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Abstract

In this paper, a class C of risk measures, which generalizes the class of risk measures for the right-tail deviation suggested by Wang [Wang,
S., 1998. An actuarial index of the right-tail risk. North Amer. Actuarial J. 2, 88-101], is characterized in terms of dispersive order. If dispersive
order does not hold, unanimous comparisons are still possible by restricting our attention to a subclass Cp C C7p and then the criterion is the
excess-wealth order. Sufficient conditions for stochastic equivalence of excess-wealth ordered random variables are derived in terms of some

particular measures of C,.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In actuarial science, special efforts have been made
to measure the risk associated with large-loss events. An
important reason for measuring the right-tail risk is to make
risk comparisons and, for this purpose, stochastic orders, which
require unanimous agreement among classes of risk measures,
can be used. For actuarial applications of stochastic orders, we
refer the reader to the books of Goovaerts et al. (1990) and
Kaas et al. (1994). For a general overview of this topic, see the
monograph of Shaked and Shanthikumar (2006).

In this paper, we characterize two nested classes of risk
measures, C; and C,, which include a number of well-known
measures, in terms of dispersive order and excess-wealth order,
respectively. In order to introduce these classes, consider a
random variable X with distribution function F and let F~!
be the corresponding quantile function, defined by F~! (1) =
inf{x : F(x) >t}. Let a : [0,1] — [0, 1] be a distortion
function, that is, an increasing function that satisfies a(0) = 0
and a(1) = 1. In the context of the premium principle of Wang
(1996), the expectation with respect to the distorted probability

* Tel.: +34 956 015403; fax: +34 956 016288.
E-mail address: mangel.sordo@uca.es.

0167-6687/$ - see front matter (©) 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.insmatheco0.2007.12.004

a o P, defined by

0 [e'9)
Ea(X)=/ {a(P[X>t])—1}dt+/ a(P[X > t])de,
0

—00

represents the certainty equivalent to risk X, that is, the market
price for transferring the risk X. Wang (1998) derives a general
class of risk measures for the right-tail deviation from the
difference between the certainty equivalent and the expected
loss:

pa(X) = Eq (X) — E(X), (D

where a is a concave distortion function. As shown by Jones
and Zitikis (2003), if a is piecewise differentiable and A(¢) =
1—a (1l —1t),then E,(X) = E4(X), where

1
EA(X) = f F~L (1) dA®). )
0

Taking into account that a is a concave distortion function
if, and only if, A is a convex distortion function, it follows
that each p,(X) of the form (1) can be expressed using the
alternative representation
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1
pa(X) = /0 F' (1) dA() — E (X) 3)

where A(¢) is a convex distortion function. A number of well-
known risk measures can be expressed under the form (3),
including the right-tail deviation suggested by Wang (1998),
given by (3) with A(r) = 1 — +/1 —t (see Jones and Zitikis
(2003)) and Gini’s mean semidifference, given by (3) with
A (1) =12 (see Nygard and Sandstrom (1981)).

Note that (3) involves dispersion about the mean of
the distribution. However, a number of authors, including
Bickel and Lehmann (1979), Quiggin (1982), Mufoz-Pérez
(1990), Landsberger and Meilijson (1994a,b), Shaked and
Shanthikumar (1998), Fernandez-Ponce et al. (1998), and
Chateauneuf et al. (2004, 2005), instead of looking at dispersion
relative to a fixed point, consider the spread of a random
variable throughout its distribution. We follow this approach by
focusing on a class C of risk measures of the type

1

1
pag (X) = /0 F~ ' (0 dA @) - /0 F~'(t)dB (1) )

where A(¢) and B(t) are two distortion functions such that
AB~L(¢) is convex. The convexity of AB~L(#) ensures that
04,8 (X) > 0 and allows us to view (4) as a generalization of
(3), which is obtained with B(¢) = ¢. Jones and Zitikis (2003)
note that a number of risk measures, originally expressed using
distorted probabilities, take the form (4) for adequate choices
of A(t) and B(¢). This representation of risk measures is very
useful, because empirical estimators of quantities with the form
(4) can be obtained using the theory of L-statistics, which are
linear combinations of order statistics; see Jones and Zitikis
(2003, 2007) and Jones et al. (2006), for details. Members of
C satisfy the next intuitively desirable properties for a measure
of variability (see Bickel and Lehmann (1979); we refer to
Rockafellar et al. (2006), for an interpretation and discussion
of these properties in an actuarial context).

Theorem 1. Each functional pa. g € Ci has the following
properties:

() pa,B(X +c) = pa,p(X) forall c,
(i1) pa,B(cX) = cpa.p(X) forall c > 0,
(iii) pa,p(c) = 0 for any degenerate random variable at c,
@iv) pa,B(X) > 0 for all random variable X,
(V) pa (X +Y) = papX) + pap(Y) for X and Y
comonotonic.

Proof. Properties (i)—(iii) are easy to see. In order to prove
(iv), note that if A and B are distortion functions and AB~!
is convex, then A(¢) < B (¢) and, therefore,

1
paB(X) = /0 F~' () d[A(r) — B(1)]

1
Z/ [B(t) — A()]dF~ ' (1) > 0.
0

Finally, (v) follows from the fact that comonotonicity implies
additivity of the certainty equivalents (Wang, 1996). H

The class C; includes a number of measures of interest
not having the form (3). One of them is Wang’s (1998) two-
sided deviation, given by (4) with A(r) = 1 — /1 —1t and
B (t) = +/t (see Jones and Zitikis (2003)). In order to provide
another example, let X1, ... X, be n independent copies of a
non-negative random variable X and denote their corresponding
order statistics by X 1., . .., X,:,- An intuitive measure for the
right-tail of X is the mean of the last sample spacing,' given by

o
E X — Xo1a] =1 /0 F1=1 (0 F (@) dx, (5)
where F = 1— F (Kendal and Stuart, 1977, p. 368). By making
the change of variable F(x) = t, we see, via integration by
parts, that (5) belongs to C (up to a scale factor) with A (1) = ¢"
and B(t) = "1 A third example is, for each 0 < p < 1, the
measure

ESF,(X) = E [(x - F_l(p))+i|

= /l (F_l (1) — F_l(p)) dr, (6)
p

which is called, in actuarial literature,? the expected shortfall
at level p (see Dhaene et al. (2006, in press)) and represents
the expected shortfall of the portfolio with loss X and solvency
capital requirement F' —1(p). Note that (6) belongs to C with

. .
A =max (0. 2=P2) and B =10 Hi<p
1—p 1 ift>p

(7
(the relevant function AB~1(7) is constantly equal to 0).

The class C; not only unifies a number of risk measures
but also provides a link between the measures and stochastic
orders. In Section 2, we characterize the comparison of random
variables according to the measures ps g of C; in terms of
the well-known dispersive order (Bickel and Lehmann, 1979),
whose definition is recalled here.

Definition 2. Let X and Y be two random variables with
respective distribution functions F and G. Then, X is said to be
smaller than Y in the dispersive order (denoted by X <g;, ¥)
if

F'p) - F (@) <67 (p)- G,
forall0 <g < p < 1. ®)

From this characterization, we deduce that if X and Y are
ordered in the dispersive order, then we can judge between them
according to any measures p4 p Without needing to agree on
the form of A(¢) and B(t) (except that AB~!(¢) is convex).
However, although dispersive order provides an important tool

1 This measure is also of great interest in auction theory, where, for a buyer’s
auction, it represents the expected rent with n bidders (see Li (2005), Kochar
et al. (2007)).

2 The function ESFp(X) is known under different names in other fields,
such as the excess-wealth transform in the theory of wealth inequality and the
right spread function in reliability theory.
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for risk comparisons, (8) is a strong requirement and many
pair of distributions can fail to satisfy it. This justifies the
convenience, from the perspective of both decision-makers and
empirical researchers, of employing a weaker order to compare
risks. We also prove in Section 2 that, when dispersive order
does not hold, unanimous comparisons are still possible by
restricting our attention to the class

C> = {measures of C; with B convex}.

It is straightforward to show that each member of C is a
difference between two parameters to the right of the mean.
Therefore, a decision-maker who employs p4 p in Cp (for
example, (5)) is more sensitive to the variability within the
right-tail of the distribution that one who employs pa g in C;
(but not in C3). The criterion to obtain unanimous comparisons
according to C; is the so-called excess-wealth order, whose
definition is recalled here (Fernidndez-Ponce et al., 1998;
Shaked and Shanthikumar, 1998).

Definition 3. Let X and Y be two random variables with
distribution functions F' and G, respectively. Then, we say that
X is smaller than Y in the excess-wealth order (denoted by
X=Zew VILESF,(X) < ESF,(Y), forall p € (0,1).

The plan of the paper is as follows. The main characteriza-
tions are stated in Section 2. In Section 3 we prove that if two
random variables X and Y are ordered in the excess-wealth or-
der and pa g(X) = pa,p(Y) for some special ps p € Ca, then
they are identically distributed or they differ by a location pa-
rameter. Section 4 provides conclusions.

In this paper, “increasing” and ‘“decreasing” mean “non-
decreasing” and “non-increasing”, respectively. We shall be
assuming throughout this paper that all the random variables
under consideration have finite means.

2. The characterizations

Throughout this section, let £2; denote the class of distortion
functions and let 2, denote the class of convex distortion
functions. In order to obtain the main characterizations, we
first prove that each pap € C; (i = 1,2) with B non-
degenerate,’ can be expressed as a weighted area under the
curve

1

Ve top) = [ [F 0~ Ea 0] B0,

P
p e 0,1), 9

where

1
Ep(X) = / F~' (t)dB(). (10)
0

Functionals of the form (10) include parameters like the mean
(obtained when B(t) = t) and, more generally, the trimmed

31 Bis degenerate, as in (7), then Vg (X, p) = 0 for all p.

expectations, defined by

B
L/ Fl()d, O<a<B<l, (11)
:3_05 o

obtained when B is the distribution function of a uniform
random variable on the interval («, 8). Therefore, for each B
fixed, (9) can be considered as a measure of variability to the
right of F~!(p). Observe that, for each distribution function
B, Vp (X, p) is a continuous function in p on (0, 1) with

Vg (X,0) = Vg (X, 1) = 0. (12)

In addition, it is easy to see that Vp (X, p) is increasing for
0 < p < F (Ep (X)) and decreasing for F (Ep (X)) < p <1,
therefore

Vg (X, p) >0 forall pe(0,1). (13)

Lemma 4. Let pa p be a functional of the form (4) with B €
£ (i = 1,2), such that B is non-degenerate. Then, pa p €
C; (i = 1,2), if, and only if, there exists an increasing function
o and such that

1
pa5(X) = fo Vi (X, 1) da0). (14)

Proof. Assume that ps g € C; (i = 1,2). Using the notation
(10) we have

1

o 0= [ [P0 - Er0]aaw (1s)

where AB~! is convex and B € (2 (i = 1,2). Note that
AB~! (t) is convex if, and only if, « (1) = 328 is increasing.

Therefore, (15) can be rewritten as

1
pas 0 = [ o[ 0= E5 0] aB @

1
= _/ a®)dVy(X, 1), (16)
0

with « increasing. Integration by parts of (12) and (16) yield

1
pA,B (X) =/ Vg (X, 1) da(1), A7)
0
as required. The converse is proved similarly. W

In order to obtain the next result, we will exploit the well-
known relationships between dispersive order and stochastic
order (denoted by <) and between excess-wealth order and
increasing convex order (denoted by <;.,). Sordo and Ramos
(2007) show that the orders <;; and <;., can be characterized
as follows.

Theorem 5. Let X and Y be two random variables with
distribution functions F and G, respectively. Then,

(1) X< Yif,andonlyif, Eg (X) < Eg (Y) forall B € (2.
(i) X <jex Y if, and only if, Eg (X) < Ep (Y) forall B € ().
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The following results are due to Mufioz-Pérez (1990) and
Belzunce (1999).

Theorem 6.* Let X and Y be two random variables with
distribution functions F and G, respectively. Then,

() X <agisp¥ & (X=F 1) <a (Y =G ()7, for
all p e (0,1).

(i) X < ¥ < (X = F ' ()" <iex (Y = G L(p)) ", forall
pe@1).

Now, we are in conditions to prove the following theorem.

Theorem 7. Let X and Y be two random variables with
distribution functions F and G, respectively. Then,

() If X <aisp Y, then Vg (X, p) < Vp(Y,p), forall p €
0, 1), forall B € {}.

(il)) X <. Y if, and only if, Vg (X, p) < Vg (Y, p), for all
p€(0,1), forall B € {).

Proof. (i) Suppose that X <y, Y. Equivalently, by Theo-
rem 6(i) we have that

(x-F'w) = (r-6"'w) ",
for all p € (0, 1). (18)

For each p € (0,1), let F » L#) be the quantile function

associated to the random variable (X — F~!( p))+ . Taking into
account that

0 ift<p

—1 _
Fpr 0= {F*(t) —F ') ifr > p,

it follows from Theorem 5(i) that (18) is equivalent to
1
[ [Fo-Fw)]aso
p

1
s/ (670~ 67 ] aBo),
4
Vpe (0,1),VB € {2. (19)

Condition (19) can be rewritten as
1
/ [F_l (1) — G (t)] dB(r)
p

<=8 (F'®» =67 ),
Vp e (0,1),VYB € 0.

By differentiation, it can be verified that the latter is equivalent
to say that

f{ﬁ [F~'() - G'(1)]dB ()

flj dB(t)
VB € 1. (20)

is decreasing in p € (0, 1),

4 Belzunce (1999) obtained (ii) for continuous random variables, but it can
be shown that the continuity assumption is not necessary.

From (20) it follows that
[ [F'0) - 671@0)]dB@)
/, dB()

1
< / [0~ 6 w]aso,
0
Vpe(0,1),VB € {. 21

Since

1
Eg(X)— Eg(¥) = /0 [F'0-67"0]dBw)

it is easy to see that (21) is equivalent to
Ve (X,p) <Vp(Y,p), forallpe(0,1),VB e (.

(i1) The proof of sufficiency is analogous to the proof of
part (i) but it uses Theorem 6(ii) and Theorem 5(ii) instead
of Theorem 6(i) and Theorem 5(i), respectively (we omit
the details). In order to prove the converse, suppose that
Ve (X, p) < Vg(¥, p), for all p € (0,1), for all B € (2.
For each u € (0, p), the distortion function defined by

t—u
B, (t) = max <0, 1 )

—u

is convex. Hence,

Ve, (X, p) = Vg, (Y, p),

or, equivalently,

forall p € (0, 1),

/ [ 0 Eneo]as, 0
p

1
< [ 670~ Enn)]an,o.
p
forall p € (0, 1), forall u € (0, p). (22)
Since
1 1
—u ),
and
1 1
Eg, (Y) = —f G~ l(n)dt, ue(0,1),
1—uJ,

(22) can be rewritten as

L F' o - 67\ 0)]dr
l—p

Lrp—1 -1
- L [F'o-G67'm]dr

’

1 —u
forall0 <u<p <1

and this is equivalent to X <,,, ¥ (see (3.C.4) in Shaked and
Shanthikumar (2006)). H

In the following result, we characterize the classes C
and C in terms of dispersive order and excess-wealth order,
respectively. Note that dispersive order requires the difference
between any two quantiles of X to be smaller than the
corresponding quantiles of Y. As we show below, each
interquantile difference is a member p4,p of C; with B
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degenerate, which implies that it cannot be expressed in terms
of the curve Vp (X, p) (see footnote 3); for this reason, the
condition in Theorem 7(i) is necessary but not sufficient for the
dispersive order.

Theorem 8. Let X and Y be two random variables with
distribution functions F and G, respectively. Then,

() X <aisp Y if, and only if, pa g (X) < pap(Y) for all
pa.B € C1.

(i) X <.w Y if, and only if, pap(X) =< pa.p(Y) for all
pA.B € Ca.

Proof. (i) In order to prove sufficiency, assume that X <4;, ¥
and let p4 p € Cj. First, we suppose that B is non-degenerate.
Then, from Lemma 4, there exists an increasing « (¢) such that
(14) holds. Therefore, pa g (X) < pa.p (¥) or, equivalently,

1 1
[ Ve (X, t)da(t) < / Ve (Y, t) da(t),
0 0

follows from Theorem 7(i) and the monotonic nature of &. Now
suppose that B is a degenerate function given by

0 ifr<p

B(1) = {1 ift > p. (23)

This implies that A(¢) must be equal to zero for all ¢+ < p since
otherwise, AB~L(¢) is not convex. Then we can write

1

pan 0 = [ [F0 = £ ] aso, 4
p

and pa g (X) < pa.p (Y) follows from (19). Necessity follows
immediately by noting that each interquantile difference

F'p)—F (9. 0<qg<p<l, (25)
belongs to C with

[0 ifr<p [0 ifr<g
A(t)_{l ifr > p, B(’)—{l ifr>gq

(the relevant function AB~L(¢) is constantly equal to 0).
(i1) The proof of sufficiency is analogous to the proof of part
(). In order to prove the converse, suppose that

pa.B (X) < pap(Y) forall pap € Cy. (26)
The function a,(¢), defined by

_J0 ifr<p
O‘P(t)_{l ife>p

is an increasing function of ¢ for each p € (0,1). Using
(17), it follows from (26) that Vg (X, p) < Vg (Y, p), for all
p € (0, 1), forall B € (%, which is the same, by Theorem 7(ii),
as X <., Y | |

3. Conditions for stochastic equivalence under excess-
wealth order

The purpose of this section is to provide some sufficient
conditions, in terms of some special risk measures of the
class C3, for stochastic equality of two excess-wealth ordered

random variables. Since dispersive order is stronger than
excess-wealth order, these conditions also imply stochastic
equivalence of two random variables ordered in the dispersive
order. Many authors have investigated the conditions, involving
various stochastic orders, under which two ordered random
variables must be stochastically equal (see, for example,
Bhattacharjee and Sethuraman (1990), Scarsini and Shaked
(1990), Bhattacharjee (1991), Jun (1994), Li and Zhu (1994),
Cai and Wu (1997), Denuit et al. (2000), Bhattacharjee and
Bhattacharya (2000) and Sordo and Ramos (2007)). Note
that two random variables are equivalent in terms of the
excess-wealth order if, and only if, either they are identically
distributed or they differ by a location parameter (Kochar
and Carricre, 1997); therefore, the obtained conditions lead
necessarily to the stochastic equivalence up to a location
parameter. In the following results, “=;;” denotes equality in
distribution.

Theorem 9. Let X and Y be two random variables with
distribution functions F and G, respectively. If X <., Y and
paB(X) = pap(Y) for some paop € Cy such that
dA(¢)/dB(t) = «al(t) is strictly increasing on (0, 1), then
X =4 Y + ¢, for some real constant c.

Proof. Suppose that X <,,, Y or, equivalently, that

Vp(X,p) = Vp(Y,p), forallpe(©1)),
for all convex B. 27

By the hypothesis, we have that

1 1
/ Vi (X, 1) da(t) = / Vs (¥, p) da(t)
0 0

or, equivalently, that

1
/ (Ve (Y, 1) — Vg (X, )] da(r) =0, (28)
0

for some strictly increasing function «(¢). Combining (27) and
(28) and the strictly monotony of «, we assert that Vp (X, t) =
Vg (Y,t) for all t+ € (0, 1). Suppose, by contradiction, that
there exists an interval (¢1, ;) C (0, 1) such that Vg (X, 1) <
Ve (Y,t) forall t € (t1, t7). Then

1
/0 [V (Y, 1) — Vi (X. 0]de(0)

= [F Ve 00 = Vs 06 0106 > 0
f
since « is strictly increasing, and this contradicts (28).
Therefore,
Ve (X,t)=Vp(Y,t), forallte (0,1). (29)
Differentiating both sides of (29) with respect to ¢ we get
Fgl () = F;l (t) + ¢, for some real ¢ and for all 7. 30)

Finally, it is easy to see that (30) holds if, and only if, X and ¥
differ by a location parameter. Hence the result follows. W



M.A. Sordo / Insurance: Mathematics and Economics 42 (2008) 1028—1034 1033

Gini’s mean semidifference, defined by

E|X1 — Xo|
G (X) = E[max (X1, X2)] — pux = —

where X1, X5 (resp. Y1, Y») are independent copies of X (resp.
Y), plays an important role in measuring the right-tail risk
(see Wang (1998)). It is well-known (Kochar and Carriere,
1997; Fernidndez-Ponce et al., 1998) that X <., Y implies
G (X) < G (Y). But more than that is true. In fact, if two
random variables are ordered in the excess-wealth order and
G(X) = G(Y), then they must have the same distribution (up
to a location parameter). This is stated in the next corollary.

Corollary 10. Let X and Y be two random variables with
distribution functions F and G, respectively, such that
X<ewY. If G(X) = G(Y), then X =5 Y + c, for some real
constant c.

Proof. Note that G(X) is given by (4) with A (t) = t? and
B(t) = t (hence a(t) = 2t). Therefore, the result is an
immediate consequence of Theorem 9. W

If X and Y are non-negative random variables, Corollary 10
can be extended as follows:

Corollary 11. Let X and Y be two non-negative random
variables with distribution functions F and G, respectively,
such that X <., Y. If

E [Xn:n - anlzn] =E [Yn:n - nflzn] (31
for some n, then X =5; Y + ¢, for some real constant c.

Proof. Since E [Xum — Xu—1:] is given, up to a scale
parameter, by (4) with A(t) = " and B(t) = ("}
(hence «a(t) = %). Therefore, the result follows from
Theorem 9. N

An analogous result can be stated in terms of Wang’s right-
tail deviation, noted by D(X).

Corollary 12. Let X and Y be two random variables with
distribution functions F and G, respectively, such that
X<wY. If D(X) = DY), then X =5 Y + c, for some real
constant c.

Proof. Wang’s right-tail deviation belongs to C with A(f) =
1 —+/1—1tand B(t) = ¢ (therefore a(¢t) = 1/24/1 —t). The

result now follows applying Theorem 9. W
4. Conclusions and final remarks

In this paper, we have characterized two nested classes of
risk measures, C1 and C3, in terms of dispersive order and
excess-wealth order, respectively. The main result, Theorem 8§,
can be useful in empirical studies: the class C; contains a
multitude of measures and it is impossible to verify directly the
inequality

paB(X) < pa,p(Y), forall psp € Cy. (32)

As X <4isp Y is sometimes easy to verify (Shaked and
Shanthikumar (2006), point out several simple conditions that
imply dispersive order), part (i) of Theorem 8 provides us with
an easy way to check (32). In addition, part (ii) of Theorem 8
shows that if dispersive order is not available, unanimous
preferences are still possible by restricting our attention to the
class C, which is more sensitive to the variability within the
right-tail of the distribution, and then the criterion is the excess-
wealth order.
A subclass of C; of particular interest is

C3={pap € C2: B(t) =1t}

which turn out to be the class of risk measures (3) suggested by
Wang (1998). Ramos and Sordo (2003) characterized this class
in terms of the well-known dilation order (recall that Y is more
dispersed than X in the dilation sense, denoted by X <g4;; Y, if
E[® (X —ux)] < E[® (Y — uy)] for all convex functions &,
provided that these expectations exist) as follows:

X =<a1Y
pa,B(X) < pap(Y)

if, and only if;,
for all pg g € Cs.

The two-sided deviation suggested by Wang (1998) and the
expected shortfall at level p are measures of Cj not belonging
to C3; in addition, (5), for n > 2, is a family of measures of C»
that not belongs to C3. These examples show that not every
measure of interest of C; and Cy belongs to C3 and justify
the convenience of employing dispersive order and excess-
wealth order rather than the weaker dilation order to compare
risks.

We have also derived sufficient conditions, in terms of some
special risk measures of the class C», for stochastic equality of
two excess-wealth ordered random variables. These conditions
have interesting statistical applications. For example, results of
Section 3 can be applied to develop suitable tests of equality of
two excess-wealth ordered random variables. Specifically, if we
consider the problem of testing the null hypothesis

Hy: X=;Y +c¢, forsomeconstantc > 0

against the alternative
H X <.,Y

given random samples of X and Y, we may use as a
measure of departure from Hy in favor of Hy : A =
{E Y1 — Ys| — E|X1 — X3|}, where X1, X3 (resp. Y1, Y2) are
independent copies of X (resp. Y). Corollary 10 suggests that
reject the null hypothesis if A (n, m) > iy, where A (n, m) is
an estimator of A based on two random samples (xp, ..., x;)
and (y1,..., yn) from X and Y, respectively, and iy depends
on the null distribution of A (n, m) .
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