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Abstract

We prove an algebraic version of the Gauge-Invariant Uniqueness Theorem, a result which gives informa-
tion about the injectivity of certain homomorphisms between Z-graded algebras. As our main application
of this theorem, we obtain isomorphisms between the Leavitt path algebras of specified graphs. From these
isomorphisms we are able to achieve two ends. First, we show that the K0 groups of various sets of purely
infinite simple Leavitt path algebras, together with the position of the identity element in K0, classify the
algebras in these sets up to isomorphism. Second, we show that the isomorphism between matrix rings over
the classical Leavitt algebras, established previously using number-theoretic methods, can be reobtained via
appropriate isomorphisms between Leavitt path algebras.
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Introduction

Throughout this article E will denote a finite directed graph, and K will denote an arbitrary
field. The Leavitt path algebra of E with coefficients in K , denoted LK(E), has received signif-
icant attention over the past few years, both from algebraists as well as from analysts working
in operator theory. (The precise definition of LK(E) is given below.) When K is the field C
of complex numbers, the algebra LK(E) has exhibited surprising similarity to its C∗-algebra
counterpart C∗(E), the Cuntz–Krieger graph C∗-algebra of E. In part motivated by the Gauge-
Invariant Uniqueness Theorem of operator theory, we prove in Section 1 of this article a result
which guarantees the injectivity of certain algebra homomorphisms based on a specified action of
the field as automorphisms on the codomain. With this result in hand, we use it (and other results
about homomorphisms from Leavitt path algebras established here) in Section 2 to produce iso-
morphisms between Leavitt path algebras. Specifically, we show in Theorems 2.3 and 2.8 how,
starting with the graph E and specified configurations of vertices and edges in E, to explicitly
construct graphs E′ having LK(E) ∼= LK(E′). In Section 3 we apply these isomorphisms to ob-
tain Proposition 3.4, a result about isomorphisms between purely infinite simple unital Leavitt
path algebras. Subsequently, in Section 4 we use these isomorphisms to answer specific cases of
The Classification Question for purely infinite simple unital Leavitt path algebras. We establish
Propositions 4.1 and 4.2, the algebraic counterparts of specific pieces of the Kirchberg–Phillips
Theorem of C∗-algebras (see [14, Section 3] for a description). These two results establish, re-
spectively, that if E and F are finite directed graphs having two (respectively three) vertices
and no parallel edges, and the Leavitt path algebras LK(E) and LK(F) are purely infinite sim-
ple, then LK(E) ∼= LK(F) if and only if the Grothendieck groups K0(LK(E)) and K0(LK(F ))

are isomorphic via an isomorphism which takes [1LK(E)] to [1LK(F)]. We close the article by
showing how [4, Theorem 4.14] may be reestablished using the results and techniques of this
article.

We briefly recall some graph-theoretic definitions and properties; more complete explanations
and descriptions can be found in [1]. A graph E = (E0,E1, r, s) consists of two countable sets
E0,E1 and maps r, s :E1 → E0. (Some authors use the phrase ‘directed’ graph for this struc-
ture.) The elements of E0 are called vertices and the elements of E1 edges. (We emphasize that
loops and multiple/parallel edges are allowed.) If s−1(v) is a finite set for every v ∈ E0, then the
graph is called row-finite. A vertex v for which s−1(v) is empty is called a sink, while a vertex
w for which r−1(w) is empty is called a source. A path μ in a graph E is a sequence of edges
μ = e1 . . . en such that r(ei) = s(ei+1) for i = 1, . . . , n − 1. In this case, s(μ) := s(e1) is the
source of μ, r(μ) := r(en) is the range of μ, and n is the length of μ. An edge e is an exit for
a path μ = e1 . . . en if there exists i such that s(e) = s(ei) and e �= ei . If μ is a path in E, and if
v = s(μ) = r(μ), then μ is called a closed path based at v. If μ = e1 . . . en is a closed path based
at v = s(μ) and s(ei) �= s(ej ) for every i �= j , then μ is called a cycle. We say that a graph E

satisfies Condition (L) if every cycle in E has an exit. For n � 2 we define En to be the set of
paths of length n, and E∗ = ⋃

n�0 En the set of all paths.
The following notation is standard. Let A be a p×p matrix having nonnegative integer entries

(i.e., A = (aij ) ∈ Mp(Z+)). The graph EA is defined by setting (EA)0 = {v1, v2, . . . , vp}, and
defining (EA)1 by inserting exactly aij edges in EA having source vertex vi and range vertex vj .
Conversely, if E is a finite graph with vertices {v1, v2, . . . , vp}, then we define the incidence



G. Abrams et al. / Journal of Algebra 320 (2008) 1983–2026 1985
matrix AE of E by setting (AE)ij as the number of edges in E having source vertex vi and range
vertex vj .

Definition 0.1. Let E be any row-finite graph, and K any field. The Leavitt path K-algebra
LK(E) of E with coefficients in K is the K-algebra generated by a set {v | v ∈ E0} of pair-
wise orthogonal idempotents, together with a set of variables {e, e∗ | e ∈ E1}, which satisfy the
following relations:

(1) s(e)e = er(e) = e for all e ∈ E1.
(2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.
(3) e∗e′ = δe,e′r(e) for all e, e′ ∈ E1.
(4) v = ∑

{e∈E1|s(e)=v} ee∗ for every vertex v ∈ E0 for which s−1(v) is nonempty.

When the role of the coefficient field K is not central to the discussion, we will often denote
LK(E) simply by L(E).

The set {e∗ | e ∈ E1} will be denoted by (E1)∗. We let r(e∗) denote s(e), and we let s(e∗)
denote r(e). If μ = e1 . . . en is a path, then we denote by μ∗ the element e∗

n · · · e∗
1 of LK(E).

For any subset H of E0, we will denote by I (H) the ideal of LK(E) generated by H .
An alternate description of LK(E) is given in [1], where it is described in terms of a free

associative algebra modulo the appropriate relations indicated in Definition 0.1 above. As a
consequence, if A is any K-algebra which contains elements satisfying these same relations,
then there is a (unique) K-algebra homomorphism from LK(E) to A mapping the generators
of LK(E) to their appropriate counterparts in A. We will refer to this conclusion as the Universal
Homomorphism Property of LK(E). See also [15, Remark 2.5].

Many well-known algebras arise as the Leavitt path algebra of a row-finite graph. For instance,
the classical Leavitt algebras Ln for n � 2 (see Definition 3.7 below) arise as the algebras L(Rn)

where Rn is the “rose with n petals” graph

•v y1

y2
y3

yn

... .

The full n × n matrix algebra over K arises as the Leavitt path algebra of the oriented n-line
graph

•v1
e1 •v2

e2 •v3 •vn−1
en−1 •vn

while the Laurent polynomial algebra K[x, x−1] arises as the Leavitt path algebra of the “one
vertex, one loop” graph

•v x .

Constructions such as direct sums and the formation of matrix rings produce additional examples
of Leavitt path algebras.
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If E is a finite graph then LK(E) is unital, with
∑

v∈E0 v = 1LK(E). Conversely, if LK(E)

is unital, then E0 is finite. If E0 is infinite then LK(E) is a ring with a set of local units; one
such set of local units consists of sums of distinct elements of E0. LK(E) = ⊕

n∈Z
LK(E)n

is a Z-graded K-algebra, spanned as a K-vector space by {pq∗ | p,q are paths in E}. In par-
ticular, for each n ∈ Z, the degree n component LK(E)n is spanned by elements of the form
{pq∗ | length(p)− length(q) = n}. The degree of an element x, denoted deg(x), is the minimum
integer n for which x ∈ ⊕

m�n LK(E)m. The set of homogeneous elements is
⋃

n∈Z
LK(E)n, and

an element of LK(E)n is said to be n-homogeneous or homogeneous of degree n. The K-linear
extension of the assignment pq∗ �→ qp∗ (for p,q paths in E) yields an involution on LK(E),
which we denote simply as ∗.

Information regarding the “C∗-algebra of a graph,” also known as the “Cuntz–Krieger graph
C∗-algebra,” may be found in [13].

1. Injectivity of algebra maps

Our central theme in this article is a description of isomorphisms between Leavitt path alge-
bras. As we shall see, oftentimes we encounter a situation in which we have defined a surjective
ring homomorphism between two such algebras, and seek to determine whether the map is
injective. The main result of this section, Theorem 1.8 (which we refer to as the Algebraic
Gauge-Invariant Uniqueness Theorem or AGIUT for short), provides a tool for doing just that.
The AGIUT is a consequence of results for general Z-graded K-algebras.

In fact, there are many results aside from the AGIUT which provide similar tools by which
we can establish the injectivity of various algebra homomorphisms. We present two such results
in the following lemmas.

Lemma 1.1. Let E be a row-finite graph, let A be a Z-graded K-algebra, and let f :LK(E) → A

be an algebra map such that f (v) �= 0 for every v ∈ E0. If f is graded, then f is injective.

Proof. Since f is a graded map, Ker(f ) is a graded ideal of LK(E). By [6, Theorem 5.3], there
exists a subset X of E0 such that Ker(f ) = I (X). Since f (v) �= 0 for every v ∈ E0, we get
X = ∅, whence Ker(f ) = 0 as desired. �

The method used in the previous proof is to guarantee that Ker(f ) does not contain any
vertices. The proof of the following lemma uses a similar line of reasoning.

Lemma 1.2. Let E be a row-finite graph satisfying Condition (L), let A be a K-algebra, and let
f :LK(E) → A be an algebra map. If f (v) �= 0 for every v ∈ E0, then f is injective.

Proof. By [1, Lemma 3.9], Condition (L) yields that J ∩ E0 �= ∅ for every nonzero ideal J

of LK(E). Since f (v) �= 0 for every v ∈ E0, we conclude that Ker(f ) = 0 as desired. �
With the hypotheses of the previous two lemmas in mind, we seek an injectivity result in

situations in which the map is not graded, and the graph contains cycles with no exits. Such a
result is the essence of the AGIUT (Theorem 1.8).

Definitions 1.3. Let K be a field, and let A be a Z-graded algebra over K . For t ∈ K∗ = K \ {0}
and a any homogeneous element of A of degree d , set
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τt (a) = tda,

and extend τt to all of A by linearity. It is easy to show that τt is a K-algebra automorphism of A

for each t ∈ K∗. Then τ :K∗ → AutK(A) is an action of K on A, which we call the gauge action
of K on A.

If I is an ideal of A, we say that I is gauge-invariant in case τt (I ) = I for each t ∈ K∗.
This condition is equivalent to requiring that τt (I ) ⊆ I for every t ∈ K∗, since τt−1(I ) ⊆ I gives
I ⊆ τt (I ).

The previous definition of the gauge action draws its motivation as follows. Let A be a Z-
graded K-algebra (e.g., a Leavitt path algebra LK(E)) which is generated by homogeneous
elements of degree 1 and −1. Then the multiplicative group K∗ acts naturally on A by sending
elements a of degree ε, where ε = 1,−1 to tεa for each nonzero element t ∈ K . In particular if
A is an involutorial K-algebra over a field K with involution, then any homogeneous element of
degree −1 is the image of such an element of degree 1, and hence the unitary group of K (i.e.,
the group of t ∈ K with t t∗ = 1) acts naturally on A. This natural action of the unit circle on the
Cuntz algebra On is in part the motivation for our description of an algebraic gauge action of K

on A. (For additional information see [12, p. 198].)
The next result establishes a relationship between graded and gauge-invariant ideals of any

Z-graded algebra.

Proposition 1.4. Let K be a field, let A be a Z-graded K-algebra, and let I be an ideal of A.
Let τ :K∗ → AutK(A) be the gauge action of K on A.

(1) If I is generated as an ideal of A by elements of degree 0, then I is gauge-invariant.
(2) If K is infinite, and if I is gauge-invariant, then I is graded.

Proof. Statement (1) is clear, as τt fixes the degree zero elements of A for each t ∈ K∗.
For statement (2), we prove the contrapositive. So suppose I is not graded. We seek to show

that I is not gauge-invariant. For each a ∈ A let h(a) denote the number of nonzero homogeneous
graded components of a. Since I is not graded there exists an element a ∈ I for which, in the
decomposition a = ∑

aj into a sum of its homogeneous components, at least two of the aj are
not in I . Let T ⊆ I denote those elements of I which, when written in homogeneous decompo-
sition, have the property that no nonzero homogeneous component is in I . Since I is not graded,
T �= ∅. Let b ∈ T such that h(b) = min{h(t) | t ∈ T }. Note that h(b) � 2. Let m,n ∈ Z for which
the homogeneous components bm and bn are each nonzero; assume without loss of generality
that n < m. Because K is infinite, we can find t ∈ K∗ such that tm �= tn. (Otherwise, we would
have tm = tn for all t ∈ K∗, so that every element of K∗ would be a zero of xm−n − 1 ∈ K[x],
but such cannot happen in an infinite field.)

To show that I is not gauge-invariant, it suffices to show τt (I ) � I . By contradiction, assume
τt (I ) ⊆ I , so that in particular τt (b) ∈ I . We observe that b ∈ I gives tmb ∈ I , so τt (b)− tmb ∈ I ;
we denote τt (b) − tmb by c. Note that for each i ∈ Z, the i-component of c is ci = (t i − tm)bi .
Thus we have cm = 0, but cn = (tn − tm)bn �= 0 (and so in particular c �= 0). But cm = 0 gives
h(c) < h(b), so, by minimality, at least one of the nonzero components of c is in I . That is, for
some p ∈ Z, (tp − tm)bp is a nonzero element of I . But then bp is a nonzero element of I , which
contradicts our choice of b. �
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We now apply this result in the context of Leavitt path algebras. For clarity, we present here
the definition of the gauge action of K on the Leavitt path algebra LK(E) of the row-finite
graph E.

Definition 1.5. Let E be a row-finite graph, and let K be a field. Then the gauge action τ of K

on the Leavitt path algebra LK(E) (denoted sometimes by τE for clarity) is given by

τE : K∗ → AutK
(
LK(E)

)
,

t �→ τE
t

as follows: for every t ∈ K∗, for every v ∈ E0, and for every e ∈ E1

τE
t : LK(E) → LK(E),

v �→ v,

e �→ te,

e∗ �→ t−1e∗

and then extend linearly and multiplicatively to all of LK(E).

For a graph E, the set of graded ideals of A = LK(E) is denoted by Lgr.

Proposition 1.6. Let E be a row-finite graph, let K be an infinite field, and let I be an ideal
of LK(E). Then I ∈ Lgr if and only if I is gauge-invariant.

Proof. If I ∈ Lgr, then I = I (H) for some H ⊆ E0 by [6, Theorem 5.3]. Thus I is generated
by elements of degree zero, and so Proposition 1.4(1) applies. The converse follows immediately
from Proposition 1.4(2). �

We note that the implication I ∈ Lgr implies I is gauge-invariant holds for any field K , finite
or infinite. In contrast, we now show that the converse implication of Proposition 1.6 is never
true for any finite field.

Proposition 1.7. For any finite field K there exists a graph E such that the Leavitt path alge-
bra LK(E) contains a nongraded ideal which is gauge-invariant.

Proof. If we denote card(K) by m + 1, then tm = 1 for all t ∈ K∗. Let E be the graph

•v x

so that, as noted previously, LK(E) ∼= K[x, x−1]. In particular we have τt (1 + xm) = 1 + xm

for all t ∈ K∗. This then yields that the ideal I = 〈1 + xm〉 of LK(E) is gauge-invariant. But
it is well known (or it can be shown using an argument similar to that given in the proof of [1,
Theorem 3.11]) that I is not a graded ideal of K[x, x−1]. �

We are now in position to present the main application of these ideas.
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Theorem 1.8 (The Algebraic Gauge-Invariant Uniqueness Theorem). Let E be a row-finite
graph, let K be an infinite field, and let A be a K-algebra. Suppose

φ :LK(E) → A

is a K-algebra homomorphism such that φ(v) �= 0 for every v ∈ E0. If there exists a group action
σ :K∗ → AutK(A) such that φ ◦ τE

t = σt ◦ φ for every t ∈ K∗, then φ is injective.

Proof. Let I = Ker(φ). Then for every a ∈ I and for every t ∈ K∗, φ(τE
t (a)) = σt (φ(a)) =

σt (0) = 0, whence τE
t (a) ∈ Ker(φ) = I . Thus for every t ∈ K∗ we have τE

t (I ) ⊆ I , so that I

is gauge-invariant. Hence I ∈ Lgr by Proposition 1.6. In particular, if I �= {0}, then I ∩ E0 �= ∅
by [6, Proposition 5.2 and Theorem 5.3], contradicting the hypothesis that φ(v) �= 0 for every
v ∈ E0. �

In both [3] and [15] an analysis of Leavitt path algebras for nonrow-finite graphs is carried out.
We conclude Section 1 by noting that all the results (and their proofs) presented in this section
hold verbatim in this more general not-necessarily-row-finite setting. In particular, Lemma 1.1
generalizes as [15, Theorem 4.8], while Lemma 1.2 generalizes as [15, Theorem 6.8].

2. Isomorphisms: general results

In this section we will apply the results of Section 1 to draw conclusions about isomorphisms
between Leavitt path algebras. The main goal in establishing such isomorphisms is as follows:
starting with a graph E, we seek a systematic method to produce various graphs F for which
LK(E) ∼= LK(F). As such, we refer to our two main results (Theorems 2.3 and 2.8) as “Change
the Graph” Theorems. These results in turn will allow us to verify that a specific set of Leavitt
path algebras is determined up to isomorphism by K0 data.

In our first such result, we show how to “bundle” specific sets of edges, and subsequently
replace the bundled sets by a single edge.

Definition 2.1. Let E be a row-finite graph, and let v �= w ∈ E0 be vertices which are not sinks.
If there exists an injective map

θ : s−1(w) → s−1(v)

such that r(e) = r(θ(e)) for every e ∈ s−1(w), we define the shift graph from v to w, denoted

F = E(w ↪→ v),

as follows:

(1) F 0 = E0.
(2) F 1 = (E1 \ θ(s−1(w))) ∪ {fv,w}, where fv,w /∈ E1, s(fv,w) = v and r(fv,w) = w.

Although the definition the graph F = E(w ↪→ v) depends on the map θ , in order to make the
notation less cumbersome we suppress θ in the notation. This will cause no confusion throughout
the sequel.
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Example 2.2. Consider the following graphs:

R̂2: •v1 •v2 ; S2: •v1 •v2 ; R2
2 : •v1 •v2 .

Then notice that S2 = R̂2(v1 ↪→ v2) and S2 = R2
2(v2 ↪→ v1).

Recall that a graph E satisfies Condition (L) in case every cycle in E has an exit. It is clear
that if E satisfies Condition (L), then so also does E(w ↪→ v) for any shift graph constructed
from E.

We are now in position to prove the first of two “Change the Graph” Theorems.

Theorem 2.3. Let E be a row-finite graph, and let v �= w ∈ E0 be vertices which are not sinks.
If there exists an injection

θ : s−1(w) → s−1(v)

such that r(e) = r(θ(e)) for every e ∈ s−1(w), then L(E(w ↪→ v)) is a homomorphic image
of L(E). Moreover, if either:

(1) E satisfies Condition (L), or
(2) the field K is infinite,

then there exists a K-algebra isomorphism ϕ :L(E) → L(E(w ↪→ v)). (The isomorphism ϕ is
not an isomorphism of Z-graded K-algebras.)

Proof. Let F = E(w ↪→ v), and let s−1
E (w) = {e1, . . . , en}. Given any ei ∈ s−1

E (w), we define in
L(F) the element

Tei
= fv,wei .

Notice that Tei
�= 0 for every ei ∈ s−1

E (w), and that Tei
�= Tej

whenever i �= j . Now consider the
subalgebra A of L(F) generated by

{
v, e, e∗, Tei

, T ∗
ei

∣∣ v ∈ E0, e ∈ E1 \ θ
(
s−1
E (w)

)
, ei ∈ s−1

E (w)
}
.

Then, if i �= j , we have

T ∗
ei
Tej

= (fv,wei)
∗(fv,wej ) = e∗

i f
∗
v,wfv,wej = e∗

i ej = 0 = θ(ei)
∗θ(ej ),

while T ∗
ei
Tei

= e∗
i ei = r(ei) = r(θ(ei)) = θ(ei)

∗θ(ei). Also, s(Tei
) = s(fv,w) = v = s(θ(ei)) and

r(Tei
) = r(ei) = r(θ(ei)). Moreover, the only generators in A starting in v which do not belong

to s−1(v) \ θ(s−1(w)) are of the form Te with ei ∈ s−1(w). Thus,

i E
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∑
{e∈s−1(v)\θ(s−1(w))}

ee∗ +
n∑

i=1

Tei
T ∗

ei
=

∑
{e∈s−1(v)\θ(s−1(w))}

ee∗ +
n∑

i=1

fv,weie
∗
i f

∗
v,w

=
∑

{e∈s−1(v)\θ(s−1(w))}
ee∗ + fv,w

(
n∑

i=1

eie
∗
i

)
f ∗

v,w

=
∑

{e∈s−1(v)\θ(s−1(w))}
ee∗ + fv,wf ∗

v,w = v.

Hence the generators of A satisfy the same relations as do the elements of the set {v, e, e∗ | v ∈
E0, e ∈ E1} in L(E). Thus by the Universal Homomorphism Property of L(E) there exists a
unique algebra morphism extending the natural bijection

ϕ : L(E) → L(F),

e �→ e,

g �→ Tθ−1(g),

e∗ �→ e∗,
g∗ �→ T ∗

θ−1(g)
,

v �→ v

for every e ∈ E1 \ θ(s−1
E (w)), every g ∈ θ(s−1

E (w)), and every v ∈ E0.
Since ei ∈ E1 \ θ(s−1

E (w)) for every ei ∈ s−1
E (w), we have ei ∈ A, whence

fv,w = fv,ww = fv,w

n∑
i=1

eie
∗
i =

n∑
i=1

Tei
e∗
i .

But ei ∈ s−1
E (w) implies Tei

= Tθ−1(θ(ei ))
= ϕ(θ(ei)), so that

fv,w =
n∑

i=1

Tei
e∗
i = ϕ

(
n∑

i=1

θ(ei)e
∗
i

)
,

and hence ϕ is onto.
We note here that ϕ is not a graded homomorphism, since deg(g) = 1, while deg(ϕ(g)) =

deg(Tθ−1(g)) = 2. Thus Lemma 1.1 does not apply in this situation.
In the first case, if E satisfies Condition (L), then the injectivity of ϕ may be established by

Lemma 1.2.
For the second case, if K is infinite, then for every t ∈ K∗ we can define the automorphism αt

of LK(F) by the extension of

αt : L(F) → L(F),

e �→ te,

fv,w �→ fv,w,

e∗ �→ t−1e∗,
f ∗

v,w �→ f ∗
v,w,

v �→ v
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for every e ∈ E1 \ θ(s−1
E (w)) and every v ∈ E0. In this way we get an action α :K∗ →

AutK(LK(F)). It is straightforward to check that, for every t ∈ K∗, ϕ ◦ τF
t = αt ◦ ϕ, where

τF
t is the gauge action of K∗ on LK(F). Thus, the injectivity of ϕ derives from the AGIUT

(Theorem 1.8). �
Example 2.4. Recall the graphs in Example 2.2. On the one side, S2 = R̂2(v1 ↪→ v2), whence
L(R̂2) ∼= L(S2) by Theorem 2.3. On the other side, S2 = R2

2(v2 ↪→ v1), so that L(S2) ∼= L(R2
2)

again by Theorem 2.3.

Theorem 2.3 admits a corresponding statement in the context of Cuntz–Krieger graph C∗-
algebras. As far as we know, no such analogous result has been established elsewhere in the
C∗-algebra literature. We do so here.

Corollary 2.5. Let E be a row-finite graph, and let v �= w ∈ E0 be vertices which are not sinks.
If there exists an injection

θ : s−1(w) → s−1(v)

such that r(e) = r(θ(e)) for every e ∈ s−1(w), then C∗(E) ∼= C∗(E(w ↪→ v)).

Proof. We will follow the C∗-algebra notation (see e.g. [8]). Let F = E(w ↪→ v). Given any
e ∈ s−1

E (w), we define in C∗(F ) the element

Te = sfv,w see.

Notice that Te �= 0 for every e ∈ s−1
E (w), and that Te �= Tf whenever e �= f ∈ s−1

E (w). Now
consider the C∗-subalgebra A of C∗(F ) generated by

S = {
pv, se, Tg

∣∣ v ∈ E0, e ∈ E1 \ θ
(
s−1
E (w)

)
, g ∈ s−1

E (w)
}
.

To simplify notation, let s−1
E (w) = {e1, . . . , en}. Then, the same argument as in the proof of

Theorem 2.3 shows that S is a Cuntz–Krieger E-family, whence there exists a unique C∗-algebra
morphism extending the natural bijection

ϕ : C∗(E) → C∗(F ),

se �→ se,

sg �→ Tθ−1(g),

pv �→ pv

for every e ∈ E1 \ θ(s−1
E (w)), every g ∈ θ(s−1

E (w)), and every v ∈ E0. The same argument
as above shows that ϕ is an onto map, while injectivity is a consequence of Gauge-Invariant
Uniqueness Theorem for graph C∗-algebras (see e.g. [13, Theorem 2.2]), applied to the T-action
on C∗(F ) defined by
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αz : C∗(F ) → C∗(F ),

se �→ zse,

sfv,w �→ sfv,w ,

pv �→ pv

for every z ∈ T. �
In our second main result of this section, we show how to “unbundle” specific sets of edges,

and subsequently replace these unbundled sets by a collection of new edges and new vertices.
The following definition is borrowed from [8, Section 3].

Definition 2.6. Let E = (E0,E1, r, s) be a row-finite graph. For each v ∈ E0 which is not a sink,
partition s−1(v) into disjoint nonempty subsets E1

v , . . . ,Em(v)
v , where m(v) � 1. (If v is a sink,

then we put m(v) = 0.) Let P denote the resulting partition of E1. We form the out-split graph
Es(P) from E using P as follows: Let

Es(P)0 = {
vi

∣∣ v ∈ E0, 1 � i � m(v)
} ∪ {

v: m(v) = 0
}
,

Es(P)1 = {
ej

∣∣ e ∈ E1, 1 � j � m
(
r(e)

)} ∪ {
e: m

(
r(e)

) = 0
}
,

and define rEs(P), sEs(P) :Es(P)1 → Es(P)0 for e ∈ E i
s(e) by

sEs(P)

(
ej

) = s(e)i and sEs(P)(e) = s(e)i ,

rEs(P)

(
ej

) = r(e)j and rEs(P)(e) = r(e).

Example 2.7. Consider the graph

R2
2 : •v1 •v2 .

Let P be the partition of the edges of R2
2 containing only one edge per subset. Then the out-split

graph of R2
2 using P is

E: •v1

•v3 •v2

.

Similar to the graph C∗-algebra case, we get an isomorphism result for the Leavitt path alge-
bras of out-split graphs. This result is the second of our two “Change the Graph” Theorems.
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Theorem 2.8. (See [8, Theorem 3.2].) Let E be a row-finite graph, P a partition of E1 and
Es(P) the out-split graph formed from E using P . Then there is an isomorphism of Z-graded
K-algebras π :L(E) → L(Es(P)).

Proof. The proof is essentially the same as that given in [8, Theorem 3.2], except when showing
the injectivity of the homomorphism. We include the argument here for the sake of completeness.

Given v ∈ E0 and e ∈ E1, set Qv = v if m(v) = 0, Te = e if m(r(e)) = 0,

Qv =
∑

1�i�m(v)

vi if m(v) �= 0 and Te =
∑

1�j�m(r(e))

ej if m
(
r(e)

) �= 0.

Since E is row-finite, all of these sums are finite. We claim that {Te,Qv | e ∈ E1, v ∈ E0} is a
family in L(Es(P)) satisfying the same relations as {v, e | v ∈ E0, e ∈ E1}.

The collection {Qv | v ∈ E0} is a set of nonzero mutually orthogonal idempotents (since the
Qv are sums of idempotents satisfying the same properties). The elements Te for e ∈ E1 clearly
satisfy T ∗

e Tf = 0 whenever e �= f , because they consist of sums of elements with the same
property. For e ∈ E1 it is easy to see that T ∗

e Te = Qr(e).
For e ∈ E1 with m(r(e)) �= 0, since rEs (e

j ) �= rEs (e
k), for j �= k, we have

TeT
∗
e =

( ∑
1�j�m(r(e))

ej

)( ∑
1�k�m(r(e))

ek

)∗
=

∑
1�j�m(r(e))

ej ej ∗
. (1)

If m(r(e)) = 0 then TeT
∗
e = ee∗. For v ∈ E0 and 1 � i � m(v) put

E i
1,v = {

e ∈ E i
v

∣∣ m
(
r(e)

)
� 1

}
and E i

0,v = {
e ∈ E i

v

∣∣ m
(
r(e)

) = 0
}
.

If v ∈ E0 is not a sink then s−1(v) = ⋃m(v)
i=1 E i

v and for 1 � i � m(v) we have

s−1
Es(P)

(
vi

) = {
ej

∣∣ e ∈ E i
1,v, 1 � j � m

(
r(e)

)} ∪ E i
0,v.

Hence using (1) we may compute

Qv =
∑

1�i�m(v)

vi =
∑

1�i�m(v)

∑
e∈E i

1,v

∑
1�j�m(r(e))

ej ej ∗ +
∑

1�i�m(v)

∑
e∈E i

0,v

ee∗

=
∑

1�i�m(v)

∑
e∈E i

v

TeT
∗
e =

∑
{e|s(e)=v}

TeT
∗
e ,

completing the proof of our claim, since vertices v ∈ E0 with m(v) = 0 are sinks.
Then, by the Universal Homomorphism Property of L(E) there is a homomorphism

π :L(E) → L(Es(P)) taking e to Te , e∗ to T ∗
e and v to Qv . To prove that π is onto we show

that the generators of L(Es(P)) lie in L(Te,Qv), the subalgebra of L(Es(P )) generated by
{Te, T

∗
e ,Qv}. Suppose that w = vj ∈ Es(P)0 is not a sink, set e ∈ Ej

v , and pick 1 � k � m(r(e)).
Then {f ∈ Es(P)1 | sE (P)(f ) = vj } = ⋃

j {ek | 1 � k � m(r(e))}, and we have

s e∈Ev
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vj =
( ∑

{f ∈Es(P)1|sEs (P)(f )=vj }
ff ∗

)
=

( ∑
{e∈Ej

v }

∑
{1�k�m(r(e))}

ekek∗
)

=
( ∑

{e∈Ej
v }

TeT
∗
e

)
.

If w is a sink, then w = Qw . Thus, w ∈ L(Te,Qv).
If ej ∈ Es(P)1 then m(r(e)) �= 0. Since r(e)j ∈ L(Te,Qv) we have ej = Ter(e)

j ∈
L(Te,Qv).

If e ∈ Es(P)1 then m(r(e)) = 0 and so e = Te ∈ L(Te,Qv).
Since Qv is a sum of vertices and Te is a sum of edges, we get that π is a Z-graded map,

whence the injectivity of π is guaranteed by Lemma 1.1, and the result follows. �
There is one specific partition which will play an important role throughout the sequel.

Definition 2.9. For any row-finite graph E, the maximal out-splitting Ẽ of E is formed by using
the partition having m(v) = |s−1(v)| for every v ∈ E0 which is not a sink. In other words, Ẽ is
the graph formed from E by using the partition P of E1 which admits no refinements.

Corollary 2.10. Let E be a row-finite graph, and let Ẽ denote the maximal out-splitting of E.
Then LK(E) ∼= LK(Ẽ) as Z-graded K-algebras.

As it turns out, the maximal out-splitting Ẽ for a graph E = (E0,E1, r, s) without sinks is
isomorphic to a graph which is well known among graph theorists. Recall that the dual graph of
a graph E is the graph Ê = (E1,E2, r ′, s′), where r ′(ef ) = f and s′(ef ) = e.

Proposition 2.11. For any row-finite graph E without sinks, the maximal out-splitting graph Ẽ

is isomorphic to the dual graph Ê.

Proof. Since the out-splitting is maximal, and E is assumed to contain no sinks, we have

Ẽ0 = {
ve: s(e) = v

}
and Ẽ1 = {

ef : s(f ) = r(e)
}
.

The maps ve �→ e and ef �→ ef are easily shown to induce an isomorphism from Ẽ to Ê. �
As a consequence of this proposition, it is reasonable to define the dual graph Ê of any row-

finite graph E to be its maximal out-splitting graph Ẽ. Thus, by Corollary 2.10, we get the
following algebraic analog to a well-known result for graph C∗-algebras.

Corollary 2.12. If E is any row-finite graph, then L(E) ∼= L(Ê) as Z-graded K-algebras.

3. The purely infinite simple unital case

In this section we apply results from Section 2 to obtain information about the collection of
purely infinite simple unital Leavitt path algebras. Our first goal is to establish Corollary 3.5,
which shows that, up to isomorphism, all purely infinite simple unital Leavitt path algebras arise
from a well-behaved subset of finite graphs. We start by reminding the reader of the germane
ring- and graph-theoretic ideas.
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Definitions 3.1. Let R be a ring. A nonzero idempotent e ∈ R is infinite if the right ideal eR

contains a proper direct summand isomorphic to eR. A ring R is purely infinite simple if

(1) R is simple (i.e., R contains no proper two-sided ideals), and
(2) every right ideal of R contains an infinite idempotent.

Definitions 3.2. Let E be a row-finite graph. If v,w ∈ E0, we say w connects to v if there is
a path μ in E for which s(μ) = w and r(μ) = v. If c is a cycle in E, we say w connects to c

if w connects to some vertex v in c. A subset H ⊆ E0 is hereditary if whenever w ∈ H and
v ∈ E0 and w connects to v, then v ∈ H . The set H is saturated if whenever s−1(v) �= ∅ and
{r(e): s(e) = v} ⊆ H , then v ∈ H . The graph E is called cofinal if the only hereditary saturated
subsets of E0 are ∅ and E0.

The purely infinite simple Leavitt path algebras have been described in [2, Theorem 11].
Specifically, L(E) is purely infinite simple if and only if (i) E is cofinal, (ii) E satisfies Condi-
tion (L), and (iii) every vertex in E0 connects to a cycle.

Definition 3.3. Given a row-finite graph E, we say that E satisfies Condition (Sing) if E contains
no parallel edges. Rephrased, E satisfies Condition (Sing) if for every pair of vertices v,w ∈ E0,
card({e ∈ E1 | s(e) = v and r(e) = w}) � 1.

Proposition 3.4. Let E be a finite graph such that L(E) is a purely infinite simple ring. If k =
card(E1), then for every n � k there exists a graph En such that:

(1) card(E0
n) = n,

(2) En satisfies Condition (Sing), and
(3) L(En) ∼= L(E).

Proof. By induction on n. We start by establishing the result in the case n = k. By Corollary 2.10
we obtain En = Ẽ having card(E0

n) = card(E1) = k and L(En) ∼= L(E). Since En is the maxi-
mal out-splitting of E, it clearly satisfies Condition (Sing).

Suppose that the result holds for some n � k; we will prove that it holds for n + 1. So we
pick En satisfying Condition (Sing), card(E0

n) = n and L(En) ∼= L(E). Since L(En) is purely
infinite simple, En contains at least one cycle having an exit by [2, Theorem 11]. Thus, there
exists a vertex v ∈ E0

n such that card(s−1(v)) � 2. Consider any nontrivial partition P with
s−1(v) = E1

v ∪ E2
v arbitrary, and for any w ∈ E0

n \ {v} which is not a sink, let s−1(w) = E1
w be

the trivial partition. Then the out-split graph of En by the partition P satisfies Es(P)0 = (E0
n \

{v}) ∪ {v1, v2}, so that card(Es(P)0) = n + 1. Moreover, by Theorem 2.8, L(Es(P)) ∼= L(En).
Also, as Es(P) is obtained by a partition of En, it necessarily satisfies Condition (Sing). Hence
by defining En+1 = Es(P), the induction step is established. �

Thus, in order to decide whether two purely infinite simple unital Leavitt path algebras L(E)

and L(F) are isomorphic, it is enough to consider the problem for isomorphic algebras L(En)

and L(Fn) where |E0| = |F 0| and each of En,Fn satisfy Condition (Sing). More formally,
n n
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Corollary 3.5. An invariant K classifies purely infinite simple unital Leavitt path algebras up to
isomorphism if and only if, for each n ∈ N, K classifies up to isomorphism purely infinite simple
unital Leavitt path algebras of graphs having n vertices which satisfy Condition (Sing).

In fact, we can extend Proposition 3.4 to stipulate that the new graphs have no sources.

Proposition 3.6. Let E be a finite graph such that L(E) is a purely infinite simple ring. Then
there exists n0 � |E1| such that, for any n � n0 there exists a finite graph F such that:

(1) |F 0| = n,
(2) F satisfies Condition (Sing),
(3) F has no sources, and
(4) L(E) ∼= L(F).

(We note that the isomorphism in (4) is not necessarily Z-graded.)

Proof. By Proposition 3.4, for any n � |E1|, there exists a graph En with n vertices satisfying
Condition (Sing) such that L(E) ∼= L(En). We show now that we can modify En if necessary to
produce a graph F for which F has the desired properties. Let C denote the set of vertices of E0

n

which lie in a closed simple path, and set T = E0
n \ C. Notice that if T �= ∅, v ∈ T and v is not a

source, then s(r−1(v)) ⊂ T . For, suppose w ∈ s(r−1(v)) ∩ C. Then, there exists a cycle μ such
that w ∈ μ0. By cofinality of En, there exists α ∈ E∗

n with s(α) = v and r(α) ∈ μ0. But then,
v ∈ C, contradicting the assumption. Hence, if S denotes the sources of E0

n , it is clear that every
vertex in T lies in the tree of some x ∈ S, and that the tree of S feeds into C. Since En is finite,
we can partition T in layers as follows: T0 = C, and for any k � 1, Tk = {v ∈ E0 \ ⋃k−1

i=0 Ti |
r(s−1(v)) ⊆ ⋃k−1

i=0 Ti}.
Now, we will prove the result by induction on k (the number of layers of T ). For k = 1,

fix v ∈ T1, so that r(s−1(v)) ⊆ C. Set s−1(v) = {e1, . . . , el}, and split this set in singletons
E1, . . . ,El , where Ei = {ei}. Consider the out-split graph induced by this partition, say Es(P),
and notice that in this graph the set C coincides with that of En, the new vertices v1, . . . , vl lie
in T1, and the remaining vertices lie in the same layers as it did in En; in particular, both graphs
have the same number of layers. Moreover, by Theorem 2.8, L(En) ∼= L(Es(P)). Also, for each
1 � i � l, s−1(vi) = {ei} and r(ei) ∈ C, being r(ei), . . . , r(el) different vertices (as both En and
Es(P) satisfy (Sing)).

Now, for each ei (1 � i � l), let μi be a cycle such that r(ei) ∈ μ0
i , and let fi ∈ μ1

i such that
r(fi) = r(ei). Since s−1(vi) = {ei}, the map Θi : s−1(vi) → s−1(s(fi)) sending ei to fi is a
well-defined injective map such that r(ei) = r(fi). Now, l applications of the shift construction
give us a graph

Ev
n = [[· · · [Es(P)

(
v1 ↪→ r(f1)

)](
v2 ↪→ r(f2)

)] · · · (vl−1 ↪→ r(fl−1)
)](

vl ↪→ r(fl)
)

satisfying (Sing), where v1, . . . , vl ∈ C, |T1(E
v
n)| = (|T1(En)| − 1), Ts(E

v
n) = Ts(En) for every

s > 1. As Es(P) satisfies Condition (L), L(Es(P)) ∼= L(Ev
n) by Theorem 2.3.

Applying this argument recurrently on the elements of the (finite) set T1, we construct E
(1)
n

satisfying Condition (Sing), with L(En) = L(E
(1)
n ), and with the property that the set T in E

(1)
n

has one less layer than the corresponding in En. Hence, the result holds by induction.
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The parenthetical remark follows from the fact that Theorem 2.3 has been used in the proof,
and the isomorphism between Leavitt path algebras ensured by that result is not in general Z-
graded. �

Recall that for a ring R, we denote by K0(R) the Grothendieck group of R. This is the group
F/S, where F is the free group generated by isomorphism classes of finitely generated projective
left R-modules, and S is the subgroup of F generated by symbols of the form [P ⊕ Q] − [P ] −
[Q]. As is standard, we denote the isomorphism class of R in K0(R) by [1R]. The group K0(R) is
the universal group of the monoid V (R) of isomorphism classes of finitely generated projective
left R-modules (with binary operation in V (R) given by [A] + [B] = [A ⊕ B]). Because the
rings we consider here are purely infinite simple Leavitt path algebras, we have the following
more explicit relationship between K0 and V in this setting:

V
(
L(E)

) ∼= {0} � K0
(
L(E)

)
(see for instance [5, Corollary 2.2]).

For a row-finite graph E, the monoid of E, denoted ME , is the monoid generated by the set E0

of vertices of E modulo appropriate relations, specifically,

ME =
〈
av, v ∈ E0

∣∣∣ av =
∑

{
e∈s−1(v)

}ar(e)

〉
.

It is shown in [6, Theorem 2.5] that V (L(E)) ∼= ME for any row-finite graph E. This yields
K0(L(E)) ∼= Grot(ME) := G, where Grot(ME) denotes the universal group of the monoid ME .
Since ME is finitely generated, so is its universal group G. Thus G admits a presentation
π : Zn → G (an epimorphism). Here ker(π) is the subgroup of relations, which in this setting
corresponds to the image of the group homomorphism At

E − I : Zn → Zn, where At
E is the

transpose of the incidence matrix AE of E. Hence we get

K0
(
L(E)

) ∼= G ∼= Zn/ker(π) = Zn/ im
(
At

E − I
) = coker

(
At

E − I
)
.

Moreover, under this isomorphism the element [1L(E)] is represented by (1,1, . . . ,1)t +
im(At

E − I ) in coker(At
E − I ).

Throughout the remainder of this article we seek to describe properties of the Grothendieck
groups K0(L(E)) for various graphs E. To do so we will use the displayed isomorphism
K0(L(E)) ∼= coker(At

E − I ) often, and without explicit mention. (We present some examples
below which indicate how one may directly compute coker(At

E − I ).)
In the study of C∗-algebras, an important role is played by the Classification Theorem of

purely infinite simple unital nuclear C∗-algebras (see e.g. [9,11]). Specifically, Kirchberg and
Phillips (independently) showed that if X and Y are purely infinite simple unital C∗-algebras
(satisfying certain additional conditions), then X ∼= Y as C∗-algebras if and only if (i) K0(X) ∼=
K0(Y ) via an isomorphism φ for which φ([1X]) = [1Y ], and (ii) K1(X) ∼= K1(Y ).

As it turns out, in the more specific case of purely infinite simple unital Cuntz–Krieger graph
C∗-algebras, K-theoretic information is in fact encoded in the transpose At

E of the incidence
matrix AE of the graph E. Specifically, when E has no sinks, then by [14, Theorem 3.9]
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K0
(
C∗(E)

) ∼= coker
(
At

E − I
)

and K1
(
C∗(E)

) ∼= ker
(
At

E − I
)
,

where I is the identity matrix of size n = |E0|.
We seek a similar result in the setting of purely infinite simple unital Leavitt path algebras.

So suppose E and F are finite graphs for which LK(E) and LK(F) are purely infinite simple
unital. By [2, Theorem 11] these graphs contain no sinks. By Proposition 3.6 we can assume
without loss of generality that E and F have the same number n of vertices and that they have
no sources. Thus if K0(L(E)) ∼= K0(L(F )), then using the previously established isomorphism
we get coker(At

E − I ) ∼= coker(At
F − I ). This in turn implies (by the Fundamental Theorem of

Finitely Generated Abelian Groups) the existence of invertible matrices P,Q ∈ Mn(Z) such that
At

F − I = P(At
E − I )Q. Thus ker(At

F − I ) ∼= ker(At
E − I ) (as these are subgroups of Zn having

equal rank); notice that in particular, since K1(C
∗(E)) ∼= ker(At

E − I ), we have recovered the
result of [14, Theorem 3.9] for graph C∗-algebras. Moreover, by using the unique unital ring
map ψ : Z → K , we get that the PAQ-equivalence of At

E − I and At
F − I also holds on K .

If K× denotes the multiplicative group on nonzero elements in K , then the previous remark
implies that coker(At

E − I : (K×)
n → (K×)

n
) and coker(At

F − I : (K×)
n → (K×)

n
) (where

At
E − I and At

E − I are seen as multiplicative maps on (K×)
n) are also isomorphic. Since by [7,

Theorem 3.19], for any finite graph G with n vertices with no sinks or sources we have

K1
(
L(G)

) ∼= coker
(
At

G − I :
(
K×)n → (

K×)n) ⊕ ker
(
At

G − I : Zn → Zn
)
,

we conclude that the hypothesis K0(L(E)) ∼= K0(L(F )) in fact yields K1(L(E)) ∼= K1(L(F )) as
a consequence. With this observation and the aforementioned Kirchberg–Phillips result in mind,
it is then natural to ask the following.

The Classification Question for purely infinite simple unital Leavitt path algebras. Sup-
pose E and F are graphs for which L(E) and L(F) are purely infinite simple unital. If
K0(L(E)) ∼= K0(L(F )) via an isomorphism φ having φ([1L(E)]) = [1L(F)], must L(E) and
L(F) be isomorphic?

Much of the remainder of this article is taken up in addressing The Classification Question.
We notationally abbreviate the statement

K0
(
L(E)

) ∼= K0
(
L(F)

)
via an isomorphism φ having φ

([1L(E)]
) = [1L(F)]

by writing

(
K0

(
L(E)

)
, [1L(E)]

) ∼= (
K0

(
L(F)

)
, [1L(F)]

)
.

Definition 3.7. We recall that for each integer n � 2, the Leavitt algebra Ln is the free associative
K-algebra with generators {xi, yi : 1 � i � n} and relations

(1) xiyj = δij for all 1 � i, j � n, and (2)

n∑
i=1

yixi = 1.
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See [1] or [10] for additional information about Ln. In particular, the isomorphism

Ln
∼= L(Rn)

follows immediately, where Rn is the “rose with n petals” graph

•v y1

y2
y3

yn

... .

For n � 2 and k � 1 we define the graph Bk
n to be

•v1
e1 •v2

e2 •v3 •vk−1
ek−1 •vk f1

f2
f3

fn

.

Then by [2, Proposition 13] we have

L
(
Bk

n

) ∼= Mk(Ln).

We will use this isomorphism throughout the sequel, often without explicit mention.
By [5, Theorem 4.2] we have that K0(Ln) ∼= Z/(n − 1)Z. In fact, it is clear from this iso-

morphism that (K0(Ln), [1Ln ]) ∼= (Z/(n − 1)Z,1). Because K0 is a Morita invariant, we also
necessarily have K0(Mk(Ln)) ∼= Z/(n−1)Z for any k ∈ N. It is straightforward to show that this
isomorphism gives (

K0
(
Mk(Ln)

)
, [1Mk(Ln)]

) ∼= (
Z/(n − 1)Z, k

)
.

We will revisit this isomorphism later, in two regards. First, we will show in Example 3.9 that
it can be re-established using tools from Leavitt path algebras. Second, we will establish in
Section 4 an affirmative answer to The Classification Question among a specific class of Leavitt
path algebras L(E), to wit, if (K0(L(E)), [1L(E)]) ∼= (Z/(n − 1)Z, k), then L(E) ∼= Mk(Ln).

We now present some examples in which we explicitly compute coker(At
E − I ) for various

graphs E. Additional examples and computations of this type can be found in [14, p. 32 and
Example 3.31].

Example 3.8. Consider the graph

E6
1 : •v1

•v3 •v2

.
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We compute coker(At

E6
1
− I ). First,

At

E6
1
− I =

(−1 1 1
1 −1 1
1 1 −1

)
.

Then, applying the classical PAQ-reduction, we get that At

E6
1
− I is equivalent to the diagonal

matrix

D =
(1 0 0

0 2 0
0 0 2

)

while the invertible matrix P , which fixes the basis change in the arrival free group, is

P =
(−1 0 0

1 0 1
1 1 0

)
.

Then,

K0
(
L

(
E6

1

)) ∼= coker(D) = Z/2Z ⊕ Z/2Z.

On the other side, as in coker(At

E6
1
−I ) the element [1L(E6

1 )] is represented by (1,1,1)t , applying

the change of basis we get that the image of the element [1L(E6
1 )] in coker(D) is P · (1,1,1)t =

(−1,2,2)t , modulo the relation defined by im(D), so that we conclude that [1L(E6
1 )] corresponds

to (0,0).

Example 3.9. Consider the graph Rn

•v y1

y2
y3

yn

...

and recall that L(Rn) ∼= Ln. We will use the K0-picture described above to compute K0(Ln). We
first compute coker(At

Rn
− I ). This is obvious, as

At
Rn

− I = (n − 1)

whence K0(Ln) ∼= Z/(n − 1)Z. Since this matrix is in reduced form, [1Ln] corresponds to 1 ∈
Z/(n − 1)Z.
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Now consider the graph Bk
n

•v1 •v2 •v3 •vk−1 •vk f1

f2
f3

fn

and recall that L(Bk
n) ∼= Mk(Ln). First,

At
Bk

n
− I =

⎛⎜⎜⎜⎜⎜⎜⎝

n − 1 1 0 0 · · · 0
0 −1 1 0 · · · 0
0 0 −1 1 · · · 0
...

...
...

. . . · · · ...

0 0 0 · · · −1 1
0 0 0 · · · 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then, applying the classical PAQ-reduction, we get that At
Bk

n
− I is equivalent to the diagonal

matrix

D =

⎛⎜⎜⎜⎜⎜⎜⎝

n − 1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

. . . · · · ...

0 0 0 · · · 1 0
0 0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
while the invertible matrix P , which fixes the basis change in the arrival free group, is

P =

⎛⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 · · · 1
0 −1 −1 −1 · · · −1
0 0 −1 −1 · · · −1
...

...
...

. . . · · · ...

0 0 0 · · · −1 −1
0 0 0 · · · 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then K0(L(Bk
n)) ∼= coker(D) = Z/(n − 1)Z. (We have thereby re-established a previously ob-

served isomorphism between K0(L(Bk
n)) and Z/(n− 1)Z.) On the other side, as in coker(At

Bk
n
−

I ) the element [1Bk
n
] is represented by (1,1, . . . ,1)t , applying the change of basis we get that

the image of the element [1L(Bk
n)] in coker(D) is P · (1,1, . . . ,1)t = (k,−(k − 1),−(k − 2),

. . . ,−2,−1)t , modulo the relation defined by im(D), so that we conclude that [1L(Bk
n)] corre-

sponds to k.

4. Graphs

In this section we will show how to use Theorems 2.3 and 2.8 in order to classify purely
infinite simple unital Leavitt path algebras according to their K0-data. Specifically, we give an
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affirmative answer to The Classification Question for Leavitt path algebras coming from various
collections of graphs.

Among these collections will be graphs whose K0-data matches the K0-data for Leavitt path
algebras of the form L(E) ∼= Mk(Ln). (For instance, as noted previously, by [2, Proposition 13]
the graph Bk

n has L(Bk
n) ∼= Mk(Ln).) That is, we will have Leavitt path algebras L(E) for which

(K0(L(E)), [1L(E)]) ∼= (Z/(n−1)Z, k). For such collections we provide additional evidence that
The Classification Question has an affirmative answer, by showing that the relevant Leavitt path
algebras are indeed isomorphic to Mk(Ln) for appropriate n, k. This is shown at the end of each
of the germane subsections into which the section is divided.

We note that all of the graphs we consider throughout this section satisfy Condition (L) (since
the graphs arise in the context of purely infinite simple Leavitt path algebras). Thus Theorem 2.3
applies to all of the shift graph constructions produced here, regardless of the size of the field K .

4.1. Graphs with two vertices

We start by analyzing graphs having two vertices, which satisfy Condition (Sing), and for
which the associated Leavitt path algebra is purely infinite simple. Concretely, they are the fol-
lowing:

R̂2: •v1 •v2 ; S2: •v1 •v2 ; B2
2 : •v1 •v2 .

Using the description of (K0(L(E)), [1L(E)]) given at the end of Section 3, it is straightforward
to show that each of these three graphs has (K0(L(E)), [1L(E)]) ∼= ({0},0). But then the isomor-
phisms between the respective algebras can be found in Examples 2.4 and 2.7.

Thus we have answered in the affirmative a specific case of The Classification Question for
purely infinite simple unital Leavitt path algebras.

Proposition 4.1. Suppose E and F are graphs having Condition (Sing), for which L(E) and
L(F) are purely infinite simple unital, and |E0| = |F 0| = 2. If K0(L(E)) ∼= K0(L(F )) via an
isomorphism φ for which φ([1L(E)]) = [1L(F)], then L(E) ∼= L(F).

The three graphs of Proposition 4.1 each have K0-data ({0},0), which matches the K0-data of
M1(L2) ∼= L2. We show that in fact L(E) ∼= L2 for each of these three graphs. This will follow
directly from the isomorphism L2 ∼= L(B2

2 ) ensured by Propositions 5.2 and 5.3 below.

4.2. Graphs with three vertices

We continue by analyzing graphs having three vertices, which satisfy Condition (Sing), and
for which the associated Leavitt path algebra is purely infinite simple. It turns out there exist 34
such graphs. Unlike the previously analyzed situation for graphs with two vertices, there will
be more than one pair of the form (K0(L(E)), [1L(E)]) arising from this collection. (There are
seven such pairs, to be exact.) We partition all 34 of these graphs along the seven K0-data pairs,
and then use the tools of Section 2 to show that the Leavitt path algebras within each equivalence
class are indeed pairwise isomorphic. Throughout we use without mention the description of
(K0(L(E)), [1L(E)]) presented at the end of Section 3.
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1. (K0(L(E)), [1L(E)]) ∼= ({0},0): In this situation we have 18 graphs, listed as follows:

E1
1 : •v1

•v3 •v2

; E1
2 : •v1

•v3 •v2

;

E1
3 : •v1

•v3 •v2

; E1
4 : •v1

•v3 •v2

;

E1
5 : •v1

•v3 •v2

; E1
6 : •v1

•v3 •v2

;

E1
7 : •v1

•v3 •v2

; E1
8 : •v1

•v3 •v2

;

E1
9 : •v1

•v3 •v2

; E1
10: •v1

•v3 •v2

;

E1
11: •v1

•v3 •v2

; E1
12: •v1

•v3 •v2

;
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E1
13: •v1

•v3 •v2

; E1
14: •v1

•v3 •v2

;

E1
15: •v1

•v3 •v2

; E1
16: •v1

•v3 •v2

;

E1
17: •v1

•v3 •v2

; E1
18: •v1

•v3 •v2

.

Now, we prove the isomorphisms as follows: First consider the out-splitting of

R̂2: •v1e1

e2

•v2
f1

f2

partitioning the edges in P = {e1} ∪ {e2} ∪ {f1, f2}, and notice that (R̂2)s(P) = E1
6 . Thus,

L(R̂2) ∼= L(E1
6) by Theorem 2.8. Now, consider the out-splitting of

S2: •v1f1

f2

•v2
e1

partitioning the edges in P = {e1} ∪ {f1} ∪ {f2}, and notice that (S2)s(P) = E1
5 . Thus, L(S2) ∼=

L(E1
5) by Theorem 2.8. Finally, the maximal out-splitting of B2

2 equals E1
17, whence L(B2

2 ) ∼=
L(B̂2

2 ) = L(E1
17) by Corollary 2.12. Since L(S2) ∼= L(R̂2) ∼= L(B2

2 ) by Proposition 4.1, we have
shown that L(E1

5) ∼= L(E1
6) ∼= L(E1

17), which in turn can be used to verify the isomorphisms
with all the remaining indicated Leavitt path algebras by noticing that

(1) E1
17(v3 ↪→ v2) = E1

16,

(2) E1
16(v3 ↪→ v1) = E1

4 ,

(3) E1
16(v1 ↪→ v3) = E1

14,

(4) E1
2(v2 ↪→ v3) = E1

5 ,

(5) E1
1(v2 ↪→ v3) = E1

4 ,
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(6) E1
5(v3 ↪→ v1) = E1

10,

(7) E1
7(v1 ↪→ v3) = E1

2 ,

(8) E1
7(v3 ↪→ v1) = E1

11,

(9) E1
9(v3 ↪→ v2) = E1

6 ,

(10) E1
9(v2 ↪→ v3) = E1

12,

(11) E1
8(v1 ↪→ v3) = E1

7 ,

(12) E1
14(v3 ↪→ v2) = E1

13,

(13) E1
15(v1 ↪→ v3) = E1

14,

(14) E1
18(v2 ↪→ v3) = E1

7 ,

(15) E1
18(v1 ↪→ v3) = E1

3 .

Then, all those Leavitt path algebras are pairwise isomorphic by Theorem 2.3, so we are done.
The eighteen graphs of this subsection have K0-data ({0},0). But the purely infinite sim-

ple Leavitt path algebra L(B2
2 ) ∼= L2 has this same K0-data as well. As further evidence of

an affirmative answer to The Classification Question, we note that indeed we have shown, for
all eighteen graphs E in this subsection, that L(E) ∼= L2. (We established the isomorphism
L(B2

2 ) ∼= L(E1
17) in the course of the proof.)

2. (K0(L(E)), [1L(E)]) ∼= (Z/2Z,0): In this situation we have 6 graphs, listed as follows:

E2
1 : •v1

•v3 •v2

; E2
2 : •v1

•v3 •v2

;

E2
3 : •v1

•v3 •v2

; E2
4 : •v1

•v3 •v2

;

E2
5 : •v1

•v3 •v2

; E2
6 : •v1

•v3 •v2

.

Now, we prove the isomorphisms as follows: First notice that

(1) E2
6(v3 ↪→ v1) = E2

3 ,
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(2) E2
6(v1 ↪→ v3) = E2

1 ,

(3) E2
1(v2 ↪→ v3) = E2

5 ,
(4) E2

4(v1 ↪→ v3) = E2
5 ,

(5) E2
5(v1 ↪→ v2) = E2

2 .

Then, all those Leavitt path algebras are pairwise isomorphic by Theorem 2.3, so we are done.
The six graphs of this subsection have K0-data (Z/2Z,0) = (Z/2Z,2). But the purely infinite

simple Leavitt path algebra M2(L3) has this same K0-data as well. As further evidence of an
affirmative answer to The Classification Question, we now show, for all six graphs E in this
subsection, that L(E) ∼= M2(L3). To see this, by [2, Proposition 13] we have M2(L3) ∼= L(B2

3 ),
where

B2
3 : •v1(3) •v2

(here the notation (n) indicates that there are n parallel edges), and a single application of Theo-
rem 2.3 gives us E1 = B2

3 (v1 ↪→ v2), where

E1: •v1(2) e2,e3

e1

•v2
f

.

Partitioning the edges in P = {f } ∪ {e1, e2} ∪ {e3}, we get (E1)s(P) = E2
6 , so that the result

holds by Theorem 2.8, as desired.

3. (K0(L(E)), [1L(E)]) ∼= (Z/2Z,1): In this situation we have 4 graphs, listed as follows:

E3
1 : •v1

•v3 •v2

; E3
2 : •v1

•v3 •v2

;

E3
3 : •v1

•v3 •v2

; E3
4 : •v1

•v3 •v2

.

Now, we prove the isomorphisms as follows: First notice that

(1) E3
3(v2 ↪→ v1) = E3

2 ,

(2) E3
2(v2 ↪→ v3) = E3

4 ,

(3) E3(v3 ↪→ v2) = E3.
4 1
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Then, all those Leavitt path algebras are pairwise isomorphic by Theorem 2.3, so we are done.
The four graphs of this subsection have K0-data (Z/2Z,1). But the purely infinite simple

Leavitt path algebra M1(L3) ∼= L3 has this same K0-data as well. As further evidence of an
affirmative answer to The Classification Question, we now show, for all four graphs E in this
subsection, that L(E) ∼= L3. To see this, recall that L3 ∼= L(R3), where

R3: •v1(3) .

Notice that the maximal out-splitting of R3 equals E3
3 , whence by Theorem 2.8 we get the desired

result.

4. (K0(L(E)), [1L(E)]) ∼= (Z/3Z,1): In this situation we have 2 graphs, listed as follows:

E4
1 : •v1

•v3 •v2

; E4
2 : •v1

•v3 •v2

.

By noticing that E4
2(v2 ↪→ v1) = E4

1 , these Leavitt path algebras are isomorphic by Theo-
rem 2.3, so we are done.

The two graphs of this subsection have K0-data (Z/3Z,1). But the purely infinite simple
Leavitt path algebra M1(L4) ∼= L4 has this same K0-data as well. As further evidence of an affir-
mative answer to The Classification Question, we now show, for both graphs E in this subsection,
that L(E) ∼= L4. For, recall that L4 ∼= L(R4), where

R4: •v1(4) .

Consider the maximal out-splitting R̂4 of R4

R̂4: •v1 •v2

•v4 •v3

.

Then, L(R4) ∼= L(R̂4) by Corollary 2.12. Consider the graph Ê = [[R̂4(v1 ↪→ v2)](v1 ↪→
v3)](v1 ↪→ v4), that is,

Ê: •v1 •v2

•v4 •v3

.
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Hence, L(R̂4) ∼= L(Ê) by several applications of Theorem 2.3. If we separate the edges in E4
1

in such way that the edges emitted by v3 are divided in two singletons, then by defining F =
(E4

1)s(P), we get

F : •v1 •v2

•v4 •v3

.

Clearly, F = Ê(v3 ↪→ v4). Thus, the result holds by Theorem 2.8.

5. (K0(L(E)), [1L(E)]) ∼= (Z/4Z,2): In this situation we have one graph, listed as follows:

E5
1 : •v1

•v3 •v2

.

The one graph of this subsection has K0-data (Z/4Z,2). But the purely infinite simple Leavitt
path algebra M2(L5) has this same K0-data as well. As further evidence of an affirmative answer
to The Classification Question, we now show, for the graph E in this subsection, that L(E) ∼=
M2(L5). For, let E1 = E5

1(v2 ↪→ v1),

E1: •v1(2)

•v3 •v2

(here (2) means that there are two edges from v1 to v2). Then, E1 = E2(v1 ↪→ v3), where

E2: •v1(2)

•v3

(3)

•v2

.
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Also, E2 = [E3(v3 ↪→ v2)](v1 ↪→ v2), where

E3: •v1

(2)

•v3

(3)

•v2

(5)

.

Partitioning the set of edges emitted by v1 and v2 in singletons, we get

E4: •v1 •v2 •v3 •v4 •v5

•w

(5)

.

Thus, E5 = [[[[E4(v1 ↪→ w)](v2 ↪→ w)](v3 ↪→ w)](v4 ↪→ w)](v5 ↪→ w) is the graph

E5: •v1

•v5 •v2

•w

•v4 •v3

.

Recall that M2(L5) ∼= L(B2
5 ), where

B2
5 : •v1(5) •v2 .

Consider B̂2

5
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B̂2
5 : •v1

•v5 •v2

•w

•v4 •v3

.

We have L(B2
5 ) ∼= L(B̂2

5 ) by Corollary 2.12. Then, we get F1 = [[[[[B̂2
5 ](v1 ↪→ v2)](v1 ↪→

v3)](v1 ↪→ v4)](v1 ↪→ v5)](v1 ↪→ w)

F1: •v1

•v5 •v2

•w

•v4 •v3

and hence L(B̂2
5 ) ∼= L(F1) by several applications of Theorem 2.3. Finally, E5 = F1(w ↪→ v1).

Thus, L(E5) ∼= L(F1) by Theorem 2.3, as desired.

In the final two subsections we analyze the remaining three graphs. Since the K0-data of these
graphs is not of the form (Z/(n−1)Z, k), connections between the Leavitt path algebras of these
three graphs and algebras of the form Mk(Ln) are not of issue.

6. (K0(L(E)), [1L(E)]) ∼= (Z/2Z ⊕ Z/2Z, (0,0)): In this situation we have 1 graph, listed as
follows:

E6
1 : •v1

•v3 •v2

.
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7. (K0(L(E)), [1L(E)]) ∼= (Z,0): In this situation we have 2 graphs, listed as follows:

E7
1 : •v1

•v3 •v2

; E7
2 : •v1

•v3 •v2

.

By noticing that E7
2(v3 ↪→ v1) = E7

1 , these Leavitt path algebras are isomorphic by Theo-
rem 2.3, so we are done.

Thus we have answered in the affirmative another specific case of The Classification Question
for purely infinite simple unital Leavitt path algebras.

Proposition 4.2. Suppose E and F are graphs satisfying Condition (Sing) for which L(E) and
L(F) are purely infinite simple unital, and |E0| = |F 0| = 3. If K0(L(E)) ∼= K0(L(F )) via an iso-
morphism φ for which φ([1L(E)]) = [1L(F)], then L(E) ∼= L(F). Moreover, for any such graph E

for which (K0(L(E)), [1L(E)]) ∼= (Z/(n − 1)Z, k), then in fact we have L(E) ∼= Mk(Ln).

5. Isomorphisms between Leavitt algebras and their matrices

In this final section we deal with the problem of determining values of k and n for which
Ln

∼= Mk(Ln). This problem was completely solved by three of the authors in [4] using com-
binatorial arguments, where we show that the necessary and sufficient condition for such an
isomorphism is that g.c.d.(k, n − 1) = 1. As it turns out, one direction of this implication was
already established in [10], where Leavitt shows that Ln and Mk(Ln) are not isomorphic when-
ever g.c.d.(k, n − 1) > 1. Thus throughout this section we consider only situations in which
g.c.d.(k, n − 1) = 1. Our goal here is to prove the isomorphism Ln

∼= Mk(Ln), using arguments
afforded by Theorems 2.3 and 2.8. The graph and combinatorial approaches to this isomorphism
question are essentially independent.

First, fix graphs

Rk
n: •v

(k−1) •w (n) ;

Ak
n: •v1 •v2 •vk−2 •vk−1

•w

(n)

;

Bk
n : •v1 •v2 •v3 •vk−1 •vk (n) .

Then, we have the following result.
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Lemma 5.1. For each n � 1, the algebras L(Ak
n), L(Bk

n) and L(Rk
n) are isomorphic. Moreover,

each of these algebras is isomorphic to the matrix algebra Mk(Ln).

Proof. It is clear that Ak
n is obtained from Rk

n by splitting s−1(v) in k − 1 singletons, whence
L(Rk

n)
∼= L(Ak

n) by Theorem 2.8. On the other side, rewrite Ak
n as

B1
k−1: •v1 •vk (n)

•vk−2

•vk−1

.

Then, B2
k−2 = B1

k−1(v2 ↪→ v1), where

B2
k−2: •v1 •v2 •vk (n)

•vk−2

•vk−1

.

Hence, L(B1
k−1)

∼= L(B2
k−2) by Theorem 2.3. (Note that Condition (L) holds trivially.) Recur-

rence on this argument produces a chain of graphs whose Leavitt path algebras are isomorphic.
This chain ends in

Bk−2
2 : •v1 •v2 •v3 •vk−3 •vk (n)

•vk−2

•vk−1

;

Bk−1
1 : •v1 •v2 •v3 •vk−2 •vk (n)

•vk−1

with the final step being

Bk
n : •v1 •v2 •v3 •vk−1 •vk (n) .
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This yields the asserted isomorphisms between the three indicated Leavitt path algebras. The
final statement follows immediately from [2, Proposition 13], in which the isomorphism L(Bk

n) ∼=
Mk(Ln) is established. �

Since any graph having Leavitt path algebra isomorphic to Mk(Ln) must satisfy Condition (L)
(as any such algebra is purely infinite simple), Theorem 2.3 may be invoked in all situations
throughout the sequel. Specifically, all of the isomorphism results of this section hold regardless
of the cardinality of the field K .

Here is our first result about isomorphisms between matrix rings over Leavitt algebras.

Proposition 5.2. For every t � 0, for every k � 1 and for every n � 2,

Mk(Ln) ∼= Mk+t (n−1)(Ln).

Proof. We will prove the result by induction on t . The case t = 0 being clear, we suppose then
the result holds for t − 1. By [2, Proposition 13] we have Mk+t (n−1)(Ln) ∼= L(R

k+t (n−1)
n ), where

Rk+t (n−1)
n : •v

((k−1)+t (n−1))

•w

(n)

.

Splitting the edges emitted by v in two sets, one with (k − 1) + t (n − 1) edges, and the other
with (n − 1) edges, we get E1 = (R

k+t (n−1)
n )s(P),

E1: •v1

((k−1)+(t−1)(n−1))

•v2

(n−1)

•w

(n)

and L(R
k+t (n−1)
n ) ∼= L(E1) by Theorem 2.8. Now, let E2 = E1(v2 ↪→ w),

E2: •v1

((k−1)+(t−1)(n−1))

•w •v2

(n−1)

.
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By Theorem 2.3, L(E1) ∼= L(E2). Take E3 to be

E3: •v1

((k−1)+(t−1)(n−1))

•w •v2 (n−1)

(n−1)

and notice that E2 = [· · · [E3(w ↪→ v2)](w ↪→ v2)] · · ·](w ↪→ v2), (n−1) times, so that L(E2) ∼=
L(E3) by Theorem 2.3. Now, take E4

E4: •v1

((k−1)+(t−1)(n−1)) ((k−1)+(t−1)(n−1))

•w •v2 (n−1)

(n−1)

and notice that E3 = [· · · [E4(w ↪→ v1)](w ↪→ v1)] · · ·](w ↪→ v1), (k −1)+ (t −1)(n−1) times,
so that L(E3) ∼= L(E4) by Theorem 2.3. Finally, take R

k+(t−1)(n−1)
n

Rk+(t−1)(n−1)
n : •v

((k−1)+(t−1)(n−1))

•w

(n)

and notice that E4 is the out-splitting of R
k+(t−1)(n−1)
n over the edges emitted by w in two sets,

one with (n−1) edges, and the other a singleton. Thus, L(E4) ∼= L(R
k+(t−1)(n−1)
n ); but the latter

is isomorphic to Mk(Ln) by the induction hypothesis. Thus Mk+t (n−1)(Ln) ∼= Mk(Ln), which
completes the induction step. �

We note that the conclusion of Proposition 5.2 also follows from the fact that the free left
Ln-modules of ranks k and k + t (n− 1) are isomorphic, so that the endomorphism rings of these
modules are isomorphic, and such endomorphism rings are in turn isomorphic to the indicated
matrix rings.

Here is our second result about isomorphisms between matrix rings over Leavitt algebras.

Proposition 5.3. Let n � 2, k � 2 be such that k divides n. Then Ln
∼= Mk(Ln).
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Proof. We have that n = kl for some l. We recall again that Mk(Ln) ∼= L(Rk
n),

Rk
n: •v

(k−1)

•w

(n)

.

Of course n = (k − 1)l + l. Consider E1 = [· · · [Rk
n(v ↪→ w)](v ↪→ w)] · · ·](v ↪→ w), l times

E1: •w(l)

(l)

•v

(k−1)

.

By Theorem 2.3, L(Rk
n)

∼= L(E1). Now, take E2

E2: •w(l)

(l)

•v (k−1)l

(k−1)l

and notice that E1 = [· · · [E2(w ↪→ v)](w ↪→ v)] · · ·](w ↪→ v), k − 1 times, so that L(E1) ∼=
L(E2) by Theorem 2.3. Finally, consider Rn

Rn: •w (n) .

If we consider a partition of the edges emitted by w in two sets with l and (k − 1)l edges
respectively, then (Rn)s(P) = E2, so that L(Rn) ∼= L(E2) by Theorem 2.8. As Ln

∼= L(Rn), the
desired result holds. �

The final goal of this article is to use our two “Change the Graph” isomorphisms to establish
the isomorphism Ln

∼= Mk(Ln) whenever g.c.d.(k, n − 1) = 1. As mentioned previously, this
isomorphism was established in [4], using completely different techniques. As a consequence
of the current discussion, we obtain yet more evidence suggesting an affirmative answer to The
Classification Question.

As we shall see, establishing the isomorphism Ln
∼= Mk(Ln) utilizes a ten step process, where

each step requires the use of one or the other of the two Change the Graph Theorems. Steps 1
through 3, and 5 through 10, are relatively transparent; however, Step 4 requires some additional
work, which we take care of in the next few results.
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We begin by relating Theorem 2.3 to a matrix operator.

Definition 5.4. Let M ∈ Mp(Z). Define ΦM : Mp(Z) → Mp(Z) by setting, for each A ∈ Mp(Z),

ΦM(A) = MA + (Ip − M)

where Ip is the identity matrix in Mp(Z+). It is easy to check that for M1,M2, . . . ,Mt ∈ Mp(Z)

we have ΦMt ◦ · · · ◦ ΦM2 ◦ ΦM1 = ΦMt ···M2M1 .

Straightforward matrix arithmetic yields

Lemma 5.5. Let k,p ∈ N. For integers 1 � s, t � p with s �= t let K ∈ Mp(Z+) denote the matrix

K = Ip + kest

where est denotes the standard (s, t) matrix unit in Mp(Z+). Suppose A = (aij ) ∈ Mp(Z+).

(1) If att � 1 and ast � 1 then ΦK(A) ∈ Mp(Z+), and for each 1 � j � p we have
(ΦK(A))sj � (ΦK(A))tj and (ΦK(A))tt � 1.

(2) In addition, if ats � 1 then (ΦK(A))ss � 1 and (ΦK(A))ts � 1.

The proof of the next result follows directly from Lemma 5.5 and the construction presented
in Theorem 2.3.

Corollary 5.6. Let k,p ∈ N. Let K ∈ Mp(Z+) denote the matrix Ip + kest for some pair 1 �
s, t � p with s �= t . Suppose A = (aij ) ∈ Mp(Z+) has att � 1 and ast � 1, and suppose that the
associated graph EA satisfies Condition (L). Then

L(EA) ∼= L(EΦK(A)).

Definition 5.7. We identify some quantities which will be useful in the sequel. Let a, b be positive
integers having g.c.d.(a, b) = 1. Assume a > b > 1. We apply the standard Euclidean algorithm
to find sequences of positive integers r0, r1, . . . , rm and k1, k2, . . . , km for which

r0 = k1r1 + r2, r1 = k2r2 + r3, . . . , rm−2 = km−1rm−1 + rm

where r0 = a, r1 = b, and rm = g.c.d.(a, b) = 1. (Note that m � 2 since b > 1.) It will be nota-
tionally useful to add a nonstandard additional equation to the end of this list by defining

rm−1 = km · 1 + rm+1

(in other words, we set km = rm−1 − 1 and rm+1 = 1). We now define a collection of 3 × 3
matrices based on these sequences, by setting

S0 =
(1 0 0

0 1 0

)
, S1 =

( 1 0 0
k1 1 0

)
,

0 0 1 0 0 1
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and, for every integer p with 1 � p � m/2,

S2p =
(1 k2p 0

0 1 0
0 0 1

)
· S2p−1, S2p+1 =

( 1 0 0
k2p+1 1 0

0 0 1

)
· S2p.

We note that Si ∈ Mp(Z+) and det(Si) = 1 for all 0 � i � m.

Proposition 5.8. g.c.d.(a, b) = 1. Suppose also b > 1. We use the notation as in Definition 5.7.
We denote the specific matrix Sm by

Sm =
(

x1 y1 0
x2 y2 0
0 0 1

)
.

In particular we have y2 � 1. Then

(1) x1b − y1a = 1 and x2b − y2a = −1.
(2) x1 − y1 � 1 and x2 − y2 � 0.
(3) x1 + x2 = a and y1 + y2 = b.

Proof. Using the matrix equations given in Definition 5.7, an easy induction argument shows,
for each integer p having 1 � p � m/2, that

S2p

(
r1

−r0
0

)
=

(
r2p+1
−r2p

0

)
and S2p+1

(
r1

−r0
0

)
=

(
r2p+1

−r2p+2
0

)
.

Thus in particular, using that rm = rm+1 = 1, we get

Sm

(
r1

−r0
0

)
=

( 1
−1
0

)
.

But recall that by definition we have r1 = b and r0 = a, so the previous equation becomes(
x1 y1 0
x2 y2 0
0 0 1

)(
b

−a

0

)
=

( 1
−1
0

)
.

This matrix equation yields (1). The equation x1 − y1 � 1 of (2) follows immediately from (1)
and the hypothesis that a > b. For the other part of (2), note that −1 = x2b − y2a < x2b − y2b

(since a > b > 0 and y2 > 0), so −1 < (x2 − y2)b ∈ Z, so necessarily x2 − y2 � 0.
Now recall that det(Si) = 1 for all 0 � i � m, so in particular we have det(Sm) = 1, so that

x1y2 − y1x2 = 1. We incorporate the previous two pieces of information in the single matrix
equation (

x1 y1 0
x2 y2 0

)(
b −y1 0

−a x1 0

)
=

( 1 0 0
−1 1 0

)
.

0 0 1 0 0 1 0 0 1
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But then by using this same information it is easy to check that

(
b −y1 0

−a x1 0
0 0 1

)−1

=
(

x1 y1 0
a b 0
0 0 1

)
,

so that right multiplying gives

(
x1 y1 0
x2 y2 0
0 0 1

)
=

( 1 0 0
−1 1 0
0 0 1

)(
x1 y1 0
a b 0
0 0 1

)
=

(
x1 y1 0

a − x1 b − y1 0
0 0 1

)
.

In particular x2 = a − x1 and y2 = b − y1, from which (3) follows immediately. �
Were our aim solely to achieve a number-theoretic result regarding the Euclidean algorithm,

we would have constructed analogous S-matrices inside M2(Z+) rather than inside M3(Z+),
since clearly all of the germane computations take place in the upper 2 × 2 blocks of the Si .
However, as we shall see below, our one application of the combinatorial facts provided in
Proposition 5.8 will be in the context of 3 × 3 matrices, so we choose to formulate the result
accordingly.

We are now in position to demonstrate our main isomorphism result, a result which will lead
to verification of another piece of The Classification Question.

Theorem 5.9. Let n,d be positive integers having g.c.d.(d,n − 1) = 1, and let K be any field.
Then Ln

∼= Md(Ln).

Proof. The result is trivial for d = 1. Now suppose d = 2. Then either n is even, whence d

divides n and so the result holds by Proposition 5.3, or n is odd, whence g.c.d.(d,n − 1) = 2,
contradicting the hypothesis. So we may assume that d � 3. Also, by Proposition 5.2 we can
assume that d � n − 2. Now write n = dt + r with 0 � r � d − 1. (In particular, d − r +
1 � 2.) If r = 0 then d divides n, so that the result holds by Proposition 5.3. If r = 1 then d =
g.c.d.(d,n − 1), contradicting the hypothesis. So we may also assume that r � 2. In particular
we have t + r − 1 � 1 for all t � 0.

It will be clear that each of the graphs encountered in this proof satisfies Condition (L). Thus
Theorem 2.3 may be invoked throughout, without regard to the size of the field of scalars.

Recall that Ln
∼= L(Rn) where Rn is the graph

Rn: •v(n) ,

while Md(Ln) ∼= L(Rd
n) where Rd

n is the graph

Rd
n : •v1(n) •v2

(d−1)
.

We establish the desired result by building a ten step sequence of isomorphisms which starts with
L(Rd) and ends with L(Rn).
n
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Step 1. Consider E1 = Rd
n(

t times
v2 ↪→ v1),

E1: •v1(t+r)

(t)

•v2

(d−1)

.

Then

L
(
Rd

n

) ∼= L(E1) by Theorem 2.3.

Step 2. Splitting the set of edges of E1 emitted by v2 in two sets of 1 and d −2 edges respectively,
we get E2 = (E1)s(P)

E2: •v2

(1)•v1(t+r)

(t)

(t) •v3

(d−2)

whence

L(E1) ∼= L(E2) by Theorem 2.8.

(Note that d � 3 guarantees that the quantity d − 2 is nonnegative.)

Step 3. Consider E3 = E2(v2 ↪→ v1)

E3: •v2

(1)•v1(t+r−1)

(t+1)

(t) •v3

(d−2)

.

Then we get

L(E2) ∼= L(E3) by Theorem 2.3.

Step 4. We are now in position to use the number-theoretic results described above. Let A denote
the matrix AE of the graph E3; that is,
3
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A =
(

t + r − 1 t + 1 t

1 0 0
d − 2 0 0

)
,

so that EA = E3.
Since g.c.d.(d, r −1) = 1 we have g.c.d.(d, d −r +1) = 1. Let r0 = a = d , r1 = b = d −r +1.

Note that a > b (since r � 2) and b > 1 (since r � d − 1). So we may apply the analysis given
in Definition 5.7 to the pair a = d, b = d − r + 1 to produce the indicated matrix Sm.

Now define, for 1 � i � m,

Ki = I3 + kie21 for i odd, and Ki = I3 + kie12 for i even.

Then by construction we have Sm = Km · · ·K2K1.
Because K1 = I3 + k1e21 and a11 = t + r − 1 � 1 and a21 = 1, we have by Lemma 5.5(1) that

ΦK1(A) ∈ M3(Z+). Moreover, since a12 = t + 1 � 1, Lemma 5.5(2) yields (ΦK1(A))22 � 1 and
(ΦK1(A))12 � 1. Thus Lemma 5.5 may be applied at each step, and we thereby conclude that the
matrix B defined by

B = ΦKm ◦ ΦKm−1 ◦ · · · ◦ ΦK1(A) = ΦS(A)

is in Mp(Z+). Now define E4 = EB for the matrix B . So we have

L(E3) ∼= L(EB) = L(E4) by an application of Corollary 5.6 m times.

Prior to moving on to Step 5, we actually compute the values of the entries of the matrix
B = (bij ). By definition we have

B = ΦSm(A) =
(

x1 y1 0
x2 y2 0
0 0 1

)(
t + r − 1 t + 1 t

1 0 0
d − 2 0 0

)
+

(1 − x1 −y1 0
−x2 1 − y2 0

0 0 0

)
.

So upon doing the matrix arithmetic we get

B =
(

x1(t + r − 1) + y1 + 1 − x1 x1(t + 1) − y1 x1t

x2(t + r − 1) + y2 − x2 x2(t + 1) + 1 − y2 x2t

d − 2 0 0

)
.

A pictorial description of E4 = EB is then given by

E4: •v2 (x2(t+1)+1−y2)

(x2(t+r−1)+y2−x2)
(x2t)•v1(x1(t+r−1)+y1+1−x1)

(x1(t+1)−y1)

(x1t) •v3

(d−2)

.
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Step 5. By Lemma 5.8 we have x1 − y1 � 1 and x2 − y2 � 0. So we may define the graph E5 by
setting

E5 = [
E4

((x1−y1) times
v3 ↪→ v1

)]((x2−y2) times
v3 ↪→ v2

)
.

Using the information presented in the various parts of Lemma 5.8, it is tedious but straightfor-
ward to now verify each of the following equations:

b11 − (x1 − y1)b31 = x1(t + 1) − y1,

b12 − (x1 − y1)b32 = x1(t + 1) − y1,

b13 − (x1 − y1)b33 + (x1 − y1) = x1(t + 1) − y1,

b21 − (x2 − y2)b31 = x2(t + 1) + 1 − y2,

b22 − (x2 − y2)b32 = x2(t + 1) + 1 − y2,

b23 − (x2 − y2)b33 + (x2 − y2) = x2(t + 1) − y2.

For notational convenience we define n1 = x1(t + 1)− y1 and n2 = x2(t + 1)+ 1 − y2. Note that
n1 � 1 and n2 � 1 as a consequence of Lemma 5.8(2). Now using this list of equations, we have
that E5 is the graph

E5: •v2 (n2)

(n2)
(n2−1)•v1(n1)

(n1)

(n1) •v3

(d−2)

.

In particular,

L(E4) ∼= L(E5) by Theorem 2.3.

Step 6. Since

n1 + n2 = (x1 + x2)(t + 1) + 1 − (y1 + y2)

= a(t + 1) + 1 − b

= dt + d + r − d

= dt + r = n,

if we define the graph E6 to be
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E6: •v2 (n)

(n−1)
(n−1)•v1(n1)

(n1)

(n1) •v3

(d−2)

then we get E5 = E6(v1 ↪→ v2), so that

L(E5) ∼= L(E6) by Theorem 2.3.

Step 7. Define E7 = E6(v3 ↪→ v2). That is,

E7: •v2 (n)

(n−d+1)
(n)•v1(n1)

(n1)

(n1) •v3

(d−2)

.

Thus

L(E6) ∼= L(E7) by Theorem 2.3.

Step 8. We let E8 denote the graph

E8: •v1(n1)

(n1)

•v2 (n)

(n−1)

.

We split the set of edges emitted by v2 in two sets of d − 2 and 2n − d + 1 edges respectively.
That is, we use the partition

•v1 •v2 (n)

(n−d+1)

∪ •v1 •v2

(d−2)

.

Then it is not hard to see that (E8)s(P) = E7, so that

L(E7) ∼= L(E8) by Theorem 2.8.
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Step 9. Now consider E9 = E8(v1 ↪→ v2). Pictorially,

E9: •v1(n1)

(n1)

•v2 (n2)

(n2)

.

But then

L(E8) ∼= L(E9) by Theorem 2.3.

Step 10. Finally, recall that the graph Rn is given by

Rn: •v(n) .

If we take a partition of the set of edges emitted by v in two sets of n1 and n2 edges respectively,
then (Rn)s(P) = E9, so that

L(E9) ∼= L(Rn) by Theorem 2.8.

Thus Steps 1 through 10 yield L(Rd
n) ∼= L(Rn), so that we have established the isomorphism

Md(Ln) ∼= L
(
Rd

n

) ∼= L(Rn) ∼= Ln,

and we are done. �
We have seen above that Theorem 2.3 has a direct analog for C∗-algebras in Corollary 2.5,

and that Theorem 2.8 has a direct analog for C∗-algebras in [8, Theorem 3.2]. The proof of
Theorem 5.9 follows from Theorem 2.3, Theorem 2.8, and from purely combinatorial arguments
(arguments which therefore hold in both the Leavitt path algebra and Cuntz–Krieger C∗-algebra
settings). So the results of this section have provided a graph-theoretic approach to the following.

Theorem 5.10. Let n,d be positive integers having g.c.d.(d,n − 1) = 1. Then On
∼= Md(On).

As promised, we now show how Theorem 5.9 yields the answer to another piece of The
Classification Question. This same conclusion was drawn in [4]; for completeness, we present
here some of the details of the proof provided there.

Theorem 5.11. (See [4, Theorem 5.2].) Let L denote the set of purely infinite simple K-algebras

{
Md(Ln)

∣∣ d,n ∈ N
}
.

Let B,B ′ ∈ L. Then B ∼= B ′ if and only if there is an isomorphism φ :K0(B) → K0(B
′) for

which φ([1B ]) = [1B ′ ].
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Proof. It is well known that any unital isomorphism f :B → B ′ induces a group isomorphism
K0(f ) :K0(B) → K0(B

′) sending [1B ] to [1B ′ ].
To see the converse, first notice that, for any B ∈ L, B = Md(Ln) for suitable d,n ∈ N.

As noted previously, (K0(Md(Ln)), [1Md (Ln)]) ∼= (Z/(n − 1)Z, d). Hence, if B ′ = Mk(Lm) for
suitable k,m ∈ N, then the existence of an isomorphism φ :K0(B) → K0(B

′) forces that n = m.
Now, since every automorphism of Z/(n − 1)Z is given by multiplication by an element

1 � l � n − 1 such that gcd(l, n − 1) = 1, the hypothesis φ([1B ]) = [1B ′ ] yields that k = dl ∈
Z/(n − 1)Z, i.e., that k ≡ dl (mod n − 1). So Proposition 5.2 gives that

Mk(Ln) ∼= Mdl(Ln) ∼= Md

(
Ml (Ln)

)
.

Since g.c.d.(l, n − 1) = 1, we have Ml(Ln) ∼= Ln by Theorem 5.9. Hence, Md(Ml (Ln)) ∼=
Md(Ln), whence

Mk(Ln) ∼= Mdl(Ln) ∼= Md

(
Ml (Ln)

) ∼= Md(Ln),

as desired. �
For reasons identical to those given prior to the statement of Theorems 5.10, 5.11 yields the

following result for matrices over Cuntz–Krieger C∗-algebras.

Theorem 5.12. Let L denote the set of purely infinite simple C∗-algebras

{
Md(On)

∣∣ d,n ∈ N
}
.

Let B,B ′ ∈ L. Then B ∼= B ′ if and only if there is an isomorphism φ :K0(B) → K0(B
′) for

which φ([1B ]) = [1B ′ ].

We conclude with two remarks. First, we observe that the sequence of isomorphisms between
L(Rd

n) and L(Rn) given in the proof of Theorem 5.9 begins with a graph having two vertices,
eventually winds its way through graphs having three vertices, and finally concludes with a graph
having only one vertex. As it turns out, in any situation for which t � d − r − 1, we are in
fact able to establish the isomorphism L(Rd

n) and L(Rn) without utilizing graphs having three
vertices. (However, we have been unable to achieve the desired isomorphism in general without
using graphs having three vertices.) Second, we see no a priori reason why Theorems 2.3 and 2.8
should be expected to contain enough information to provide us with proofs of The Classification
Question in the situations described in both Sections 4 and 5. That these two theorems suffice to
cover both of these situations suggests that these two theorems may indeed suffice to settle The
Classification Question in further generality.
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