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The Type-II hidden symmetries are extra symmetries in addition to the inherited
symmetries of the differential equations when the number of independent and dependent
variables is reduced by a Lie point symmetry. In [B. Abraham-Shrauner, K.S. Govinder,
Provenance of Type II hidden symmetries from nonlinear partial differential equations,
J. Nonlinear Math. Phys. 13 (2006) 612–622] Abraham-Shrauner and Govinder have
analyzed the provenance of this kind of symmetries and they developed two methods
for determining the source of these hidden symmetries. The Lie point symmetries of a
model equation and the two-dimensional Burgers’ equation and their descendants were
used to identify the hidden symmetries. In this paper we analyze the connection between
one of their methods and the weak symmetries of the partial differential equation in
order to determine the source of these hidden symmetries. We have considered the same
models presented in [B. Abraham-Shrauner, K.S. Govinder, Provenance of Type II hidden
symmetries from nonlinear partial differential equations, J. Nonlinear Math. Phys. 13 (2006)
612–622], as well as the WDVV equations of associativity in two-dimensional topological
field theory which reduces, in the case of three fields, to a single third order equation
of Monge–Ampère type. We have also studied a second order linear partial differential
equation in which the number of independent variables cannot be reduced by using
Lie symmetries, however when is reduced by using nonclassical symmetries the reduced
partial differential equation gains Lie symmetries.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Many partial differential equations (PDE’s) of physical importance are nonlinear partial differential equations. While there
is no existing general theory for solving such equations the methods of point transformations are a powerful tool. One of the
most useful point transformations are those which form a continuous group. Lie classical symmetries admitted by nonlinear
PDE’s are useful for finding invariant solutions. The classical symmetry method for differential equations is based on Lie
group symmetries.

If an ordinary differential equation (ODE) is invariant under a Lie group the order of this ODE can be reduced by one,
further reductions can be obtained if there is a solvable group. If an ODE loses (gains) a symmetry in addition to the one
used to reduce the order of the ODE, the ODE possesses a Type I (Type II) hidden symmetry. Hidden symmetries for ODEs
have been extensively studied [1,2] and references there.

If a PDE is invariant under a Lie group, the number of independent variables can be reduced by one. The reduced
equation loses the symmetry used to reduce the number of variables and may lose other Lie symmetries depending on the
structure of the associated Lie algebra. If a PDE loses (gains) a symmetry in addition to the one used to reduce the number
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of independent variables of the PDE, the PDE possesses a Type I (Type II) hidden symmetry [3]. In fact a Type-II hidden
symmetry is a Lie symmetry appearing in the reduced (by means of a classical symmetry) differential equation that was
not inherited from the preceding partial differential equation. Unlike the case of ODE’s hidden symmetries of PDE’s have
not been studied extensively. Several examples of Type-II hidden symmetries have been reported in [4,6,10,13]. None of
these reports suggested an origin for the Type-II hidden symmetries found by reducing the number of variables of PDE’s.
It has been noted [4] that these Type-II hidden symmetries do not arise from contact symmetries or nonlocal symmetries
as was true for ODEs. This holds since only variable transformations of the PDEs are used. Thus the origin of these hidden
symmetries must be in point symmetries [3]. In [3] B. Abraham-Shrauner and K.S. Govinder have identified a common
provenance for the Type-II hidden symmetries of differential equations reduced from PDE’s that covers the PDE’s studied.
They pointed out that the crucial point is that the differential equation that is reduced from a PDE and possesses a Type-II
hidden symmetry is also a reduced differential equation from one or more other PDE’s. The inherited symmetries from
these other PDE’s are a larger class of Lie point symmetries that includes the Type-II hidden symmetries. The Type-II hidden
symmetries are actually inherited symmetries from one or more of the other PDE’s. The crucial question [3] is whether we
can identify the PDE’s from which the Type-II hidden symmetries are inherited. In [3] two methods were proposed: some
PDE’s may be constructed by calculating the invariants by reverse transformations and some PDE’s may be identified by
inspection.

The main goal of this paper is to show that the provenance of the Type II Lie point hidden symmetries found for differ-
ential equations can also be explained by considering some weak symmetries or conditional symmetries of the original PDE.
These weak symmetries were introduced in Olver and Rosenau [11]. Their approach consists in calculating the symmetries of
the basic equation supplemented by certain differential constraints, chosen in order to weaken the invariance criterion of
the basic system and to provide us with the larger Lie-point symmetry groups for the augmented system. Moreover, weak
symmetries are derived not only from this overdetermined system but also from all its integrability conditions. In this way
one obtains an overdetermined nonlinear system of equations and the solution set is, in this case, quite larger than the
corresponding to classical symmetries. In the last years there has been a continuous interest on the topic of nonclassical
and weak symmetries. Surveys of these researchers are reported in Olver and Vorobev [12], and Clarkson [5]. In Olver and
Rosenau [11] the key question seems to be that the reductions methods can be unified by the concept of a differential equation
with a side condition. In Saccomandi [14] the key question is which side conditions are admissible providing genuine solu-
tions to the given differential equations and it was shown that weak symmetries are not only of academic interest, but are
necessary to recover all the solutions of the Navier–Stokes equations found by the semi-inverse method.

The conditional symmetries can be of two classes: those where the side condition is a Lie point symmetry of the
nonlinear PDE alone and those where the side condition is not a Lie point symmetry of the nonlinear PDE alone but of the
combined set. In [15] Irina Yehorchenko reported examples of the second class.

In this paper, we focus our attention in weak symmetries of the partial differential equations with special differential
constraint in order to determine the source of these Type-II hidden symmetries. The main new result is that we can identify
the PDE from which the Type-II hidden symmetries are inherited by using as differential constraint the side condition from
which the reduction has been derived. We are able to explain why some PDE’s derived in [3] by guessing and which reduce
to the same ODE do not gain the whole set of Lie symmetries.

In [3] the investigation was confined to hidden symmetries of PDE’s for which the number of independent variables is
reduced by Lie symmetries. We include an example, appearing in [9], in which the number of independent variables can
not be reduced by using Lie symmetries. Nevertheless the number of independent variables is reduced by using nonclassical
symmetries and the reduced PDE gains Lie symmetries. That is, a particular case of Type-II hidden symmetries is a Lie
symmetry appearing in the reduced (by means of a nonclassical symmetry) differential equation that was not inherited
from the preceding partial differential equation.

The significance of these Type-II hidden symmetries is that there may be more symmetries in the subsequent reduced
differential equations than can be predicted from the Lie algebra of the original PDE. The general premise of this paper is
that increased understanding of Type-II [4] as a part of Lie symmetries is a useful endeavour and may lead to improvements
in the solution of differential equations.

2. Weak symmetries for the model equation

We begin by considering the model equation introduced in [3]

uxxx + u(ut + cux) = 0 (1)

where c is a constant and the subscripts denote differentiation with respect to the variable indicated. Applying the Lie
classical method to Eq. (1) leads to a four-parameter Lie group. Associated with this Lie group we have a Lie algebra which
can be represented by the following generators [3]:

v1 = ∂x, v2 = ∂t , v3 = (x + 2ct)∂x + 3t∂t , v4 = ct∂x + t∂t + u∂u . (2)

If we reduce Eq. (1) by using the generator cv1 + v2 we get u = w(z), z = x − ct and the reduced ODE is

wzzz = 0 (3)
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which admits a seven-parameter Lie group. The associated Lie algebra can be represented by the following generators

w1 = ∂z, w2 = ∂w , w3 = z2∂w , w4 = z∂z,

w5 = z∂w , w6 = w∂w , w7 = 1

2
z2∂z + zw∂w . (4)

The inherited symmetries are v1 → w1, v3 → w4, v4 → w6, all of which can be inferred by looking at the Lie algebra
of (1). The other symmetries are Type II symmetries [3]. Two possible methods have been identified in [3] for finding
possible PDE’s the symmetries of which are inherited in the transformations w = u, z = x − ct in (1). The first method
proposed is to guess possible PDE’s, evaluate their Lie point symmetries and then check if the group generators reduce
to (4). Some PDE’s that reduce to (3) by using the variables z and w and were proposed, by guessing, in [3] are

uxxx = 0, utxx = 0, uttx = 0, uttt = 0. (5)

We propose to have as differential constraint the side condition from which the reduction has been derived. Then we
derive weak symmetries, that is, Lie classical symmetries of the original equation and the side condition.

The PDEs from which the hidden symmetries are inherited are the PDEs obtained by substituting in original PDE the
side condition

cux + ut = 0, (6)

and also the differential consequences. By substituting the side condition we get uxxx = 0. If we differentiate the side
condition (6) twice with respect to x and then replace the first PDE in (5) by zero we get utxx = 0. If we differentiate the
side condition (6) once with respect to x and once with respect to t and then replace the second PDE in (5) by zero we get
uttx = 0. Finally, if we differentiate the side condition (6) twice with respect to t and then replace the third PDE in (5) by
zero we get uttt = 0.

We are going to derive some weak symmetries of the model equation (1), choosing as side condition the differential
constraint (6) which is associated to the generator v2 + cv1 that has been used to derive the reduction

u = w(z), z = x − ct.

Applying Lie classical method to the system (1), (6) we get:

ξ = ξ(t, x), τ = τ (t), φ = α(x, t)u + β(x, t),

where α(x, t) = ξx(x, t)u + g1(t) and ξ(x, t) and β(x, t) must satisfy ξxxx = βxxx = 0. To apply the method in practice we use
the MACSYMA package [7]. This yields the following generators

u1 = f1(t)∂x, u2 = f2(t)∂u, u3 = f3(t)∂t , u4 = f4(t)x2∂u,

u5 = f5(t)x∂x, u6 = f6(t)x∂u, u7 = f7(t)u∂u, u8 = f8(t)

(
1

2
x2∂x + xu∂u

)
, (7)

with f i(t), i = 1, . . . ,8, arbitrary functions. However, by appropriate choice of polynomials in t for f i(t) ) where (and also
taking combinations) the group generators reduce to the seven generators (4). These symmetries (7) are really those of the
first PDE in (5), namely uxxx = 0 where u = u(x, t), and have been derived in [3]. By interchanging x and t the symmetries
of uttt = 0 can also be given by (7).

It was pointed out in [3] that symmetry w7 is not inherited by the other two equations derived by guessing, namely
uxxt = 0, uxtt = 0. Nevertheless we prove that w7 is inherited as a weak symmetry of any of Eqs. (5) with the side condition

ut + cux = 0. (8)

The crucial point is that u7 is a Lie symmetry of any of Eqs. (5) in which we have substituted the side condition (8), and
this equation is precisely uxxx = 0 or uttt = 0.

Until now we have assumed that the PDEs are all reduced by using the same variables as the original PDE (1). This does
not have to be the case, we now consider the following equation introduced in [3]

uxxx + uxx

(
ux + t

x
ut

)
= 0. (9)

The generators of the classical symmetries are

v1 = x∂x, v2 = t∂t , v3 = x

t
∂u, v4 = x log(t)∂x + t log(t)∂t + u∂u, v5 = ∂u . (10)

If we reduce Eq. (9) by using v1 + v2 then the new independent variable is z = x
t with the dependent variable unchanged.

We propose to have as differential constraint the side condition from which the reduction has been derived. Then we derive
Lie classical symmetries of the original equation (9) and the side condition which is

xux + tut = 0. (11)
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The PDE from which the hidden symmetries are inherited is the PDE obtained by substituting in original PDE (9) the
side condition (11). By doing that we get uxxx = 0. Then one requires that the group transformation leaves invariant the set
of solutions of (9) and of the side condition (11) we obtain the Lie generators (7). These symmetries (7) are really those of
uxxx = 0 where u = u(x, t).

The same happens if we consider the following example introduced in [3]

uxxx + uxx(xuxx + tutx) = 0. (12)

The generators of the classical symmetries are

v1 = x∂x, v2 = t∂t , v3 = t∂x,

v4 = tx∂x + t2∂t + tu∂u, v5 = x∂u, v f = f (t)∂u . (13)

If we reduce equation (12) by using v4 then the new independent variable is z = x
t with the new dependent variable w and

u = t w(z). We consider the side condition corresponding to this reduction which is

xux + tut = u. (14)

The PDE from which the hidden symmetries are inherited is the PDE obtained by substituting in original PDE (12) some
differential consequences of the side condition (14). If we differentiate the side condition (14) once with respect to x, we
get

xuxx + tutx = 0. (15)

By substituting (15) into (12) we get uxxx = 0. Then one requires that the group transformation leaves invariant the set of
solutions of (12) and (15) we obtain the Lie generators (7).

3. Two-dimensional Burgers’ equation

In [10] the existence of an extra symmetry besides the inherited symmetries of the two-dimensional Burgers’ equation
under one symmetry reduction was noted. The two-dimensional Burger’s equation is

ut + uu y − uxx − u yy = 0. (16)

The Lie group generators of (16) which appeared in [3] are:

v1 = ∂x, v2 = ∂y, v3 = ∂t , v4 = t∂y + ∂u, v5 = x∂x + 2t∂t + y∂y − u∂u . (17)

If we reduce equation (16) by using the generator av1 + v2 we get u = w and z = y − x
a the reduced ODE is the one-

dimensional Burgers’ equation

wt + w wz − 1 + a2

a2
wzz = 0, (18)

which admits a five-parameter Lie group. The associated Lie algebra can be represented by the following generators

w1 = ∂z, w2 = ∂t , w3 = t∂z + ∂w , w4 = 2t∂t + z∂z − w∂w , w5 = t2∂t + tz∂z + (z − t w)∂w . (19)

The symmetries wi , i = 1, . . . ,4, are inherited symmetries of the two-dimensional Burgers’ equation but w5 is a Type-II
hidden symmetry [3]. The origin of this Type-II hidden symmetry has been considered in [3], in order to determine the
other possible PDEs the inherited symmetries of which include all the symmetries in (19) the authors made an educated
guess which suggests that a good candidate is

ut + uu y − u yy

(
1 + a2

a2

)
= 0. (20)

In order to determine the other possible PDEs the inherited symmetries of which include all the symmetries in (19) we
consider the PDE equation obtained considering the original Burgers equation in (2 + 1) dimensions and the side condition
from which the reduction was derived. This side condition associated to generator av1 + v2 is

aux + u y = 0. (21)

Consequently we find (20) and

ut − auux − (
1 + a2)uxx = 0. (22)

Applying the classical method to system (16), (21) we get the following generators:

u1 = F1(y)∂x, u2 = F2(y)∂y, u3 = F3(y)∂t ,

u4 = F4(y)(t∂y + ∂u), u5 = F5(y)(y∂y + 2t∂t − u∂u), u6 = F6(y)
(

yt∂y + t2∂t + (y − tu)∂u
)
, (23)
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which already appeared in [3]. Here the Fi(y), i = 1, . . . ,6, are arbitrary functions, however, by appropriate choice of
polynomials in y for Fi(y) (and also taking combinations) the group generators reduce to the five generators (19). The
novelty of our result is that we can identify the PDEs (20) and (22), which have been found in [3] by guessing and by the
more systematic reverse method, by using as differential constraint the side condition from which the reduction has been
derived. A crucial point is that in order to determine the other possible PDEs the inherited symmetries of which include
all the symmetries in (19) we can consider (20) and (22) plus any differential consequence of the side condition (21). For
example the following PDE

ut + uux = 1 + a2

a2
u yy + D

(
uxy + u yy

a

)(
uxx + 2uxy

a
+ u yy

a2

)
(24)

with D = constant is Eq. (3.11) in Ref. [3] can also be determined by the conditional symmetries method presented here. By
substituting the side condition into (16) we get (18) and (22). If we differentiate the side condition (21) once with respect
to y and then divide by a we get

uxy + u yy

a
= 0. (25)

If we differentiate the side condition (21) once with respect to x and then divide by a we get

uxx + uxy

a
= 0. (26)

If we add condition (25) divided by a with condition (26) we get

uxx + 2
uxy

a
+ u yy

a2
= 0. (27)

By adding to (18), (25) multiplied by (27) we get (24).

4. Equations of associativity in two-dimensional topological field theory

In [8] we have considered the WDVV equations of associativity arising in two-dimensional topological field theory, which
can be represented, in the simplest nontrivial case, by a single third-order equation of the Monge–Ampère type, the follow-
ing Ferapontov equation

fxxx f yyy − fxxy f yyx − 1 = 0. (28)

In [8] it was pointed out that a nice way to obtain an hodograph transformation relating two partial differential equations
of the Monge–Ampère type, that is the Ferapontov equation (28) and

Ftyy − Fttt − Ftty F yyy = 0 (29)

is to rewrite both PDEs as integrable systems of the so-called hydrodynamic type, allowing them to be mapped by a chain
of standard transformations to integrable three-wave systems.

Applying the classical method to Eq. (28) leads to a ten-parameter Lie group. Associated with this Lie group we have a
Lie algebra which can be represented by the following generators:

v1 = ∂x, v2 = ∂y, v3 = x∂x + 3

2
f ∂ f , v4 = y∂y + 3

2
f ∂ f , v5 = xy∂ f ,

v6 = x2∂ f , v7 = y2∂ f , v8 = x∂ f , v9 = y∂ f , v10 = ∂ f .

In order to construct the optimal system, following Olver, we first have constructed the commutator table and the adjoint
table which shows the separate adjoint actions of each element in vi , i = 1, . . . ,10, as it acts on all other elements. This
construction is done easily by summing the Lie series [8].

The corresponding generators of the optimal system of subalgebras are

v3,

v4,

−av3 + bv4,

v3 − v4 + av5 + bv10,

v3 + 3v4 + av6,

v3 − 3v4 + av9,

3v3 + v4 + av7,
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−3v3 + v4 + av8,

av2 + bv3,

av1 + bv4,

av1 + bv2 + cv5 + dv6 + ev7, (30)

where a,b, c,d, e are arbitrary real nonzero constants. Each element of the optimal system defines a reduction of Eq. (28)
to an ODE and yield some new explicit solutions.

The reduction with the generator −av1 + bv2 + cv5 + dv6 + ev7 leads to

z = bx + ay,

f = − e

a
xy2 −

(
be

a2
+ c

2a

)
x2 y −

(
b2e

3a3
+ d

3a
+ bc

6a2

)
x3 + ϕ(z) (31)

where ϕ satisfies the autonomous and linear ODE(
2a3b2e − 2a5d

)
ϕ′′′ − (

4be2 + 2ace + a3) = 0.

Taking into account that z = bx + ay, x3 can be written in terms of y and z and f adopts also the form f = c3x3 + c2x2 y +
c1xy2 + c0 y3 + ϕ(z) [8]. Setting 4be2+2ace+a3

2a3b2e−2a5d
= k the ODE can be written as ϕ′′′ − k = 0 and admits a seven-parameter Lie

group. The associated Lie algebra can be represented by the following generators

w1 = ∂z, w2 = ∂ϕ, w3 = z∂z +
(
ϕ + kz3

3

)
∂ϕ, w4 = z∂ϕ,

w5 =
(
ϕ − kz3

6

)
∂ϕ, w6 = 1

2
z2∂ϕ, w7 = z2∂z +

(
2zϕ + kz4

6

)
∂ϕ. (32)

The inherited symmetries are v1 → w1, v10 → w2, v8 → w4, v6 → w6, all of which can be inferred by looking at the Lie
algebra of (1) w3, w5 and w7 are Type-II hidden symmetries. We now consider weak symmetries of (28) with the following
side condition

−afx + bf y = cxy + dx2 + ey2 (33)

corresponding to the generator av1 + bv2 + cv5 + dv6 + ev7. Applying the classical method to system (28), (33) we get:

u1 = f1(y)∂x, u2 = f2(y)∂ f , u3 = f3(y)
(
x∂x + (

f + 2Mx3))∂ f , u4 = f4(y)x∂ f ,

u5 = f5(y)
(

f − Mx3)∂ f , u6 = 1

2
x2 f6(y)∂ f , u7 = f7( f )

(
x2∂x + (

2xf + Mx4))∂u, (34)

with f i(y), i = 1, . . . ,7, arbitrary functions and M = 4ad2+2bcd+b3

2(b2e−a2d)
. However, by appropriate choice of polynomials in y for

f i(y) the group generators reduce to the seven generators (32).
The PDEs the inherited symmetries of which include all the symmetries in (32) are

fxxx = M, f yyy = N, (35)

where N = 4be2+2ace+a3

2(b2e−a2d)
for b �= 0 and b2e − a2d �= 0. These two equations can be easily derived by substituting some

differential consequences of the side condition (33) into (28). From (33) f y = 1
b (afx + cxy + dx2 + ey2) differentiating this

expression twice with respect to x, differentiating this twice with respect to x and y, differentiating twice with respect to y
and substituting into (28) we get, for b �= 0 and b2e − a2d �= 0, the first equation in (35). In a similar way we get the second
one.

5. Second order linear PDE

In [9] a new procedure was introduced for which PDEs allowing no classical symmetry groups can indeed be solved
using symmetries. The method entails expanding the dimensionality using a simple group to a higher dimensional PDE
which then allows multiple group reductions to obtain particular solutions. The authors pointed out that for non-Abelian
two parameter group and the corresponding two-parameter algebra, spanned by v1 and v2 which can always be written
[v1, v2]=v2 by suitable choice of basis, it is necessary to use first generator v2 in order for the second reduction to be
allowed. The following possibility was pointed out in [9] for the following second order linear PDE with various coefficients
depending on the independent variables x and y:

(
1 + x2)Fxx + 4

y
(

Fxy + y
F yy

)
+

(
2x + 1

)
Fx + y

2
(ay + 4)F y = 0. (36)
x x x x
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This equation has two point symmetry invariance groups, whose generators are v = ∂F and v = F∂F neither of these sym-
metries can be used to reduce the number of independent variables. In [9], the authors have chosen a simple scaling group
to enlarge the dimensionality of (36). This fact suggest tu choose a simple scaling group as a side condition. We observe
that Eq. (36) admits the conditional symmetry generator

v = x∂x + 2y∂y . (37)

If we reduce equation (36) by using the generator (37) we get w = F and z = x√
y the reduced ODE is

z2 wzz +
(

2z − a

2z

)
wz = 0, (38)

which admits an eight-parameter Lie group. The associated Lie algebra can be represented by the following generators

w1 = ∂w , w2 = 2
√

π z2

√
a

E1e
a

4z2 ∂z,

w3 = w∂w , w4 = 2
√

π z2

√
a

E1 we
a

4z2 ∂z − 2
|z|w2

z
∂w ,

w5 = z2e
a

4z2 ∂z, w6 =
(

−
√

π z2

2
√

a
e

a
4z2 G + 2πs(z)z2 E E1e

a
4z2

a

)
∂z −

√
π

a
E w∂w ,

w7 = z2 we
a

4z2 ∂w , w8 = −
√

π E√
a

∂w , (39)

with ki, i = 1, . . . ,8, arbitrary constants and

E1 = erf

( √
a

2|z|
)

, E = erf

(√
a

2z

)
, G =

∫
4E1e

− a
4z2

z|z| dz, s(z) = signum(z).

The inherited symmetries are v1 → w1, v3 → w3, all of which can be inferred by looking at the Lie algebra of (36). The
other symmetries are special Type II symmetries. These hidden symmetries are extra Lie symmetries that appear when the
number of variables of a PDE is reduced by a variable transformation found from a nonclassical symmetry of the PDE.

We derive the symmetries of the basic equation supplemented by the following differential constraint

xFx + 2yF y = 0, (40)

which correspond to the nonclassical generators (37). Applying the classical method to the system (36), (40) we get:

ξ = α(x, y)F + β(x, y), τ = τ (y), φ =
[
α

(
ay

2x3
− 2

x

)
+ αx

]
F 2 + γ (x, y)F + δ(x, y).

This yields

u1 = g1(y)∂F , u2 = 2
√

πx2 g2(y)√
ay

E1e
ay

4x2 ∂x,

u3 = g3(y)F∂F , u4 = g4(y)

(
2
√

πx2

√
ay

E1 F e
ay

4x2 ∂x − 2
|x|F 2

x
∂F

)
,

u5 = g5(y)x2e
ay

4x2 ∂x, u6 = g6(y)

((
−

√
πx2

2
√

ay
e

ay
4x2 G + 2π s(x)E E1

x2e
ay

4x2

ay

)
∂x −

√
π√
ay

E F∂F

)
,

u7 = g7(y)x2 F e
ay

4x2 ∂F , u8 = −
√

π g8(y)E√
ay

∂F , (41)

uτ = −
(√

aπ E1|x|e
ay

4x2

4x
√

y
+

√
πx2

2
√

ay
e

ay
4x2 M

)
τ (y)∂x, (42)

with

E1 = erf

(√
ay

2|x|
)

, E = erf

(√
ay

2x

)
, G =

∫
4E1e

− ay
4x2

x|x| dx, M =
∫

aE1

x2|x|dx, s(x) = signum(x).

The functions gi(y), i = 1, . . . ,8, and τ = τ (y) are arbitrary functions. However, by appropriate choice of polynomials in y
for gi(y) (and also taking combinations) the group generators reduce to the eight generators (39). The PDEs from which
for the inherited symmetries became the Type-II hidden symmetries can be found from (36), (40) and two PDEs found as
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differential consequences from (40) by eliminating derivatives of F . These PDEs the inherited symmetries of which include
all the symmetries in (36) are

x2 Fxx + Fx

(
2x − ay

2x

)
= 0, (43)

F yy +
(

a

4x2
+ 1

2y

)
F y = 0. (44)

We remark that, as far as we know, this is the first time in which this kind of Type-II hidden symmetries have been found.
The original equation admits a two-parameter Lie group while the reduced (by means of a nonclassical symmetry) ODE
admits an eight-parameter Lie group so we have six Type-II hidden symmetries. In order to find the PDEs from which
these hidden symmetries arise we have considered the basic equation supplemented by the differential constraint or side
condition (40) corresponding to the nonclassical generators (37). The crucial point is that generators ui , with i = 3, . . . ,8,
are Lie symmetries of any of Eqs. (43) and (44) that have been derived by substituting into Eq. (36) the side condition (40).

6. Conclusions

The Type-II hidden symmetries are extra symmetries that appear when the number of variables of a PDE is reduced
by a variable transformation found from a Lie symmetry of the PDE. In [3] two methods were presented for finding one
or more PDEs from which the Type-II hidden symmetries are inherited. We have analyzed the connection between one of
these methods and weak symmetries of the PDE with special differential constraint in order to determine the source of
the Type-II hidden symmetries. We have considered the same models presented in [3], as well as the WDVV equations of
associativity in two-dimension topological field theory which reduces, in the case of three fields, to a single third order
equation of Monge–Ampère type. In [3] the investigation was confined to hidden symmetries of PDEs for which the number
of independent variables is reduced by Lie symmetries. We include an example, appearing in [9], in which the number
of independent variables can not be reduced by using Lie symmetries. Nevertheless the number of independent variables
is reduced by using nonclassical symmetries and the reduced PDE gains Lie symmetries. The novelty of our result is that
we can identify the PDEs, which has been found in [3] by guessing, by using as differential constraint the side condition
from which the reduction has been derived. The significance of these Type-II hidden symmetries is that there may be more
symmetries in the subsequent reduced differential equations than can be predicted from the Lie algebra of the original
PDE. The general premise of this paper is, that increased understanding of Type-II hidden symmetries [4] as a part of Lie
symmetries is a useful endeavor and may lead to improvements in the solution of differential equations.
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