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a b s t r a c t

Lawrence semigroups arise as a tool to compute Graver bases of
semigroup ideals. It is known that the minimal free resolution of
semigroup ideals is characterized by the reduced homologies of
certain simplicial complexes.

In this paper we study the minimal degrees of a Lawrence
semigroup ideal and its first syzygy given a combinatorial
characterization of the nonvanishing cycles in their associated
reduced homologies. We specialize the results that appeared in
[Briales, E., Campillo, A., Marijuán, C., Pisón, P., 1998. Minimal
systems of generators for ideals of semigroups. J. Pure Appl.
Algebra, 127, 7–30] and [Pisón-Casares, P., Vigneron-Tenorio, A.,
2001. First syzygies of toric varieties and diophantine equations
in congruence. Comm. Alg. 29 (4), 1445–1466] to the Lawrence
semigroups.

© 2008 Elsevier Ltd. All rights reserved.

0. Introduction

The Lawrence semigroups appear in the context of Graver basis computation of ideals. The Graver
basis of an ideal is a generating set whose elements are the primitive binomials: Xα

− Xβ is primitive
if there exists no binomial Xα′

− Xβ′ in the ideal such that Xα′ divides Xα and Xβ′ divides Xβ (Sturmfels,
1995). Lawrence lifting is a tool to compute Graver basis.

Besides, Lawrence semigroups and ideals are crucial in the computation of the universal Gröbner
basis of semigroup ideal (Sturmfels, 1995). The Graver basis of a semigroup ideal is related to the
integer programming and the test sets (Sturmfels and Thomas, 1997), and it can be computed by
using the reduced Gröbner basis of its Lawrence lifting (Sturmfels, 1995, Chapter 7). To be precise, it
is enough to substitute some variables by 1 in the elements of this Gröbner basis.
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In Section 1, we show briefly the equivalence between semigroups and lattices, their ideals and
their Lawrence lifting.

It is easy to proof that any Lawrence semigroup, S, satisfies the property S ∩ (−S) = {0}. Then
there exists a minimal free resolution associated to its S-graded algebra. In this case, it is known that
the degrees of the minimal generator set for the i-syzygy module are characterized by means of the
i-reduced homology of some simplicial complexes ∆m. Let H̃i(∆m) be that i-reduced homology (see
Briales et al. (1998a) for details). The minimal generators of degree m of the i-syzygy are in bijection
with the base elements of the vector space H̃i(∆m).

In Section 2,we study the simplicial complexes associated to theminimal generator set of Lawrence
ideals. We characterize the connected components of these simplicial complexes (Proposition 1). This
characterizes theminimal generator set of the ideal obtaining a similar result to the onewhich appears
in Sturmfels et al. (1995, Theorem 5.3).

In Section 3,we study the first syzygies of Lawrence ideals describing the possible cycles in H̃1(∆m).
The F-cavities of the simplicial complex are the key. We describe these F-cavities and their cardinals.
Notice that the nonvanishing cycles in H̃1(∆m) are determined by some F-cavities. In Bayer et al. (2001)
the authors construct the minimal free resolution of unimodular Lawrence ideals.

From the results of this paper one can obtain combinatorial algorithms to compute mathematical
objects. The interest of these algorithms does not rely on their efficiency, but on the combinatorial
description of these objects that they provide. In fact, the computation using Gröbner Basis Theory is
more efficient, but this is only a computing method and does not shed any light on the combinatorial
structure of these objects.

1. Lawrence lifting of semigroups and Lawrence lifting of lattice

Given S ⊂ Zn
⊕ Z/a1Z ⊕ · · · ⊕ Z/ahZ a finitely generated semigroup with zero element, and

{n1, . . . , nr} ⊂ S a set of generators for S, one can define its Lawrence lifting generalizing the Lawrence
lifting of a matrix that appears in Sturmfels (1995, Chapter 7). The Lawrence lifting of S is a new
semigroup S′ generated by (n1, e1), . . . , (nr, er), (0, e1), . . . , (0, er) in Zn

⊕ Z/a1 ⊕ · · · ⊕ Z/ah ⊕ Zr

with {e1, . . . , er} the standard coordinate vectors in Q r. Any semigroup like S′ is called a Lawrence
semigroup.

Fixing k as a commutative field, one can consider k[X] = k[x1, . . . , xr], the polynomial ring in r
indeterminates where the S-degree of xi is equal to ni.Wedenote by Xα,where α = (α1, . . . ,αr) ∈ Nr,
the monomial xα1

1 · · · xαr
r . Let >> be the natural partial order on Nr.

It is easy to see that a Lawrence semigroup S′ satisfies the hypothesis of Theorem 7.1 in Sturmfels
(1995) using the lattice L = {(δ1, . . . , δr) ∈ Zr

|
∑r

i=1 δini = 0} ⊂ Zr associated to S. It is well known
that the ideal associated to S, I, and to L, IL, are the same (Vigneron-Tenorio, 1999). They are as
follows (see Herzog (1970) and Sturmfels et al. (1995)):

I :=

〈
Xα

− Xβ
|

r∑
i=1

αini =

r∑
i=1

βini, αi,βi ≥ 0
〉

= IL :=

〈
Xδ+

− Xδ−

|δ ∈ L
〉
,

where δ+

i = max{δi, 0} and δ−
= (−δ)+.

The Lawrence lifting of L is a new lattice L̂ = {(δ,−δ) ∈ Z2r
| δ ∈ L}. This object was first defined

in Sturmfels et al. (1995, Section 5). Notice that IS′ = IL̂. Proposition 5.1 in Sturmfels et al. (1995)
characterizes the Graver basis of IL as the unique reduced Gröbner basis of IL̂. This characterizes the
Graver basis of IS as the unique reduced Gröbner basis of IS′ .

2. Combinatoric results over Lawrence ideals

From now on, we fix the Lawrence semigroup

S = 〈n′

1, . . . , n
′

r, n
′

r+1, . . . , n
′

2r〉 ⊂ Zn
⊕ Z/a1 ⊕ · · · ⊕ Z/ah ⊕ Zr

where n′

i = (ni, ei) for all i = 1, . . . , r, and n′

i = (0, ei−r), ∀i = r + 1, . . . , 2r. Thus, Λ =

{1, . . . , r, r + 1, . . . , 2r}. Note that S ∩ (−S) = {0}. One can consider the simplicial complex ∆m =
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F ⊂ Λ|m − n′

F ∈ S
}
, where n′

F =
∑

i∈F n
′

i. This simplicial complex was first defined in Campillo and
Marijuán (1991). Observe that, if F is a maximal face in ∆m, then there is a monomial of degreemwith
support F.

We define the function sym : Λ → Λ by sym(i) =

{
i + r, i ≤ r
i − r, i > r

, for i ∈ Λ. Let A ⊂ Λ, set

sym(A) := {sym(i)| i ∈ A}. In the following lemma we prove an important property of the simplicial
complexes ∆m associated to a Lawrence semigroup.

Lemma 1. If {i} ∈ ∆m and m =
∑

j∈G γjn′

j, where i /∈ G ⊂ Λ, then sym(i) ∈ G.

Proof. {i} ∈ ∆m implies that m − n′

i ∈ S. Thus, if n′

i = (∗, el) then the (n + h + l)th coordinate of m is
nonzero. Since i 6∈ G and m =

∑
j∈G γjn′

j, it is clear that sym(i) ∈ G. �

Proposition 1. Let ∆m be nonconnected. Then:

(1) ∆m = C t sym(C), where C and sym(C) are the only two connected components of ∆m.
(2) 1 ≤ \C ≤ r.
(3) C and sym(C) are full subcomplexes.

Proof. (1) Let A, B be two different connected components of∆m, then A∩B = ∅ andm =
∑

i∈A αin′

i =∑
i∈B βin′

i. Using Lemma 1 one obtains sym(A) ⊂ B and sym(B) ⊂ A. As sym() is an idempotent
function, the equalities hold.

(2) We know that C t sym(C) ⊆ Λ. If \C > r then \Λ > 2r, but this is not possible.
(3) Suppose that C is not a full subcomplex. In that case there exist A, B ⊂ C maximal faces of C, such

that A 6= B and ∃αi,βi ∈ N \ {0}, m =
∑

i∈A αin′

i =
∑

i∈B βin′

i .
Let i ∈ A and i /∈ B. Then sym(i) ∈ B. We have i, sym(i) ∈ C, but this is not possible. �

The above proposition can be obtained from Sturmfels et al. (1995, Proposition 5.1). When that
result is specialized to the lattice L̂ we get Proposition 1, namely, the minimal generator fibers of
the associated ideals contain exactly 2 monomials which are symmetric; XC − Xsym(C) where XC and
Xsym(C) are the unique monomials of degree m with support C and sym(C). This can be used to obtain
a combinatorial algorithm to compute the minimal generating set of I, like Briales et al. (1998b,
Algorithm 5.1).

3. Combinatoric results over first syzygies of Lawrence ideals

In this section, we are going to make a combinatorial study of the first syzygies of the Lawrence
semigroup ideal I. First of all, we introduce the concept of F-cavity (see Pisón-casares and Vigneron-
Tenorio (2001) for details).

Definition 1. Letm ∈ S and F = {i1, . . . , it} ⊂ Λ such that \F ≥ 3, and let σ be a polygon whose vertex
set is F. We say σ is an F-cavity of ∆m if the following conditions are satisfied:

(1) Fj ∈ ∆m, ∀j = 1, . . . , t where Fj = {ij, ij+1}, ∀j = 1, . . . , t − 1, and Ft = {it, i1}, are the faces of σ.
(2) If ∀j = 1, . . . , t, Fj 6= F′

⊂ F, \F′
≥ 2, then F′ /∈ ∆m.

The relation between the F-cavities and the degrees of the first syzygies is the following (see Pisón-
casares and Vigneron-Tenorio (2001, Lemma 13)).

Lemma 2. Let m ∈ S such that H̃1(∆m) 6= 0. Then, there is σ an F-cavity of ∆m with faces Fi satisfying

c =

t∑
j=1

εjFj ∈ H̃1(∆m) \ {0}, for some εj = ±1,∀j = 1, . . . , t.

The vector space H̃1(∆m) is the first reduced homology of ∆m. The nonvanishing cycles of this
homology, c =

∑
εjFj ∈ H̃1(∆m) \ {0}, are isomorphic to the minimal generators of degree m of

the first syzygy of I. This result appears in Briales et al. (1998a).
The particular nature of the Lawrence semigroups allows us to prove the following result.

Theorem 1. Under the hypothesis of Lemma 2, 3 ≤ \F ≤ 4. Moreover, σ has one of the shapes in Fig. 4.
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Fig. 1. \F > 5.

Proof. Let σ = {F1, . . . Ft} be an F-cavity of ∆m as in Definition 1, then there is α(i)
=

(α
(i)
1 , . . . ,α

(i)
2r−t+2) ∈ N2r−t+2 satisfying

m = n′

F1
+

∑
j∈G1

α
(1)
j n′

j = n′

F2
+

∑
j∈G2

α
(2)
j n′

j = · · · = n′

Ft−1
+

∑
j∈Gt−1

α
(t−1)
j n′

j

= n′

Ft
+

∑
j∈Gt

α
(t)
j n′

j,

where Gl := (Λ \ F) ∪ Fl for l = 1, . . . , t. By Lemma 1, i ∈ F \ Fl implies sym(i) ∈ Gl. Therefore,
∪i∈F\Flsym(i) ⊂ Gl for all l = 1, . . . , t, and in particular, ∪Fj∩Fl=∅sym(Fj) ⊂ Gl.

First, we are going to prove that F-cavities where \F ≥ 5 do not contain both a vertex and its
symmetric one. Suppose, for example, that i1, sym(i1) ∈ F for some i1. Since \F ≥ 5, there is an l, such
that i1, sym(i1) 6∈ Fl. Then, one can write m without using n′

i1
, n′

sym(i1)
. But this is impossible.

• Suppose that \F > 5. Notice that the following sets are in ∆m :

sym(i1) ∪ sym(F2), sym(i1) ∪ sym(F3), . . . , sym(i1) ∪ sym(Ft−1)︸ ︷︷ ︸
Full Top (base)

,

F1 ∪ sym(F3), F2 ∪ sym(F4), . . . , Ft−1 ∪ sym(F1), Ft ∪ sym(F2)︸ ︷︷ ︸
Full Sides

Thus, ∆m contains a prism with an empty cover {i1, . . . , it}, a full base and any full sides
(equivalent to Fig. 1).3 The topological invariance of the simplicial homology groups yields c = 0
as an element in H̃1(∆m). This is in direct conflict with Lemma 2. Therefore, \F ≤ 5.

• Suppose that \F = 5. We have just seen that the unique possibility for an F-cavity with \F = 5 is
the one that is in Fig. 4.

On the other hand, notice that the following sets are in ∆m :

F1 ∪ {sym(i3), sym(i5)}, F5 ∪ {sym(i3), sym(i2)},

F3 ∪ {sym(i2), sym(i5)}, F5 ∪ {sym(i2)}, F2 ∪ {sym(i5)}.

Thus, ∆m contains a prism with an empty cover, {i1, . . . , i5}, an empty base, {sym(i2), sym(i3),
sym(i5)}, and full sides (equivalent to Fig. 2).4 Then all possible nonvanishing elements c =

∑5
j=1 εjFj

are equivalent to some c′ =
∑3

j=1 ε′

jF
′

j in H̃1(∆m). So one can study the F-cavitieswith \F = 3 instead
of the F-cavities with \F = 5.

• Suppose that \F = 4. Notice that there cannot be an edge like {i, sym(i)}.

3We have supposed that F = {1, 2, 3, 4, 5, 6}.
4We have supposed that F = {1, 2, 3, 4, 5}.
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Fig. 2. \F = 5.

Fig. 3. \F = 4.

If one considers the F-cavity, F = {i1, i2, i3, i4}, where there are no u, v = 1, 2, 3, 4 such that
iu = sym(iv), the sets

F4 ∪ sym(i2), F2 ∪ sym(i1) and F3 ∪ sym(F1)

are in ∆m.
Thus, ∆m contains a wedge with an empty cover, {i1, i2, i3, i4}, an empty base, {i1, i2, sym(i1),

sym(i2)}, and the above three full sides (equivalent to Fig. 3).5
Then any possible nonvanishing element c = ε1F1 + ε2F2 + ε3F3 + ε4F4 is equivalent to c′ =

ε′

1F1 + ε′

2 {i2, sym(i1)} + ε′

3sym(F1) + ε′

4 {i1, sym(i2)} in H̃1(∆m). So the above two F-cavities are
equivalent.

The other possibility is the F-cavity F = {i1, i2, sym(i1), i4}. This possibility can happen as one
can see in the complex of degree (6, 2, 1, 3, 3) (F = {4, 5, 1 = sym(4), 6}) in Fig. 5.

• Suppose that \F = 3. In that case, there are only two possible F-cavities:

(1) three vertices such that no one is the symmetric of any other;
(2) three vertices such that one of them is the symmetric of another one.

These two possibilities can happen as one can see in the complex of degree (6, 2, 1, 3, 3)
(F = {1, 2, 3}) and (2, 1, 3, 1, 1) (F = {1, 2, 4 = sym(1)}) in Fig. 5.

Then all possible F-cavities are included in Fig. 4. �

Knowing the possible cycles c =
∑t

j=1 εjFj ∈ H̃1(∆m) \ {0}, one can study the minimal generators
for the first syzygy using the isomorphism explicited in Briales et al. (1998a, Remark 3.6).

5We have supposed that F = {1, 2, 3, 4}.
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Fig. 4. Possible F-cavities.

Fig. 5. m-degrees.

The Algorithm 19 to compute the first syzygy and the bound of their degrees (Theorem 23) that
appear in Pisón-casares and Vigneron-Tenorio (2001) can be improved immediately for Lawrence
ideals. The reason is that one must only check the possible F-cavities which satisfy that \F is equal
to 3 or 4.

We are going to illustrate Theorem 1 with an example.

Example 1. Let S ⊂ Z ⊕ Z/3 ⊕ Z3 be the Lawrence semigroup generated by

〈(0, 2, 1, 0, 0), (2, 1, 0, 1, 0), (2, 2, 0, 0, 1), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0),
(0, 0, 0, 0, 1)〉

and consider the minimal system of generators for I : gen1 = x32x
3
6 − x33x

3
5, gen2 = x1x3x5 − x2x4x6,

gen3 = x1x
2
2x

2
6 − x23x4x

2
5, gen4 = x21x2x6 − x3x

2
4x5, and gen5 = x31 − x34. A minimal system of generators

for the first syzygies is

x22x
2
6gen2 − x3x5gen3 + x4gen1, x1gen1 − x2x6gen3 + x23x

2
5gen2,

x1gen3 − x2x6gen4 + x3x4x5gen2, x1gen4 − x2x6gen5 + x24gen2,
x1x2x6gen2 − x3x5gen4 + x4gen3, x

2
1gen2 − x3x5gen5 + x4gen4

The σ F-cavities associated to their degrees are in Fig. 5.
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