictions made in this work were 1-
ahead (short term) and 24-ahead (medium term), for
which different prediction models (Persistence,
ARIMA, MLR, ANN) and autoregressive inputs (with
different lags and exogenous variables) have been
combined (Table 1). The different numbers of lags
used are in agreement with the autocorrelation coef-
ficients computed onto the pollutant data series (Figs. 3
and 4) as in the work of Pelliccioni and Poli (2000).
The randomised resampling procedure designed (see
“Experimental procedure”) permits the multiple com-
parison of models and the selection of the best
prediction model (set of method-topology-lags) in
each case.

In medium term predictions mean pollutant con-
centrations were used. Therefore, the daily averaged
values were predicted from mean autoregressive
information. Consequently, the number of samples
of the database was 365 days/year×3 years=1,095
samples, in the case of daily mean forecasting, and

365 days/year×24 h/day×3 years=26,280 samples, in
the case of hourly forecasting database.

Theoretical background

Principal component analysis

In order to avoid the tendency to sparseness, it was
necessary to consider a feature selection procedure. In
this paper, the PCA technique has been used. The
objective of Principal Component Analysis (PCA) is
to reduce the dimension, preserving as much of the
relevant information as possible, finding out those
directions which maximise the variance. The trans-
formation maps vectors xn in a d-dimensional space
onto vectors zn in another M-dimensional space,
where M<d. The set of n patterns can be represented
as a linear combination of the original d orthonormal
vectors ui (Jollife 1986). The minimum error can be
obtained by choosing the d−M smallest eigenvalues of
covariance matrix of the set of data vectors. The new
components are linear combination of the original
features.

Persistence models

The persistence model is an extremely simple model,
with no adjustable parameter. Due to its simplicity, it
represents the minimum acceptable quality out of any
other model proposed. Two different models have
been considered: PER-1 h and PER-24 h.

& PER-1 h: It accepts that the concentration levels of a
pollutant at a particular time of day correspond to the
value which occurred the hour before (i.e. theFig. 2 Autoregressive scheme for CO forecasting

Table 1 Parameters of the different sets of models tested in the
experiments

Exogenous
information

Number
of lags

Number of hidden
units

SET1 No 1–2–4–8–12–24 1–3–5–10–15–20–
25–30–35–40–45–50

SET2 Yes 1–2–4–8–12–24 1–3–5–10–15–20–
25–30–35–40–45–50

SET3 PCA 1–2–4–8–12–24 1–3–5–10–15–20–
25–30–35–40–45–50
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predicted output at 7:00 A.M. correspond to the
value of the pollutant at 6:00 A.M.).

& PER-24 h: It accepts that the concentration
levels of a pollutant at a particular time of day

correspond to the value which occurred the day
before at the same hour. In the case of mean
daily concentration prediction this model has no
sense.

Fig. 4 Daily mean autocor-
relation coefficients for the
24-h mean data series

Fig. 3 Autocorrelation co-
efficients for the
1 h-sampled data series
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Box-Jenkins ARIMA models

ARIMA linear models are described here briefly. In
general, a nonseasonal time series, x(t), t=1…n, (n
being the number of observations) of air pollutant
concentrations measured at an equal time intervals,
can be modelled as a combination of past values and
past errors as:

x tð Þ ¼ a1x t � 1ð Þ þ a2x t � 2ð Þ þ . . .

þ apx t � pð Þ þ e tð Þ � b1e t � 1ð Þ
� b2e t � 2ð Þ � . . .� bqe t � qð Þ ð1Þ

where a and b are the vector of coefficients, p and
q are the order of the autoregressive and moving
average polynomials, respectively. The further details
to estimate the parameters and order of the model are
given in Box and Jenkins (1970).

Multiple linear regression models

The purpose of MLR is to establish a quantitative
relationship between a group of predictor or indepen-
dent variables, X, and a response, y (in this case, the
pollutant concentration to be predicted). Using matrix
notation, the linear model can be expressed as
y ¼ Xb þ "(where ɛ is a vector of random disturban-
ces). The solution to the regression problem is a
vector, b, which estimates the unknown vector of
parameters (β) and can be computed directly by
inverting the matrix product X′X. In most of the real
situations, this approach is really dangerous because X
will be often either totally singular or ill-conditioned.
There are different well-known methods to solve a
MLR problem (Gauss–Jordan Elimination, LU de-
composition, or QR decomposition). However, the
most effective method is singular value decomposi-
tion (SVD), which is able to handle any problem that
may arise, like singularities or ill-condition. The
foundations of these algorithms are beyond the scope
of this paper. Good references are Press et al. (1992)
and Masters (1995). In the study presented here, SVD
method has been used to solve the MLR problem.

Backpropagation neural networks models

Neural networks can extract the link between the
input data and the corresponding output data. Thus,

ANNs can be used to solve different problems of
regression or classification (Bishop 1995), prediction
and, more generally, black-box identification, in
which ‘a priori’ knowledge of the model is not
needed (Fu 1994). For such supervised networks, a
prediction pattern is formed by inputs related to the
past together with the pollutant concentration to be
forecasted, named real or desired output. The ANN
can be considered as a non-linear transformation
which maps a set of input variables through several
layers of processing elements or neurons (with
activation functions) into a set of output variables.
The form of the activation functions (typically
sigmoid or hyperbolic functions) allows the approx-
imation of complex non-linear functions and must be
differentiable since backpropagation algorithm
derives its name from the fact that error signals are
propagated backwards through the network on a
layer-by-layer basis. The learning process is stopped
when a specified error goal or a number of epochs (a
presentation of all the patterns is usually called epoch
or cycle) is reached. There are many algorithms
(Bishop 1995; Masters 1995) for training feedforward
neural networks: conjugate gradients, quasi-Newton,
Levenberg–Marquardt and others. Standard backpro-
pagation training algorithms are often too slow for
practical problems. The Levenberg–Marquardt algo-
rithm (Hagan and Menhaj 1994) seems to be the
fastest method for moderate-sized networks. It
updates network weights following an iterative
procedure to approximate the Hessian matrix with
the Jacobian (Press et al. 1992). Levenberg–Mar-
quardt algorithm operates in batch mode where the
weights of the network are updated only after the
entire training set has been applied to the network.
The gradients calculated at each training example are
added together to determine the change in the
weights. Hagan et al. (1996) gives a complete
discussion of the batch training with the backpropa-
gation algorithm. In the study presented here,
Levenberg–Marquardt method has been used to train
the networks.

There is no way to determine the optimum topology
of an ANN, although Kolmogorov’s theorem (Fu
1994; Bishop 1995) and Vapnik–Chervonenkis
(VCdim) dimension (Vapnik and Chervonenkis
1971) show the capabilities of backpropagation-based
MLP feedforward networks. A simple choice would
be to train many networks with a different number of
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hidden units and layers, to estimate the generalization
error for each one, and to select the network with the
smallest error. However, it critically depends on the
training/test sets and the initial weights. Therefore, it
is necessary to compute the mean generalization error
over a designed resampling experiment (Cobb 1998)
as the one explained in the next section.

Experimental procedure

ANN models with different hidden units were
compared to determine the impact of the addition of
non-linear processing capabilities on model perfor-
mance. A resampling procedure was found to reduce
test set prediction error and to mitigate the effects of
overfitting (Pizarro et al. 2002). The ANN models
were also compared with those based on Persistence,
ARIMA and MLR approaches.

Dietterich (1998) studied different statistical tests
for comparing supervised learning algorithms and the
sources of variation that a good statistical test should
control. Ideally, the population is considered to have
an infinite number of samples. However, in real
situations, the amount of data available is only a
subset of the overall population. For a finite set of
data, these sources of variation should be controlled
as follows (Pizarro et al. 2002):

& The learning algorithms should be executed
multiple times over different training and test sets
to control the variation due to the choice of
training and test data sets.

& If any model is trained and tested on a given
training and test data set, any other model should
be trained and tested with the same set. This
ensures that all models are compared under the
same conditions. It also helps to control the
variations due to the choice of training and test
data sets, and allows us to apply statistical
pairwise tests.

& Each unstable algorithm should be executed
several times, taking different starting states for
each training data set to reduce the variance due to
internal randomness.

There are many methods to estimate the general-
ization performance of a model (hold-out, cross-
validation, leave-one-out, penalization strategies...).
The complete strategy used in this paper repeats 30

times a similar process: random splitting of data into a
pair of equal sized portions (training and test sets) and
two-fold crossvalidation for the estimation of gener-
alization error using three indices: the standard
correlation coefficient (R), the index of agreement
(d) and the mean squared error (MSE), of each
different prediction model (Pizarro et al. 2002). The
parameters of each model were estimated using one of
the groups (the training set) while its performance
was tested using the remaining one (the test set).
Therefore, the performance was measured over test
data not used in the training or design of the model.
This process was repeated twice each time, swapping
the sets and averaging the results over these two runs.
For a given training and test set, each algorithm is
trained for 10 times (to avoid internal randomness).
Therefore, the performance of each model is comput-
ed from a set of 600 (30×10×2) samples.

In the case of the neural approach, the tested
models had only one hidden layer with different
numbers of hidden units (Table 1), while the number
of epochs were fixed at a maximum of 100.
Levenberg–Marquardt method was used as a minimi-
zation strategy. The resampling procedure was
designed in order to compare different models and
to determine (by analysing the mean and the variance)
if differences between them were statistically signif-
icant. Obviously, the main goal was to find out which
models were better on average. While ANOVA is a
good method to do an analysis of variance, it does not
pinpoint where the significant differences lie. Bonfer-
roni method is a well-known and easy to apply
follow-up ANOVA f-test. It is a multiple comparison
procedure for model selection that adjusts the ob-
served significance level based on the number of pair
comparisons. Two groups are not significantly differ-
ent if the difference of their means follows Eq. 2
where M is the number of models, ni is the number of
data for model i, yi; yj are the means for the models i
and j, t is the Student pdf with n-M degrees of
freedom, c is the Bonferroni correction, α is the
statistical significance (0.1 has been used in the
experiments), and SUV is the unexplained variance
due to the existence of different models.

yi � yj
�
�

�
� � tα

�

2 � C � SUV
ffiffiffiffiffi

1

ni

r

þ 1

nj

i; j ¼ 1 . . .M

ð2Þ
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Results and discussion

The simulations were run in MATLAB environment.
Persistence models are considered as a starting point
and baseline against which to compare forecasts
generated from the other methods. For ARIMA
modelling, the order of the model is selected by
plotting the autocorrelation function (ACF) and
partial autocorrelation functions (PACF). For all of
the pollutants an autoregressive model of order 2, i.e.
ARIMA(2,0,0) is found to be appropriate. With this
model order, autoregressive model was fitted to the
learning data. The model parameters were obtained by
adopting the Box–Jenkins methodology. Table 2

shows the results compared with multiple linear
regression (MLR) and persistence models.

In the case of CO predictions, PER-1 and ARIMA
models perform better than MLR model. Therefore, it
seems that exogenous variables can not explain very
well the variability of predictions. A very high
periodicity of the CO series even with the PER-24
model (d=0.71) is observed. Table 2 also shows the
results obtained for SO2 series in two different
monitoring stations (AL y LL). The result of the
PER-24 model is significantly smaller than that for
CO series. The highest persistence is observed for the
PER-1 model, but still smaller than the result for CO
series. Considering the results of the different moni-

Table 2 Results obtained for 1 h-ahead and 24 h-ahead (daily) CO, SO2 and SPM predictions with Persistence (PER), ARIMA and
MLR models in the 30-times resampling procedure

Pollutant nh-ahead Method Ra db MSEc (μg/m3)

CO AL 1 PER-1 0.74 0.85 1.80E+05
CO AL 1 PER-24 0.51 0.71 3.54E+05
CO AL 1 ARIMA(2,0,0) 0.74 0.85 2.02E+05
CO AL 1 MLR 0.68 0.73 2.55E+05
CO AL 24 PER-1 0.61 0.80 5.58E+04
CO AL 24 ARIMA(2,0,0) 0.65 0.82 2.77E+04
CO AL 24 MLR 0.65 0.76 2.66E+04
SO2 AL 1 PER-1 0.71 0.85 76.69
SO2 AL 1 PER-24 0.26 0.48 217.56
SO2 AL 1 ARIMA(2,0,0) 0.73 0.84 64.55
SO2 AL 1 MLR 0.73 0.83 66.19
SO2 LL 1 PER-1 0.61 0.74 269.25
SO2 LL 1 PER-24 0.16 0.41 609.28
SO2 LL 1 ARIMA(2,0,0) 0.63 0.74 210.86
SO2 LL 1 MLR 0.64 0.75 213.49
SO2 AL 24 PER-1 0.54 0.73 50.16
SO2 AL 24 ARIMA(2,0,0) 0.52 0.71 15.45
SO2 AL 24 MLR 0.65 0.75 16.03
SO2 LL 24 PER-1 0.42 0.66 125.51
SO2 LL 24 ARIMA(2,0,0) 0.39 0.63 42.01
SO2 LL 24 MLR 0.49 0.63 35.54
SPM CA 1 PER-1 0.48 0.68 376.62
SPM CA 1 PER-24 0.33 0.57 471.85
SPM CA 1 ARIMA(2,0,0) 0.52 0.69 267.20
SPM CA 1 MLR 0.49 0.59 277.35
SPM CA 24 PER-1 0.80 0.89 54.19
SPM CA 24 ARIMA(2,0,0) 0.78 0.88 15.17
SPM CA 24 MLR 0.81 0.90 21.00

a Correlation coefficient
b Index of agreement
cMean square error (a, b and c computed with test patterns)
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toring stations it is worth mentioning that LL station
exhibits significantly smaller persistence values than
AL station. The results of SPM series show something
unusual: the daily persistence is higher (d=0.89) than
the hourly one. Daily CO and SO2 time series have a
higher variation than SPM series. Then, SPM sources
of variation are likely to be more persistent than those
of CO and SO2. It seems that SPM has a longer-term
background level probably due to soil dust resuspen-
sion, enhanced by the high solar radiation, African
dust intrusions (Rodriguez et al. 2001) and construc-
tion activities in the area under study.

Results in Table 2 show that the performance of
ARIMA and MLR models are quite similar. Obvi-
ously, the values of 24 h-ahead mean daily predictions
are smaller than 1 h-ahead predictions (except in the
case of SPM). ARIMA performs slightly better than
MLR model for CO and SPM 1 h-ahead predictions.
Results for SO2 are very closed. Furthermore, MSE
index seems to fluctuate more than R and d indices,
specially in the case nh=24.

ARIMA models are quite flexible as they can
represent several different types of time series, but
their major limitation as well as MLR models is the
pre-assumed linear form of the model. The approxi-
mation of linear models to real-world time series is
not always satisfactory.

Table 3 shows the results of the best ANN models
for each pollutant and time ahead. The selection of
these best models was made by using the Bonferroni
method within the three sets of models Table 1 shows.
For each pollutant and time ahead, the results of three
different models are shown: the best model without
exogenous data (SET1), the best model with exoge-
nous information (SET2) and the best model using
PCA transformation of exogenous variables (SET3).
The selection of the best model was done after training
different ANN topologies and by using the Bonferroni
criterion with the aid of three indices computed for test
sets: the standard correlation coefficient (R), the index
of agreement (d) and the mean squared error (MSE).
The indices for each model were calculated as the
average of the individual prediction coefficients in the
experiments designed by using the above explained
random resampling technique. This guarantees inde-
pendency in the results and prevents the appearance
of unexpected variation sources.

PCA is used in all cases to retain at least 92% of
the total data variance. This way, dimensionality is

reduced to two principal components which are linear
combinations of the input exogenous variables.
Nevertheless, the use of PCA does not guarantee the
best prediction outcomes although prevents “the curse
of dimensionality”.

ANN models have in general (CO, SO2 and SPM)
better performance than the above classical (PER,
ARIMA and MLR) models. The major advantage of
ANN techniques over ARIMA or MLR models is
their ability to take into account the nonlinear
dynamics involved in the time series. The information
about the linearity or nonlinearity of the time series is,
however, not available in advance. Then, multiple
comparison methods must be applied over the set of
linear and nonlinear models and finally select the one
which provides the most accurate results. In the
experiments analyzed, the ANN-based models were
able to make better predictions than those based on
MLR approach. The indices between observed and
predicted values for the samples in the test sets were
higher for the neural models than for the standard
regression ones. MLR models show values of the
indices similar to those based on ANN approach in
the training stage. However, when these MLR models
were tested with data which were not included in the
designing or training set, the results were worse. The
error on the training set is driven to a very small
value, but when new data is presented to the model
the error is greater. This implies that the model has
memorised the training examples but it has not learnt
how to generalise new situations.

For some cases where ANNs perform worse than
linear models, the reason may simply be that the data
is linear without much disturbance. We can not expect
ANNs to do better than linear models for linear
relationships. Therefore, the neural networks models
can behave as or worse than linear models do. In the
present study, one of the best models selected (SPM at
CA, see Table 4) is almost linear (with only one
hidden unit).

Table 4 shows the global best models selected by
Bonferroni method over the three sets of models
(Table 1) and a majority voting scheme (MVS; Geok
and Singh 1998). For example, in the case of 24 h-
ahead prediction of SO2 in Algeciras, the best model
without using exogenous information has the perfor-
mance indices 0.676, 0.771 and 15.830, respectively,
while the best model using exogenous information
and PCA leads to 0.680, 0.780 and 15.970. R and d
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are better in the second model, while MSE is better in
the first one. Thus, the model selected using MVS
was the second.

The results show that most of the best models
selected uses exogenous variables transformed via
PCA. This is the case for CO and SO2 at AL station
(nh=1), SO2 at AL and LL and SPM at CA (nh=24).
The rest of the best models selected [SO2 at LL and
SPM at CA (nh=1) and CO at AL (nh=24)] do not
use exogenous information.

The reason of these results can be explained
considering the persistence measured at both stations
(greater at AL than at LL). The greater persistence at
AL station is probably due to a lower level and
variability of SO2 concentrations than at LL station.
LL station is closer to stationary sources of SO2 (a
refinary and some petrochemical factories). Conse-
quently, SO2 concentration values exhibit a higher

variability and a lower persistence which affects MLR
and ANN models directly.

Results for test patterns are represented graphically
in Fig. 5 (R-correlation coefficient observed-predicted
data). Only SPM 24 h-ahead and CO 1 h-ahead have
been shown in order to illustrate the predictions.
Similar results were obtained for the rest of pollutants
(Table 4). Figure 6a and b show the results for the
predictions of CO 1 h-ahead and SPM 24 h-ahead
forecasting results during two periods of high con-
centration values.

The values of CO forecasting presented in this
study are better than those obtained elsewhere. Thus,
for 1 h-ahead and 1 h average concentrations,
Nagendra and Khare (2004) give a d value of 0.78,
while Comrie and Diem (1999) give values ranging
from 0.60 to 0.84. In the case of SO2 at AL and LL
stations the values of d are 0.780 and 0.652,

Table 3 Best models selected using the Bonferroni method in the 30-times resampling procedure (with/without using exogenous
information and also using PCA) for the CO, SO2 and SPM predictions

Pollutant nh ahead n lags Ex. info. ANN topa Rb dc MSEd (μg/m3)

CO AL 1 24 No 50 0.809 0.891 1.30E+05
CO AL 1 2 Yes 20 0.786 0.869 1.39E+05
CO AL 1 24 PCA 20 0.816 0.891 1.22E+05
CO AL 24 1 No 10 0.662 0.820 2.52E+04
CO AL 24 1 Yes 10 0.570 0.729 3.11E+04
CO AL 24 1 PCA 10 0.600 0.730 2.88E+04
SO2 AL 1 1 No 10 0.759 0.853 61.700
SO2 AL 1 2 Yes 25 0.758 0.851 65.802
SO2 AL 1 2 PCA 10 0.772 0.851 60.241
SO2 LL 1 1 No 3 0.659 0.770 208.440
SO2 LL 1 1 Yes 10 0.655 0.762 209.890
SO2 LL 1 1 PCA 1 0.658 0.759 207.880
SO2 AL 24 1 No 5 0.676 0.771 15.830
SO2 AL 24 1 Yes 15 0.660 0.770 16.240
SO2 AL 24 1 PCA 5 0.680 0.780 15.970
SO2 LL 24 1 No 1 0.504 0.632 35.320
SO2 LL 24 1 Yes 5 0.502 0.649 36.420
SO2 LL 24 2 PCA 5 0.519 0.652 34.901
SPM CA 1 12 No 15 0.595 0.726 245.70
SPM CA 1 8 Yes 30 0.546 0.654 254.92
SPM CA 1 24 PCA 5 0.582 0.697 240.13
SPM CA 24 1 No 1 0.834 0.906 21.13
SPM CA 24 2 Yes 5 0.823 0.899 21.88
SPM CA 24 1 PCA 1 0.831 0.906 20.95

a ANN Topology (hidden units)
bMean correlation coefficient
c Index of agreement
dMean square error (b, c and d were computed with test patterns)
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respectively, which are in the range found in the
literature. Nunnari et al. (2004) provide values of d
ranging from 0.64 to 0.86, while Yildirim and
Bayramoglu (2006) from 0.47 to 0.82. Particulate
matter 1-ahead forecasting d-value is slightly smaller
than those (d from 0.56 to 0.90) obtained by Grivas
and Chaloulakou (2006). Regarding PM daily average
forecasting at CA station (d=0.906), it can be pointed
out that it seems to be better than those (0.53–0.78)
reported by Yildirim and Bayramoglu (2006).

Table 4 also shows the values obtained for the
three indices when using 2-CV or 10-CV. It can be
seen that d is the most robust index with slight
changes among the two cross validation schemes. R
and MSE indices have higher changes, specially in
the case of daily forecasting. The results from the 2-
CV seem to be slightly more pessimistic than those
from the 10-CV, as a higher number of training
patterns are used.

The Andalusian Government has recently devel-
oped an environmental regional plan called ‘CIUDAD
21’, with different objectives on management, control
and improvement of air quality at Andalusian urban

areas. Then, the method proposed here could be an
interesting tool for the environmental authorities to
control air pollution and take the necessary measures
in advance.

Conclusions

In the present work, the most convincing advantage of
neural models is that the capability of generalization
over the test data is higher than the one obtained by
the other methods tested (Persistence, ARIMA and
MLR). The use of autoregressive information with n>1
lag does not seem to improve significantly the capability
of most of the models. The following concluding
remarks can be made from the results discussed above.
Neural networks are useful for modelling due to their
ability to be trained using historical data and their
capability for modelling non-linear relationships. Fur-
thermore, PCA method prevents problems arising from
“the curse of dimensionality” and although there is a
loss of information, the overall performance of some of
the selected models has increased. The random resam-

Table 4 Best global models selected using the Bonferroni method in the 30-times resampling procedure and a Mayority Voting
Scheme (MVS) using the R, d and MSE indices

Pollutant nh ahead n lags Ex. infoa ANN topb Rc dd MSEe (μg/m3)

2-CV 2-CV 2-CV
10-CV 10-CV 10-CV

CO AL 1 24 PCA 20 0.816 0.891 1.22E+05
0.779 0.894 1.24E+05

SO2 AL 1 2 PCA 10 0.772 0.851 60.241
0.783 0.850 60.030

SO2 LL 1 1 No 3 0.659 0.770 208.440
0.663 0.770 208.320

SPM CA 1 12 No 15 0.595 0.726 245.700
0.599 0.727 246.920

CO AL 24 1 No 10 0.662 0.820 2.52E+04
0.665 0.821 2.42E+04

SO2 AL 24 1 PCA 5 0.680 0.780 15.970
0.689 0.782 15.270

SO2 LL 24 2 PCA 5 0.519 0.652 34.900
0.515 0.654 38.250

SPM CA 24 1 PCA 1 0.834 0.906 20.950
0.841 0.907 19.880

a Exogenous information
b ANN Topology (hidden units)
cMean correlation coefficient
dMean index of agreement
eMean square error

142 Environ Monit Assess (2008) 143:131–146



Fig. 5 Scatterplot of
observed vs. predicted data
and R correlation coeffi-
cients computed with one of
the best neural models for
the a CO 1 h-ahead fore-
casting and b SPM 24 h-
ahead forecasting
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pling procedure designed in this paper assures the
accuracy of the results obtained and the certainty that
the selected model in each case is the most suitable. Thus,
this experimental procedure scheme can be used, together

with ANOVA test and/or Bonferroni method, in order to
perform a statistical comparison of tested models. Finally,
the proposed multiple comparison methodology can be
extended for other environmental applications.

Fig. 6 Observed and pre-
dicted data for the a CO 1 h-
ahead forecasting and b
SPM 24 h-ahead forecasting
during periods of high con-
centration values
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