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Abstract
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ones on the classical Hardy space H2. This answers a question posed by Shapiro and Sundberg in 1990. We
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of a difference of composition operators in terms of the angular derivatives of their symbols. As a main tool
we use Aleksandrov–Clark measures.
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1. Introduction

Let D denote the open unit disc of the complex plane and H2 the classical Hardy space, that
is, the space of analytic functions f on D for which the norm

‖f ‖2 =
(

sup
0�r<1

2π∫
0

∣∣f (
reiθ

)∣∣2 dθ

2π

)1/2

is finite. It is a well-known consequence of the Littlewood subordination principle that if ϕ is an
analytic map which takes D into itself, then the composition operator induced by ϕ,

Cϕf = f ◦ ϕ,

is a bounded linear operator on H2. We let Comp(H2) denote the set of all composition operators
acting on H2.

The properties of composition operators on H2 and many other function spaces have been
studied extensively during the past few decades (see [6,20] for an overview as of the early 1990s).
Presently some of the most long-standing open questions in this field are related to the topo-
logical structure of the set Comp(H2) endowed with the operator norm metric. Apart from
its operator-theoretic significance, this area of study gains interest from the fact that the map
ϕ �→ Cϕ provides a remarkable embedding of analytic self-maps of D into the space of bounded
operators on H2, therefore inducing a natural topology on the unit ball of H∞.

The investigation of the topological structure of Comp(H2) was initiated by Berkson [2] and
continued in the important papers of MacCluer [9] and Shapiro and Sundberg [22]. Central prob-
lems considered in these papers were determining the isolated elements of Comp(H2) and also
relating the structure of Comp(H2) to the compactness properties of its members. In particular, it
was observed in [9,22] that the collection of all compact composition operators on H2 is arcwise
connected. On the other hand, the authors gave various examples of non-compact composition
operators that cannot be connected to the compacts; in fact, in [2,22] it was shown that certain
highly non-compact composition operators can be even isolated in Comp(H2).

Towards the end of their paper, Shapiro and Sundberg [22] raised the following fundamental
question and conjectured that it had a positive answer:

(∗) Do the compact composition operators form a connected component of the set Comp(H2)?

As noted in [22], substantial evidence in favour of the positive answer comes from MacCluer’s
work [9]. Namely, her results show that for the standard scale of weighted Bergman spaces A2

β ,

β > −1, the compact composition operators on A2
β do form a component of Comp(A2

β). So it
seemed natural to conjecture that the same phenomenon persists for the limiting (β = −1) case
of H2. Later it was found out that the answer is positive also in the setting of H∞ [10].

The main result of the present paper is a negative solution to question (∗), stated here in
a slightly greater generality:

Main Theorem. For 0 � t � 1 there are analytic maps ϕt : D → D such that Cϕ0 is compact
and Cϕ1 is non-compact on Hp , and t �→ Cϕt is continuous from [0,1] into Comp(Hp), where
1 � p < ∞.
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As a matter of fact, Shapiro and Sundberg suggested a more general conjecture, according to
which operators Cϕ and Cψ would belong to the same component of Comp(H2) if and only if the
difference Cϕ −Cψ is compact. This has recently been disproved by Moorhouse and Toews [13]
and Bourdon [3], who have provided fairly simple and concrete examples of symbols ϕ and ψ

such that the operators Cϕ and Cψ lie in the same component while having a non-compact differ-
ence. In these examples, however, both Cϕ and Cψ are non-compact, so they leave question (∗)
unanswered.

The map ϕ1 of Main Theorem is necessarily of fairly complicated function-theoretic nature.
In order to illustrate this we recall a result of MacCluer [9] which states that whenever two com-
position operators belong to the same component of Comp(H2), their symbols must have the
same angular derivative (possibly infinite) at each point of the unit circle T = ∂D. As a conse-
quence, ϕ1 cannot have a finite angular derivative at any point of T. In particular, since Cϕ1 is
non-compact, this implies that the valence of ϕ1 has to be infinite.

As a main tool in the proof of Main Theorem we will utilize Aleksandrov–Clark measures.
These measures, associated to each analytic self-map ϕ of the unit disc, have lately found several
applications in the study of composition operators (see Section 2). Moreover, they are intimately
connected to the boundary behaviour of ϕ; for instance, their mass points correspond to the
angular derivatives of ϕ. The essence of our argument comprises a construction of a certain
family of continuously singular measures on T, which are then used to define the maps ϕt in
terms of their Aleksandrov–Clark measures.

The rest of the paper is organized as follows. In Section 2, we collect some preliminaries on
Aleksandrov–Clark measures and composition operators. In Section 3, we revisit the theorem
of MacCluer cited above and establish a slight quantitative strengthening of it. This result will
provide some insight into the proof of Main Theorem, which occupies Section 4. Let us however
note that the construction of Section 4 itself is completely independent of the results in Sec-
tion 3. Finally, in Section 5 we pose some additional questions and observations related to Main
Theorem.

2. Aleksandrov–Clark measures

In this section we collect some preliminaries and background on Aleksandrov–Clark measures
and their relation to composition operators. For more information on these measures and their
applications in other areas of analysis, we refer the reader to the lecture notes [16], the book [5]
and the surveys [12,15].

Let ϕ be an analytic self-map of D. For any α ∈ T, the real part of the function (α+ϕ)/(α−ϕ)

is positive and harmonic in D, so it may be expressed as the Poisson integral of a positive Borel
measure τϕ,α supported on T. That is,

Re
α + ϕ(z)

α − ϕ(z)
= 1 − |ϕ(z)|2

|α − ϕ(z)|2 =
∫
T

Pz dτϕ,α,

where Pz(ζ ) = (1 − |z|2)/|ζ − z|2 is the Poisson kernel for z ∈ D. The family of measures
{τϕ,α: α ∈ T} are called the Aleksandrov–Clark measures associated to ϕ. Alternatively, one can
invoke the Herglotz formula to write

α + ϕ(z) = Hτϕ,α(z) + icα, (2.1)

α − ϕ(z)
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where

Hτϕ,α(z) =
∫
T

ζ + z

ζ − z
dτϕ,α(ζ )

is the Herglotz integral and cα is the imaginary part of (α + ϕ(0))/(α − ϕ(0)). Note that if α

is given and τ is any positive and finite Borel measure on T, one can proceed in the reverse
direction and use the Herglotz formula to construct a map ϕ whose Aleksandrov–Clark measure
at α equals τ .

For any Borel measure τ on T, we write τ = τa dm + τ s for the Lebesgue decomposition
of τ , where τa is the density of the absolutely continuous part, m is the normalized Lebesgue
measure on T and τ s is singular. It follows from the basic properties of Poisson integrals that
τ s
ϕ,α is carried by the set where ϕ(ζ ) = α and

τa
ϕ,α(ζ ) = 1 − |ϕ(ζ )|2

|α − ϕ(ζ )|2 .

In particular, τϕ,α is singular if and only if ϕ is an inner function.
A nice feature of the Aleksandrov–Clark measures is that their discrete parts (i.e. mass points,

or atoms) have a perfect correspondence with the finite angular derivatives of ϕ. Let us recall
that if the quotient (ϕ(z) − η)/(z − ζ ) has a finite non-tangential limit at ζ ∈ T for some η ∈ T,
then this limit is called the angular derivative of ϕ at ζ and denoted by ϕ′(ζ ). It satisfies ϕ′(ζ ) =
|ϕ′(ζ )|ζη with η = ϕ(ζ ). Now the following holds:

• The map ϕ has a finite angular derivative at ζ ∈ T if and only if there is α ∈ T such that
τϕ,α({ζ }) > 0. In that case ϕ(ζ ) = α and |ϕ′(ζ )| = τϕ,α({ζ })−1.

For the proof of this result convenient references are [5,16], where it is established in conjunction
with the classical Julia–Carathéodory theorem.

To bring Aleksandrov–Clark measures into the theory of composition operators, we follow
Sarason’s [17] idea of describing composition operators as integral operators acting on the unit
circle. Let us denote by M the space of all complex Borel measures on T endowed with the total
variation norm. Then, if μ ∈M is given, the Poisson integral u(z) = ∫

T
Pz dμ defines a harmonic

function on D. Consequently the function v = u ◦ ϕ is also harmonic, and it follows easily that v

is the Poisson integral of a unique measure ν ∈ M. Thus it makes sense to define Cϕμ = ν. One
can show that Cϕ :M → M is bounded and, furthermore, that Cϕ restricts to a bounded operator
Lp → Lp , where Lp = Lp(T,m) for 1 � p � ∞. Moreover, viewing the Hardy space Hp as
a subspace of Lp (through the non-tangential boundary values of Hp functions), we see that the
restriction of Cϕ to Hp coincides with the standard definition of Cϕ .

By definition we have τϕ,α = Cϕδα , where δα is the Dirac measure at α. More generally, the
correspondence Cϕμ = ν can be written as

∫
f dν =

∫ (∫
f dτϕ,α

)
dμ(α) (2.2)
T T T
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for a suitable class of functions f . Indeed, if f is a Poisson kernel Pz, this follows directly
from the definitions. The case of continuous f is then obtained by approximating with linear
combinations of Poisson kernels. Finally one may invoke a further approximation argument (e.g.
a monotone class theorem; cf. [5, Sec. 9.4]) to establish (2.2) for all bounded Borel functions f

on T.
In [17] Sarason characterized those composition operators Cϕ that are compact on M and L1

by a condition which says that τ s
ϕ,α = 0 for all α ∈ T; that is, the Aleksandrov–Clark measures

of ϕ are required to be absolutely continuous. Later Shapiro and Sundberg [21] observed that
Sarason’s criterion is equivalent to Shapiro’s [19] characterization of compact composition op-
erators on Hp , 1 � p < ∞, involving the Nevanlinna counting function. Moreover, Cima and
Matheson [4] have shown that the essential norm (i.e. distance, in the operator norm, from the
compact operators) of any Cϕ acting on H2 equals supα ‖τ s

ϕ,α‖1/2. Thus, a necessary condition
for the compactness of Cϕ on all the spaces mentioned is that the symbol ϕ has no finite angular
derivative at any point of T. This condition, however, is not sufficient unless ϕ is of finite valence
(see e.g. [20]).

Aleksandrov–Clark measures have also been used to study differences and more general linear
combinations of composition operators in [8,14,18]. In particular, a characterization for compact
differences of composition operators on M and L1 was found in [14].

3. Extension of MacCluer’s theorem

In 1989 Barbara MacCluer obtained the following result concerning differences of composi-
tion operators on H2.

Theorem 3.1. (See MacCluer [9].) Assume that ϕ,ψ : D → D are analytic maps and ϕ has a
finite angular derivative at ζ ∈ T. Then, unless ψ(ζ ) = ϕ(ζ ) and ψ ′(ζ ) = ϕ′(ζ ), one has

‖Cϕ − Cψ‖2
e � 1

|ϕ′(ζ )| ,

where ‖ ‖e denotes the essential norm of an operator on H2.

The relationship between angular derivatives and the atoms of the Aleksandrov–Clark mea-
sures (see Section 2) allows us to restate Theorem 3.1 as follows:

• Assume that τϕ,α({ζ }) > 0 for some α ∈ T. Then, unless τψ,α({ζ }) = τϕ,α({ζ }), one has
‖Cϕ − Cψ‖2

e � τϕ,α({ζ }).

Theorem 3.1 implies that, for each non-zero complex number d and point ζ ∈ T, the set of
all Cϕ with ϕ′(ζ ) = d is both open and closed in Comp(H2), even in the topology induced
by the essential norm. Hence a necessary condition for two composition operators to lie in the
same component or essential component of Comp(H2) is that the angular derivatives of their
symbols coincide. In particular, it follows that if Cϕ belongs to the component containing all
compact composition operators, then ϕ has no finite angular derivative at any point of T—or,
equivalently, the Aleksandrov–Clark measure τϕ,α has no atoms for any α ∈ T.
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Remark 3.2. MacCluer’s work was actually carried out in a general context of weighted Dirichlet
(or Bergman) spaces Dβ , β � 1, which includes as special cases the Hardy space H2 (β = 1) as
well as the standard Bergman space A2 (β = 2). For β > 1 it is known that the non-existence of
finite angular derivatives is both necessary and sufficient for the compactness of a composition
operator on Dβ (see [11] or [6]). So, in these spaces, MacCluer’s theorem implies (e.g. by the
argument of the preceding paragraph) that the compacts indeed form a component of Comp(Dβ).

In another direction, Kriete and Moorhouse [8] have recently obtained various interesting
refinements of MacCluer’s results. In particular, they establish a version of Theorem 3.1 for
higher-order boundary data of the symbols.

In this section we provide a slight improvement of Theorem 3.1. Our lower bound involves
the whole discrete part of the Aleksandrov–Clark measure at α. This result will provide some
heuristics for the proof of our Main Theorem in the next section (see the discussion at the end of
that section).

Theorem 3.3. Let ϕ,ψ : D → D be analytic maps and α ∈ T. Write

Zα = {
ζ ∈ T: 0 < τϕ,α

({ζ }) 
= τψ,α

({ζ })}.
Then

‖Cϕ − Cψ‖2
e � τϕ,α(Zα).

In the proof of Theorem 3.3 we will use as test functions the normalized reproducing kernels

fw(z) =
√

1 − |w|2
1 − wz

.

They have the property that ‖fw‖2 = 1 for all w ∈ D and fw → 0 weakly as |w| → 1, whence

‖Cϕ − Cψ‖e � lim sup
|w|→1

∥∥(Cϕ − Cψ)fw

∥∥
2.

Apart from being standard test functions, the functions fw are very useful in connection with
the Aleksandrov–Clark measures. Indeed, a result of J.E. Shapiro [18] already shows that
|Cϕfw|2 → τ s

ϕ,α weak* on T as w → α non-tangentially. In the present context, a slightly more
careful analysis of the local limiting behaviour of Cϕfw is needed and the crucial estimates are
recorded in Lemma 3.4 below. These estimates depend on the “non-tangential conformality” of ϕ

at boundary points with a finite angular derivative. Indeed, if ϕ(ζ ) = α for some ζ,α ∈ T and
ϕ′(ζ ) exists, then ϕ admits an expansion ϕ(z)−α = ϕ′(ζ )(z−ζ )+o(z−ζ ) in any non-tangential
approach region for the point ζ . In particular, this implies that ϕ maps any curve in D terminating
at ζ and making an angle −π/2 < θ < π/2 with the radius to ζ onto a curve terminating at α

and making the same angle θ with the radius to α.
In order to give some heuristics for Lemma 3.4 and its application, let us assume for a moment

that τϕ,1({1}) = a > 0. This means that ϕ(1) = 1 and ϕ′(1) = 1/a. It is easy to see that for
large |w|, the support of the function fw gets concentrated around the radius that goes through w.
For w close to 1, the non-tangential conformality of ϕ now implies that the composition Cϕfw
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attains large values (approximately) around the radius through the point 1 − a(1 − w), whose
argument is ≈ a · argw. Thus the location of the local mass of Cϕfw depends on the value of a,
and by making w approach 1 almost tangentially we can use this phenomenon to distinguish
between different values of a. To obtain the result of Theorem 3.3 in its sharpest possible form
(without any constant factors), it seems necessary to introduce several parameters and limiting
processes in the course of the argument.

Let us also note here that the idea of almost tangential approach was already used by Mac-
Cluer [9] in her proof for Theorem 3.1. However, instead of analysing the action of Cϕ and Cψ

on the kernel functions fw , she worked with the corresponding adjoint operators.

Lemma 3.4. Let ϕ : D → D be analytic and fix a > 0. For δ, κ,λ, r > 0, write

I (δ, κ,λ, r) = 1

2π

κra+λr∫
κra−λr

∣∣Cϕf(1−r)eiκr

(
(1 − δr)eit

)∣∣2
dt.

(1) If τϕ,1({1}) = a, then

lim
r→0

I (δ, κ,λ, r) = a · c(a; δ,λ)

1 + δ/a
,

where 0 < c(a; δ,λ) < 1 and limλ→∞ c(a; δ,λ) = 1 for all δ > 0.
(2) If τϕ,1({1}) 
= a, then

lim
r→0

I (δ, κ,λ, r) = ε(a; δ, κ,λ),

where limκ→∞ ε(a; δ, κ,λ) = 0 for all δ,λ > 0.

Proof. Let us fix δ, κ,λ > 0, and write wr = (1 − r)eiκr and zr(t) = (1 − δr)eit . Then

I (δ, κ,λ, r) = 2r − r2

2π

κra+λr∫
κra−λr

dt

|1 − wrϕ(zr(t))|2 . (3.1)

We first consider the case when τϕ,1({1}) = b for some b > 0. That is, ϕ(1) = 1 and ϕ has a
finite angular derivative equal to 1/b at 1. Note that the points zr (t) for κra −λr < t < κra +λr

and 0 < r < 1 all lie in a non-tangential approach region for the point 1 (whose opening angle
depends on δ, κ , a and λ). Therefore, for these zr(t), the non-tangential conformality of ϕ at 1
yields an expansion

1 − ϕ
(
zr (t)

) = b−1(1 − zr (t)
) + rεr (t),

uniformly in t . Here and elsewhere in this proof we use εr (with or without additional parameters)
as a generic symbol for a quantity which tends to zero as r → 0. With this notation, we also have
1 − wr = r + iκr + rεr and 1 − zr(t) = δr − it + rεr (t). Consequently,
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1 − wrϕ
(
zr(t)

) = (1 − wr) + {
1 − ϕ

(
zr(t)

)} + rεr (t)

= r(1 + δ/b) + i(κr − t/b) + rεr (t).

Now substitute this expression into the integrand in (3.1) and perform the change of variables
u = t/ra − κ to get

I (δ, κ,λ, r) = (2r − r2)ra

2π

+λ/a∫
−λ/a

du

|r(1 + δ/b) + i(κr − κra/b − rau/b) + rεr (u)|2

= (2 − r)a

2π

+λ/a∫
−λ/a

du

|(1 + δ/b) + i((1 − a/b)κ − au/b) + εr(u)|2 .

Hence

lim
r→0

I (δ, κ,λ, r) = a

π

+λ/a∫
−λ/a

du

(1 + δ/b)2 + ((1 − a/b)κ − au/b)2
. (3.2)

If b = a, this limit equals

a

π

+λ/a∫
−λ/a

du

(1 + δ/a)2 + u2
,

which is of the desired form ac(a; δ,λ)/(1+δ/a). On the other hand, if b 
= a, then the integrand
in (3.2) tends to zero as κ → ∞, uniformly in u. So, in this case (3.2) goes to zero as κ → ∞.

Finally assume that τϕ,1({1}) = 0, so ϕ has no finite angular derivative at 1 or ϕ(1) 
= 1.
By the Julia–Carathéodory theorem, we now have (1 − ϕ(z))/(1 − z) → ∞ as z → 1 non-
tangentially. By considerations similar to those in the first part of the proof, this implies that
{1 − wrϕ(zr(t))}/r → ∞ as r → 0, uniformly in t , and hence I (δ, κ,λ, r) → 0 as r → 0. We
leave the details to the reader. �
Proof of Theorem 3.3. Without loss of generality, we may take α = 1. We first treat the case of
a single mass point and then indicate the general argument. Let us assume that τϕ,1({1}) = a 
=
τψ,1({1}) for some a > 0. Then, for δ, κ,λ > 0 and small enough r > 0, we have

∥∥(Cϕ − Cψ)f(1−r)eiκr

∥∥
2 �

(
1

2π

κra+λr∫
κra−λr

∣∣(Cϕ − Cψ)f(1−r)eiκr

(
(1 − δr)eit

)∣∣2
dt

)1/2

� Iϕ(δ, κ,λ, r)1/2 − Iψ(δ, κ,λ, r)1/2,

where Iϕ and Iψ refer to the integrals of Lemma 3.4 corresponding to ϕ and ψ , respectively.
Passing to the limit as r → 0, we then get the following type of lower bound for the essential
norm of Cϕ − Cψ :
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‖Cϕ − Cψ‖e �
(

a · c(a; δ,λ)

1 + δ/a

)1/2

− ε(a; δ, κ,λ)1/2.

Letting κ → ∞, λ → ∞ and δ → 0 now yields ‖Cϕ − Cψ‖e � a1/2 as desired.
To prove the theorem in full (assuming still α = 1), we observe that the above reasoning

is local in the sense that the interval [κra − λr, κra + λr] shrinks to 0 as r → 0. Let Z′ =
{ζ1, . . . , ζn} be any finite subset of the (possibly infinite) set Z1, where ζk 
= ζl for k 
= l. Write
tk = arg ζk and ak = τϕ,1({ζk}). We proceed as above, now integrating over the union of the
intervals [tk + κrak − λr, tk + κrak + λr], k = 1, . . . , n. Since these are disjoint for small r , we
get, after passing to the appropriate limits as above,

‖Cϕ − Cψ‖e �
(

n∑
k=1

ak

)1/2

= τϕ,1(Z
′)1/2.

Finally, if Z1 is infinite, we take the supremum over all finite subsets Z′ ⊂ Z1 to complete the
proof of the theorem. �
4. Proof of Main Theorem: non-compact composition operators in the component of
compacts

In this section we establish our Main Theorem, giving a negative answer to question (∗) stated
in Section 1. The same construction turns out to work for a variety of spaces in addition to H2.

Main Theorem. For 0 � t � 1 there are analytic maps ϕt : D → D such that Cϕ0 is compact and
Cϕ1 is non-compact on X, and t �→ Cϕt is continuous from [0,1] into Comp(X), where X is any
of the spaces M, Lp or Hp with 1 � p < ∞.

We begin with some preliminary observations. First of all, we note that it is enough to deal
with the case X = M. Indeed, as we pointed out in Section 2, the compactness of composi-
tion operators is equivalent in any two of the spaces mentioned. Furthermore, we may apply
interpolation between L1 (a subspace of M) and L∞ to conclude that for any 1 � p < ∞ and
s, t ∈ [0,1],

∥∥Cϕs − Cϕt : Lp → Lp
∥∥ �

∥∥Cϕs − Cϕt : L1 → L1
∥∥1/p∥∥Cϕs − Cϕt : L∞ → L∞∥∥1−1/p

� 21−1/p‖Cϕs − Cϕt :M → M‖1/p.

(See e.g. [1, Sec. 4.1] for the classical Riesz–Thorin interpolation theorem which is applicable
here.)

Throughout the proof we will utilize Sarason’s way of viewing composition operators as act-
ing on the unit circle (cf. Section 2). If ϕ is an analytic self-map of D and E ⊂ T is a Borel set,
we let χECϕ denote the restriction of Cϕ to E. More precisely, if μ ∈ M and Cϕμ = ν, then
χECϕμ refers to the Borel measure B �→ ν(E ∩ B) on T. For functions f ∈ L1, this simply
means that χECϕf (ζ ) = χE(ζ )Cϕf (ζ ) for m-a.e. ζ ∈ T. In this context, Eq. (2.2) yields that

‖χECϕ : M →M‖ = sup
{
τϕ,α(E): α ∈ T

}
(4.1)
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(just replace f in (2.2) by f χE and take supremum over ‖f ‖∞ � 1). Similarly, for differences
we have ∥∥χE(Cϕ − Cψ) : M →M

∥∥ = sup
{|τϕ,α − τψ,α|(E): α ∈ T

}
, (4.2)

where |τϕ,α − τψ,α| denotes the total variation measure.
We use ρ to denote the hyperbolic distance in D; it is the conformally invariant metric induced

by the arc length element 2|dz|/(1 − |z|2) (see e.g. [7, Sec. I.1]). When working with hyperbolic
distances, it is often convenient to shift to the right half-plane H = {z′: Re z′ > 0}, where the
hyperbolic metric ρH is induced by the arc length element |dz′|/Re z′. For any α ∈ T, this is
accomplished through the Möbius transformation z′ = (α + z)/(α − z), which takes D onto H

isometrically relative to ρ and ρH. Note that this transformation also occurs in the definition of
Aleksandrov–Clark measures.

Lemma 4.1. Let ϕ,ψ : D → D be analytic, and let E ⊂ T be a Borel set such that τϕ,α(∂E) =
τψ,α(∂E) = 0 for all α ∈ T. Also let 0 < ε < 1. Suppose that for m-a.e. ζ ∈ E the fol-
lowing holds: if one of ϕ(ζ ) and ψ(ζ ) is unimodular, then ϕ(ζ ) = ψ(ζ ), and otherwise
ρ(ϕ(ζ ),ψ(ζ )) � ε. Then

∥∥χE(Cϕ − Cψ) : M →M
∥∥ � Cε

1 − |ϕ(0)| ,

where C > 0 is a universal constant.

Proof. We first note that the Poisson kernel functions Pz satisfy the following estimate: for all
z,w ∈ D with ρ(z,w) � 1 and α ∈ T,∣∣Pz(α) − Pw(α)

∣∣ � Cρ(z,w)Pz(α), (4.3)

where C > 0 is a universal constant. In fact, one may use the transformation z′ = (α + z)/(α − z)

to pass to the right half-plane where (4.3) becomes∣∣Re(z′ − w′)
∣∣ � CρH(z′,w′)Re z′,

which is easy to verify by geometric reasoning.
Now fix α ∈ T and 0 < r < 1. Since ρ(rϕ(ζ ), rψ(ζ )) � ε for m-a.e. ζ ∈ E, we get by (4.3)

that ∫
E

∣∣∣∣ 1 − |rϕ|2
|α − rϕ|2 − 1 − |rψ |2

|α − rψ |2
∣∣∣∣dm � Cε

∫
E

1 − |rϕ|2
|α − rϕ|2 dm � Cε

1 − |rϕ(0)|2
|α − rϕ(0)|2 .

The last inequality was obtained by extending the integral over the whole circle T and using
the harmonicity of the integrand. The definition of the Aleksandrov–Clark measures implies
that the absolutely continuous measure (1 − |rϕ|2)/|α − rϕ|2 dm converges to τϕ,α weak* as
r → 1. Similarly (1 − |rψ |2)/|α − rψ |2 dm converges to τψ,α . Therefore, the preceding chain
of inequalities yields, as r → 1,

|τϕ,α − τψ,α|(E) � Cε
1 − |ϕ(0)|2

2
� 2Cε

.
|α − ϕ(0)| 1 − |ϕ(0)|
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(Here we used the assumption that τϕ,α and τψ,α both assign measure zero to the boundary of E.)
The lemma now follows from (4.2). �

We are now in a position to define the maps ϕt . Recall from Section 2 that a composition
operator Cϕ is non-compact on any of the spaces mentioned in Main Theorem if and only if
at least one of the Aleksandrov–Clark measures τϕ,α fails to be absolutely continuous. In the
other direction, if Cϕ is required to belong to the component of compact composition operators,
MacCluer’s theorem (Theorem 3.1) implies that none of τϕ,α may have atoms. That is why we
have to consider Aleksandrov–Clark measures with continuous singularity.

Let λ be any non-trivial, positive and finite continuously singular Borel measure on the unit
circle T. For 0 � t � 1, let

τt,1 = m + χI (t)λ, (4.4)

where I (t) ⊂ T is the closed arc connecting the point 1 to e2πit in the positive direction and, as
before, m denotes the normalized Lebesgue measure on T. We define ϕt in terms of the Herglotz
integral

1 + ϕt

1 − ϕt

= Hτt,1 (4.5)

(see (2.1)). Then τt,1 becomes the Aleksandrov–Clark measure of ϕt at 1. Moreover, since
ReHτt,1(z) = ∫

T
Pz dτt,1 � 1, it follows that ϕt either takes D into the open disc {w: |w − 1

2 | <
1
2 } or is constant 0 (for small t). In general, we let τt,α denote the Aleksandrov–Clark measure
of ϕt at α ∈ T.

The compactness statements of Main Theorem are now immediate. Since τ1,1 = m + λ is not
absolutely continuous, the operator Cϕ1 is non-compact. On the other hand, ϕ0 ≡ 0, so Cϕ0 is
clearly compact.

The hard part of the proof consists of showing that the map t �→ Cϕt is indeed continuous.
This will be based on the following two lemmas, in conjunction with Lemma 4.1.

Lemma 4.2. Let ε > 0. There exists δ > 0 such that if I ⊂ T is an arc with m(I) � δ, then the
Aleksandrov–Clark measures of the maps ϕt satisfy τt,α(I ) � ε for all t ∈ [0,1] and α ∈ T. In
particular, none of τt,α have atoms.

Proof. We first argue that all the measures τt,α are indeed continuous, i.e. have no atoms. For
α = 1 this is clear from (4.4). For α 
= 1 we need to note that since the closure of the image of ϕt

does not contain α, the harmonic function

Re
α + ϕt (z)

α − ϕt (z)
=

∫
T

Pz dτt,α (4.6)

is bounded and hence τt,α is absolutely continuous.
Next, using (4.4) and (4.5) one can easily show that for each fixed z the left-hand side of (4.6)

is continuous as a function of the pair (t, α) in [0,1] × T. Since linear combinations of Poisson
kernels are dense among the continuous functions on T, it follows that the map (t, α) �→ τt,α is
continuous in the weak* sense.
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Now assume that the claim of the lemma fails. Thus, there are arcs In ⊂ T and points
tn ∈ [0,1] and αn ∈ T such that τtn,αn(In) > ε for all n � 1 while m(In) → 0. By passing to
a subsequence we may further assume that the intervals In (i.e. their endpoints) converge to
a point ζ0 ∈ T and also that tn → t0 and αn → α0. Then, for each closed arc I ⊂ T whose mid-
point is ζ0, we have τtn,αn(I ) > ε whenever n is large enough. Since the map (t, α) �→ τt,α is
weak* continuous, this implies that τt0,α0(I ) � ε for every such I , and hence τt0,α0({ζ0}) � ε.
This is a contradiction since we observed that τt0,α0 cannot have atoms. �
Lemma 4.3. Fix t0 ∈ [0,1] and let I0 ⊂ T be an arc whose midpoint is e2πit0 . If ε > 0 is given,
there exists δ > 0 such that

ρ
(
ϕt0(ζ ), ϕt (ζ )

)
� ε for ζ ∈ T \ I0

whenever |t0 − t | � δ.

Proof. Assume that |t0 − t | is so small that the distance of the point e2πit to the set T \ I0
is greater than a positive constant c. Then Hτt,1 = Hτt0,1 ± H(χJ(t)λ), where J (t) is the arc
connecting the points e2πit0 and e2πit in I0. Moreover, for ζ ∈ T \ I0 we have

∣∣H(χJ(t)λ)(ζ )
∣∣ =

∣∣∣∣
∫

J (t)

ξ + ζ

ξ − ζ
dλ(ξ)

∣∣∣∣ � 2

c
λ
(
J (t)

)
.

Since this upper bound tends to zero as t → t0 and ReHτt0,1 � 1, we see that the distance
between Hτt,1(ζ ) and Hτt0,1(ζ ) in the hyperbolic metric of the right half-plane tends to zero as
t → t0, uniformly for ζ ∈ T \ I0. In view of (4.5) and the conformal invariance of the hyperbolic
metric, the same conclusion holds true for the distance of ϕt (ζ ) and ϕt0(ζ ) in the metric ρ. �

We are now ready to finish the proof of Main Theorem.

Proof of Main Theorem (final part). It remains to show that the map t �→ Cϕt is continuous
with respect to the operator norm on M. Let 0 < ε < 1. By Lemma 4.2 we can find δ > 0 such
that τt,α(I ) � ε for all t ∈ [0,1] and α ∈ T whenever I ⊂ T is an arc with m(I) � δ. For all
such I , Eq. (4.1) yields the estimate

‖χICϕt ‖ � ε. (4.7)

(Here and throughout the rest of the proof ‖ ‖ refers to the operator norm on M.)
Now fix t0 ∈ [0,1] and pick an arc I0 ⊂ T with m(I0) � δ whose midpoint is e2πit0 . By

Lemma 4.3 there exists η > 0 such that if |t0 − t | � η, then ρ(ϕt0(ζ ), ϕt (ζ )) � ε for all ζ ∈ T\I0.
Hence Lemma 4.1 shows that

∥∥χT\I0(Cϕt0
− Cϕt )

∥∥ � Cε/
(
1 − ∣∣ϕt0(0)

∣∣) (4.8)

whenever |t0 − t | � η. To finish the argument we just write

Cϕt − Cϕt = χI Cϕt − χI Cϕt + χT\I (Cϕt − Cϕt )
0 0 0 0 0 0
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and, when |t0 − t | � η, invoke estimates (4.7) and (4.8) to conclude that

‖Cϕt0
− Cϕt ‖ � ε + ε + Cε/

(
1 − ∣∣ϕt0(0)

∣∣).
Since ε > 0 was arbitrary, this clearly shows that the norm of Cϕt0

− Cϕt on M tends to zero as
t → t0.

This completes the proof of Main Theorem. �
We close this section by discussing some heuristics behind the above construction. First of all,

one can easily show that if a continuous path (Cϕt ) yielding the desired example exists, then one
may assume that the image of each map ϕt is contained in the disc {w: |w − 1

2 | � 1
2 }. Then τ1,1

is necessarily of the form g dm + λ where g � 1 and λ is non-trivial and continuously singular.
One may also assume that ϕ0 ≡ 0. The central issue now is to find the intermediate maps ϕt for
0 < t < 1.

A seemingly natural choice might be ϕt = (1 − t)ϕ0 + tϕ1, but this obviously fails to work
since each corresponding operator is compact. On the other hand, in certain spectral-theoretic
applications one considers the maps corresponding to the measures τt,1 = (1 − t)τ0,1 + tτ1,1.
However, Theorem 3.3 suggests that this approach might not work either. Namely, in the case of
a discrete singular part, Theorem 3.3 shows that if one makes a simultaneous change—no matter
how small—to all the mass points of an Aleksandrov–Clark measure, this induces a big differ-
ence in the corresponding composition operator. In fact, if we restrict our attention to the special
case when the absolutely continuous part of τt,1 is a constant function (as in the construction
of the present section), it is rather easy to verify directly that the corresponding path is discon-
tinuous; see Lemma 4.4 below. These observations motivated our actual choice (4.4), where the
singularity λ is continuously “wiped off” in such a way that the change in τt,1 is strictly local at
every instant t .

Lemma 4.4. Let λ be any singular Borel probability measure on T. For 0 � t � 1 define analytic
maps ψt : D → D by the Herglotz integral

1 + ψt

1 − ψt

= H(m + tλ),

so that m + tλ becomes the Aleksandrov–Clark measure of ψt at 1. Then the essential norm of
Cψs − Cψt on H2 satisfies ‖Cψs − Cψt ‖2

e � s whenever s 
= t .

Proof. Define an analytic map σ by (1 + σ)/(1 − σ) = Hλ. Then σ is an inner function which
vanishes at the origin and whose Aleksandrov–Clark measure at 1 equals λ. Also, for 0 � t � 1
let ϕt be an analytic map with m + tδ1 as its Aleksandrov–Clark measure at 1. Now we have
Cϕt◦σ δ1 = Cσ Cϕt δ1 = Cσ (m + tδ1) = m + tλ. Thus the Aleksandrov–Clark measures of ψt

and ϕt ◦ σ at the point 1 coincide. Since σ fixes the origin, it is easy to deduce that actually
ψt = ϕt ◦ σ .

We recall that the composition operator induced by an inner function fixing the ori-
gin is always an isometry on H2 (see e.g. [6, Thm. 3.8]). Therefore ‖Cψs − Cψt ‖e =
‖Cσ Cϕs − Cσ Cϕt ‖e = ‖Cϕs − Cϕt ‖e, and the claim follows from Theorem 3.1. �
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5. Further remarks

After the work of Section 4 it is natural to search for a larger class of composition operators
that could be continuously joined to the compacts. For instance, one might be tempted to expect
a positive answer to the following question:

• Assume that ϕ and α0 ∈ T are such that the measure τϕ,α0 has no atoms and, for all α 
= α0,
the measure τϕ,α is absolutely continuous. Does Cϕ belong to the same component of
Comp(H2) as the compact composition operators?

The answer to this question is, however, negative.

Example 5.1. There is a symbol ψ such that Cψ is isolated in Comp(H2) and the following
properties hold: τψ,1 has a continuous non-trivial singular part while all the other measures τψ,α

are absolutely continuous. In fact, one may choose ψ = ϕ ◦ σ , where σ is an inner function and
ϕ is a conformal map from D onto a region Ω ⊂ D with Ω ∩ T = {1}.

The above example is based on a construction of Shapiro and Sundberg [22]. We first
recall some terminology. Shapiro and Sundberg call a continuous and 2π -periodic function
κ : R → [0,1) a contact function if it is increasing and positive on (0,π ], decreasing and positive
on [−π,0) and vanishes at the origin. Such a function determines an approach region

Ω(κ) = {
reiθ : 0 � r < 1 − κ(θ)

}
,

whose boundary is a Jordan curve in D that meets the unit circle only at the point 1. In this setting
Shapiro and Sundberg prove the following (see Theorem 4.1 and Remark 5.1 of [22]).

Theorem 5.2. (See Shapiro and Sundberg [22].) Suppose κ is a C2 contact function and ϕ is a
conformal map from D onto Ω(κ). If

∫ π

0 logκ(θ) dθ = −∞, then Cϕ is (essentially) isolated in
Comp(H2).

We observe that this theorem can be extended as follows.

Proposition 5.3. Let ϕ be a function given by Theorem 5.2, and let σ be an inner function with
σ(0) = 0. Put ψ = ϕ ◦ σ . Then Cψ is (essentially) isolated in Comp(H2).

In order to produce the symbol ψ needed for Example 5.1, we apply the above proposition
and the idea utilized in the proof of Lemma 4.4. Let σ be an inner function such that σ(0) = 0
and τσ,1 is continuously singular. Also let ϕ be a conformal map given by Theorem 5.2, with
the additional requirement that ϕ(1) = 1. Then τ s

ϕ,1 = cδ1 for some constant c. It is now easy to
check that the map ψ = ϕ ◦ σ has the required properties; in particular, τ s

ψ,1 is the continuously
singular measure cτσ,1.

Proof of Proposition 5.3. We start by recalling some ideas from the proof of Theorem 5.2. Write
Ω = Ω(κ) for the image of ϕ. A crucial part of Shapiro’s and Sundberg’s argument is the con-
struction of a sequence of test functions fn ∈ H2 which converges to zero weakly in H2. Their
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functions satisfy the following properties: |fn|2 � c/m(Jn) on Γn, where Γn ⊂ ∂Ω are arcs con-
verging to 1 and Jn = ϕ−1(Γn); and |fn| � 1 on D \ Tn, where Tn ⊂ D is a set containing Γn

whose diameter is roughly twice the length of Γn. Now suppose that η : D → D is any analytic
map different from ϕ. Shapiro and Sundberg consider the sets En = {ζ ∈ Jn: |ϕ(ζ ) − η(ζ )| � cn}
where cn is approximately twice the diameter of Tn. They observe that for ζ ∈ En one has
ϕ(ζ ) ∈ Γn and η(ζ ) ∈ D \ Tn. Therefore |fn ◦ ϕ − fn ◦ η|2 � c/m(Jn) on En. Since fn → 0
weakly, this yields the estimate

‖Cϕ − Cη‖2
e � c lim sup

n→∞
m(En)

m(Jn)
.

Finally Shapiro and Sundberg show that lim supm(En)/m(Jn) = 1, based simply on the fact that∫
T

log |ϕ − η|dm > −∞.
Our argument is just a minor adaptation of the one explained above. Suppose that η : D → D is

an analytic map different from ψ , and put J ′
n = ψ−1(Γn) and E′

n = {ζ ∈ J ′
n: |ψ(ζ )−η(ζ )| � cn}.

Then J ′
n = σ−1(Jn), and since σ is an inner function fixing the origin, we have m(J ′

n) = m(Jn).
Thus, using the test functions fn as before, we arrive at the estimate

‖Cψ − Cη‖2
e � c lim sup

n→∞
m(E′

n)

m(J ′
n)

.

The proof is now completed by using the same argument as Shapiro and Sundberg to show that
the limit superior here equals 1. �

Given the above example, it seems appropriate to close this section with the following general
open problem.

Problem 5.4. Determine all the non-compact composition operators that lie in the component of
the compact ones in Comp(H2).

This problem might be quite hard. As a first step one could try to describe interesting subsets
of the component of the compacts that are larger than those provided by obvious modifications
of our construction presented in Section 4. For instance, it would be instructive to know—and
probably not difficult to check—if the extremality condition in Theorem 5.2 that was essential
for the example provided by Proposition 5.3 can be relaxed.
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