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a b s t r a c t

In this paper, we have introduced a new method in which every training point learns what is happening
in its neighborhood. So, a hyperplane is learned and associated to each point. With this hyperplane we
can define the bands distance, a distance measure that bring closer or move away points depending on
its classes. We have used this new distance in classification tasks and have performed tests over 68 data-
sets: 18 well-known UCI-Repository datasets, one private dataset, and 49 ad hoc synthetic datasets. We
have used 10-fold cross-validation and, in order to compare the results of the classifiers, we have consid-
ered the mean accuracy and have also performed a paired two-tailored t-Student’s test with a signifi-
cance level of 95%. The results are encouraging and confirm the good behavior of the new proposed
classification method. The bands distance has obtained the best overall results with 1-NN and k-NN clas-
sifiers when compared with other distances. Finally, we extract conclusions and outline some lines of
future work.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

It is usual to define similarity between two objects by means of
distances, because we are familiar with them and, from a practical
point of view, they are intuitive and easy to define. Thus, popular
classification algorithms like 1-NN and k-NN [8,5,6] employ dis-
tances to search ‘‘the most similar cases” to the new one, based
on the value of some characteristics, in order to assign a class.
Much work has been done about similarity [12,15,16], and about
distances and distance based classification methods [13,20]. Some
variants of 1-NN methods have been studied in literature, includ-
ing the IBx series [1,2] to reduce the storage requirements and in-
crease noise tolerance; the nested-generalized exemplar (NGE)
theory [17] where hyper-rectangles are used instead of points;
the value difference metric (VDM) [18], the modified value differ-
ence metric (MVDM) [4], the heterogeneous value difference met-
ric (HVDM) [22], and the simplified value difference metric (SVDM)
[7] that statistically derive distances for nominal attributes based
on the overall similarity of classification of all instances for each
possible value of each feature. Another interesting distance is the
local asymmetrically weighted similarity metric (LASM) [14]
which defines a local distance that varies along the space and is
asymmetric.

This kind of algorithms almost always employ one of the classi-
cal distances of the Geometry, mainly the Euclidean distance. It is
ll rights reserved.
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clear that if we consider only usual distances, then some natural
kinds of similarity (and distance) relations cannot be obtained
[9], and there are many problems where the examples are grouped
according to other patterns. For example, if we know some compa-
nies’ incomes and expenses and the class is the company’s profit,
the examples belonging to the same class (and in that sense, sim-
ilar) are along a line. This is one example of a wide number of prob-
lems where the instances are, roughly speaking, grouped into
bands, and usual distances fail.

Accordingly, we propose a different approach in this work. First,
we suggest understanding distance functions in a wide sense. We
need a function that measures similarity or dissimilarity between
objects, and provides low values for cases with equal or similar
classes. But, in general, we do not need that it satisfies the condi-
tions of a geometrical distance. So we propose flexibility and em-
ploy ‘‘distance functions” adapted to the specific problem we
deal. Second, we propose employing local distance functions and
go beyond of the idea of searching the nearest points to the new
case e. We suggest a training stage in which each point learns a
band or hyperplane that passes through itself and better fits the
distribution of points in its surrounding area. Then, given a new
case e, each known point can provide a measure of how distant
is e from its point of view (according to its band). The usual ap-
proach searches the nearest points from e, but now each point
‘‘says how close or far it sees e”.

This approach has several advantages. First, we can see it like a
local function of distance: each known point has its own measure
of distance that can vary across the space to properly fit the special
characteristics of different regions. Second, by hyperplanes we can
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locally approximate almost every shape. . .and we have one hyper-
plane associated to each point. Third, each point can learn the
hyperplane that locally minimizes the distance to points of its
class, and even maximizes the distance to points of other classes.
Thus the point tends to assign lower distances to points in the
direction of the hyperplane (the direction of points of its class)
and further distances in the perpendicular direction. With the
usual approach we cannot bring closer or move away points
depending on its classes because the new case e still has not got
a class (we are just trying to assign a class to e!). And finally, we
now have much more knowledge than raw points, and could ex-
tract information from the hyperplanes that each point has
learned.

2. An algorithm to learn bands or hyperplanes

Usual distances are useful in a lot of situations, but sometimes
other kind of distances is more appropriated. In a previous work
[9], we have presented a distance that groups points according to
bands along one hyperplane H in Rn (a line in R2)
da;wideðx; yÞ : Rn � Rn ! Rþ0 as (Fig. 1):

da;wideðx; yÞ ¼ wide
Xn

i¼1

cos ai xi � yið Þ
�����

����� ð1Þ

where a ¼ ða1; . . . ; anÞ 2 ½0; 2p�n is the set of angles between the axis
and the unitary vector v ¼ ðv1; . . . ; vnÞ that is perpendicular to the
hyperplane H (Fig. 1). wide 2 Rþ controls the width of the band of
points at a given distance (lower values imply approaching points
to H), and j:j is the absolute value in R. Moreover, v verifies thatPn

i¼1v2
i ¼ 1, so there are only n degrees of freedom in the parame-

ters. Notice that ðxi � yiÞ can be lower, equal or greater than 0. We
use Rn for simplicity. In symbolic domains ðxi � yiÞ represents the
partial distance between xi and yi in that domain. This distance is
not a mathematical metric, but a mathematical pseudo-metric, be-
cause dðx; yÞ ¼ 0;x ¼ y 8 x; y 2 D.

2.1. Band direction

Putting the band width aside, we want that every training point
learn what is happening in its neighborhood. If P is the set of
known points, we want that every point p 2 P learn a band or
hyperplane that goes through p and better fits the points rounding
it, i.e., the hyperplane H that minimizes the distance da;wide to the
surrounding points. We define the adjustment of a hyperplane
H ¼ v? as:

adjustHðp; PÞ ¼
X
xi2P

Xn

j¼1

xij � pj

� �
vj

 !2

ð2Þ
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y
H

α1v=H

α2

x

y

0

0

1

1

1

1

Fig. 1. Definition of a band in R2 and an example of band along a hyperplane in R2.
where n is the number of attributes or dimensions, pj is the jth attri-
bute or coordinate of p, xij is the jth attribute of xi, and vj ¼ cos aj is
the jth director cosine of H.

Now we can express the hyperplane H that goes through a point
and better fits the points around it as the hyperplane with the low-
est adjustment value.

We have performed several experiments to observe the behav-
ior of this way of selection of hyperplanes. For instance, we can
generate random points of one horizontal band of width 0.2 and
one vertical band of width 0.3 (Fig. 2). The points learn reasonably
well the direction of the band they are included, but when we
merge these two bands, the points have a tendency towards the
center of the set of points, instead of learning the direction of the
band they are placed.

In this example we clearly show that this method is too global,
and the direction that a point selects is heavily affected by distant
points. So, we must employ a more local method. We have pro-
posed a variant, of this prior basic method, that takes into account
the distance of the points:

adjust localHðp; PÞ ¼
X

xi2Eðp;eÞ

Xn

j¼1

ðxij � pjÞvj

 !2

e�
4
e2

d xi ;pð Þ ð3Þ

where Eðp; eÞ ¼ fx 2 P j dðx;pÞ 6 eg and dðxi;pÞ is the Euclidean dis-
tance between xi and p, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 xij � pj

� �2
q

. This variant learns
well the single bands, and the bottom-right graph of Fig. 2 shows
its behavior when merging two bands.

The new method of Eq. (3) has a parameter e to permit softly
controlling the locality of this method from very local to very glo-
bal (lower to greater values of e). With a high value of e, this meth-
od exhibits a behavior similar to the previous one without the
kernel function. Decreasing e, it obtains bands with a more local
behavior.

We have here two alternatives to choose the e value. e can be a
fixed real value, constant for the entire case base (we could directly
provide it or it could be computed as the result of some expression
that includes the idiosyncrasy of each case base). Or, e can be a real
value different for each point, calculated from the information on
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Fig. 2. Bands learned by each point of one vertical and one horizontal band and
their union in R2. For each point we show the direction of its band with the longest
segment.
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the surroundings of the point, i.e. each point has his own e that in-
cludes the special characteristics of that region. Anyway, the value
of e must be large enough to include the information of the sur-
roundings of the point (ideally the group or cluster where it is
placed), but not too large, where it is affected by further points that
are outliers or belong to other groups of points or clusters.

We have performed some experiments in order to find a way to
obtain a value of e to each point, but we have find big difficulties
and the results were not conclusive. This part of the investigation
is directly related to clustering problems and it is outside the main
line of our work. So, we have decided to postpone the automatic
determination of the value of e as a line of future work. Here it is
feasible to employ techniques yet known in the clustering area in
order to determine the size of the cluster where the point is, and
choose a value of e that harvest the information of the points of
the cluster but without considering information of others clusters
of points.

Figs. 3–5 show the direction of the bands learned by some ran-
domly generated points. Above is showed the position of each ran-
dom point, and below the direction of the band learned by each
point (here, each point is founded in the intersection of two seg-
ments of different length, the longest one graphically shows the
direction of the band).

In Fig. 3a the points have been randomly chosen along a circum-
ference. They have quite small values of e, so that bands are quite
local. The bottom half of the figure shows that the direction is cho-
sen bearing to the nearest points, and a circumference is ‘‘drawn”
or locally approximated by means of a set of small segments. If
the value e were larger, the points would tend to point to the center
of the circumference. Fig. 3b shows randomly chosen points inside
a circle. The cloud of points is quite compact and the bands are
pointing to the center of the cloud (with big enough e values).

Fig. 4 shows three examples with 50 randomly generated points
over the [0,1] � [0,1] square without any restriction. If each point
learned the band that better fits its surroundings, it will tend to
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(a) Points of a circumference (b) Points of a circle

Fig. 3. Bands learned by random points in a circumference and a circle. Above it is
showed the position of each point, and below the direction of each band (the lon-
gest segment).
choose directions pointing to close points. It is trying to find bands
of points or figures formed by the points. This fact is very similar to
Psychological tests, where a set of abstract pictures is showed to a
character that must say what she see in those pictures. The re-
sponse of two characters may be completely different, because
subjectivity is at stake. If we show the clouds of points of the
Fig. 4 to a character, and we asked her to try to find shapes or fig-
ures with these points, she could answer anything. This is exactly
what the bands method is doing. For instance, in the left example
of Fig. 4, if we look at the below graph, the bands of the points
placed on the upper-left corner, it seems like if there was a circum-
ference or an oval there, and a wide and irregular band from the
upper-right corner to the bottom-left corner of the picture. The
same happens with the other two examples of Fig. 4, where it
could be recognized a crushed X and different clouds of points.

Another interesting experiment is showed in Fig. 5, where the
points are randomly generated inside two squares. In Fig. 5a the
two squares are nearly superimposed and the points select their
bands like if they belong to only one group of points (and actually
there is only one group). In Fig. 5b the squares share a little area, so
it seems that the cloud of points is stretched, and it looks like a
band of points. The points tend to point according to the direction
of the band, and some points head to the center of the cloud. If we
move away the clouds of points, they start to behave like two dif-
ferent clouds of points. In Fig. 5c they are completely separated and
distant, and the points tend to point to the center of their respec-
tive cloud. In this example the points learn that they are in two dif-
ferent clouds, and one cloud has no influence over the other one. If
there are outliers they will have no influence over the clouds of
points. The outliers could select any direction, but always more
influenced by nearest points.

Probably a human observer would also say that there is only
one cloud of points in Fig. 5a, there is one stretched cloud in
Fig. 5b, and there are two clearly differentiated clouds in Fig. 5c.

2.2. Band direction in multiclass problems

In Eq. (3), the e values that include other classes points could
be penalized, so that, e will tend to collect information only about
the cloud where the point is placed. This could be a good idea if
we do not consider different classes or have no information about
classes. But in problems with different classes we would prefer
choosing a bigger e value that takes into account neighbors of
other classes.

In order to determine the optimal hyperplane we want to
choose the direction of nearby points of the same class (bring near
same class points) and run away from directions where there are
other classes points (move further away, as far as possible, other
classes points). To achieve this double objective we propose that
the hyperplane H learned by each point minimize the distance
da;wide of the surrounding points of the same class and maximize
the distance da;wide of the surrounding points of other classes. This
latter objective is equivalent to minimize the distance between the
points of other classes and the direction perpendicular to H, i.e.
minimize the distance to v ¼ H?. We define the multiclass adjust-
ment of a hyperplane H ¼ v? as:

adjust multiHðp; PÞ ¼
X

xi2E¼ðp;eÞ

Xn

j¼1

xij � pj

� �
vj

 !2

e�
4
e2

d xi ;pð Þ

þ F
X

xi2E 6¼ðp;eÞ

Xn

j¼1

xij � pj

� �2

  

�
Xn

j¼1

xij � pj

� �
vj

 !2
1
Ae�

4
e2

d xi ;pð Þ
�

ð4Þ
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Fig. 4. Bands learned by randomly generated points. Above it is showed the position of each point, and below the direction of each band (the longest segment).
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(a) Superimposed (b) squares sharing (c) Distant
squares some area squares

Fig. 5. Bands that learn random points from two squares. Above it is showed the position of each point, and below the direction of each band (the longest segment).
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where F 2 Rþ0 , n is the number of attributes, E¼ðp; eÞ is the set of
points of the same class that p, E6¼ðp; eÞ is the set of points of other
classes, pj is the jth attribute of p, xij is the jth attribute of xi, and
vj ¼ cos aj is the jth director cosine of H.

P
xi2E¼ðp;eÞ only collects

information from points of the class of p, and
P

xi2E6¼ðp;eÞ from other
classes.

F is a fixed real value to permit controlling the influence given
to points of other classes, i.e., we have one new parameter to con-
trol the desired strength or degree in which the band must avoid
directions where there are points of other classes. Choosing F ¼ 0
is equivalent to ignore other classes points and learn the hyper-
plane only with the points of the same class. Choosing F ¼ 1 at-
taches the same weight or importance to choose the direction
where there are points of the same class and avoid other classes
points. Choosing a very high value of F means that we want for
the band to run from directions of points of other classes, even
though the hyperplane do not point at points of the same class.

Now, again, we can express the hyperplane H that goes through
p and better fits the points around p as the hyperplane with the
lowest adjustment value adjust multiH .
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Finding the hyperplane H that minimizes adjust multiH (Eq. (4))
is equivalent to find the vector v ¼ H? that minimizes
adjust multiH . This problem could be tackled as a constrained
minimization problem where it is feasible to employ the Lagrang-
ian-constrained minimization method to obtain a more straight-
forward solution. In this way we could turn the original problem
into solving a system of n + 1 equations, easier to solve. Appendix
A shows in detail the minimization of adjust multiH . In some data-
sets the number of attributes, and accordingly the number of vari-
ables, could be high. So, in the experiments we have employed a
numerical approximation method to the solution.

2.3. Band width and length

Once we have chosen the e value and H ¼ v? for each point, the
problem of the width of the band arises. We do not want infinity
bands like the showed in Fig. 1, because in most of the real prob-
lems the bands are bounded, and we do not want to assign a dis-
tance nearly 0 to a distant point that is placed there by any
chance. We propose to employ two real parameters r and R that
control, respectively, the width and length of the band. We com-
pute the distance between a point p0 and the hyperplane H that
goes through the point p as:

dr;R p0;Hð Þ ¼ d p0;Hð Þ
r

þ
d p0;H?
� �

R
ð5Þ

where dðp0;HÞ is the (Euclidean) distance between the point and the
hyperplane and dðp0;H?Þ is the (Euclidean) distance between the
point and v, the perpendicular direction to the hyperplane. In this
way, the points at a given distance shape a rhombus in R2, two
cones with shared bases in R3, and two hypercones in Rn (Fig. 6).

Given the hyperplane H by means of the unitary vector
v ¼ ðv1; v2; . . . ; vnÞ of its director cosines (equivalent to provide
the hyperplane by means of its parametric equations
H � v1x1 þ v2x2þ; � � � ; þvnxn ¼ 0), we can express the previous dis-
tances from the point p0 ¼ ðp01; p02; . . . ; p0nÞ to H and H? as:

d p0;Hð Þ ¼ v1 p01 � p1

� �
þ v1 p02 � p2

� �
þ; � � � ; þvn p0n � pn

� ��� ��
¼
Xn

i¼1

vi p0i � pi

� ������
����� ð6Þ

d p0;H?
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 � pk k2 � dðp0;HÞ2

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

p0i � pi

� �2 �
Xn

i¼1

vi p0i � pi

� � !2
vuut ð7Þ

where j:j is the absolute value function, and kp0 � pk is the norm (or
module) of the vector from the point p to p0. So it is possible to ex-
press Eq. (5) as:

dr;Rðp0;HÞ ¼
Pn

i¼1vi p0i � pi

� ��� ��
r

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 p0i � pi

� �2 �
Pn

i¼1vi p0i � pi

� �� �2
q

R
ð8Þ
x

y
H

r
R

R

r
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R

H

Fig. 6. Width and length of a band or hyperplane in R2 and R3.
After studying and testing several alternatives, we have decided
choosing the pair of values hr;Ri for each point according to the
algorithm showed in Fig. 7. First, we choose r in a conservative
way, without including points of other classes. If there are points
of other classes at an (Euclidean) distance lower than e, then r is
chosen equal to the distance from the nearest point of other class
to the hyperplane, else it is chosen r ¼ e

4. After that, we enlarge R,
but without including points of other classes. If there are points
of other classes inside the infinity band with radius r, then the R va-
lue is chosen so that the cone or rhombus goes through just at the
middle of the distance to the hyperplane from that point (Fig. 8),
else the band will have infinity length.

3. The experiments

We have used a large number of datasets to study the behavior
of the different classifiers. All the classifiers are tested with exactly
the same examples and using 10-fold cross-validation [19]. We
have also performed a paired two-tailored t-Student’s test with a
significance level of 95%. When we use the term ‘‘statistically sig-
nificant difference”, or simply ‘‘significant difference”, we will refer
to the difference is statistically significant according to this t-Stu-
dent’s test.

3.1. Classifiers

To study the importance of the distance function in this kind of
methods we consider six different measures: three (normalized)
basic distances of the geometry (Euclidean, Manhattan and Cheby-
chev) and their ‘‘correlated” variants, where each feature is
weighted by its correlation with the class.

We consider some variants of k-NN [20,21] that differ in some
characteristics [10,11]:

A (k-NN): basic method, used as reference.
B (e-ball): impose a distance threshold e on the set K of nearest
neighbors.
C (k–NN heur): select the distance measure, from among a set of
previously considered distances, that best performs for 1-NN on
the same training set.
D (e-ballk-NN): impose a distance threshold e on the set K of
nearest neighbors, and whenever K is empty use k-NN.
E (e-ball heur): impose a distance threshold e on the set K of
nearest neighbors. Select the distance measure, from among a
set of previously considered distances, that best performs for
1-NN on the same training set.
Fig. 7. Algorithm to choose the radii r and R of the bands.



Table 1
Databases from the UCI-Repository used in the experiments

Index Code Domain Size Classes No. of attributes

Numeric Symbolic

1 IR Iris plant 150 3 4 0
2 WI Wine recognition 178 3 13 0
3 PI PIMA diabetes 768 2 8 0
4 GL Glass identification 214 6 9 0
5 CL Cleveland 303 5 5 8
6 GD Granada digits 1000 10 256 0
7 SN Sonar 208 2 60 0
8 LD Liver disorder 345 2 6 0
9 ZO Zoo 101 7 1 15

10 TT Tic–tac–toe 958 2 0 9
11 L7 Led 7 5000 10 0 7
12 L24 Led 24 5000 10 0 24
13 W21 Waveform-21 5000 3 21 0
14 W40 Waveform-40 5000 3 40 0
15 F1 Solar flare 1 1066 8 0 10
16 F2 Solar flare 2 1066 6 0 10
17 F3 Solar flare 3 1066 3 0 10
18 SO Soybean 47 4 35 0
19 LR Letter recognition 20,000 26 16 0

R

r

p H

d(q,H)

q’

d(q’,H)

q

Fig. 8. Example of choice of the radii of a band or hyperplane in R2.
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F (e-ballk-NN heur): impose a distance threshold e on the set K of
nearest neighbors, and whenever K is empty, use k-NN. Select
the distance measure, from among a set of previously consid-
ered distances, that best performs for 1-NN on the same train-
ing set.
F1 (e-ball1-NN heur): impose a distance threshold e on the set K
of nearest neighbors, and whenever K is empty, use 1-NN. Select
the distance measure, from among a set of previously consid-
ered distances, that best performs for 1-NN on the same train-
ing set.
Bands (k-NN Bands): k-NN with the bands distance presented in
the previous section.

It is useful to distinguish the special case F1, as we will discuss
later. Classifiers A, B, and D employ the Euclidean distance. To se-
lect the distance in the classifiers that use the heuristics, we have
also performed a separate 10-CV test with each training set.

The (weighted vote) k-NN, e-ball, e-ballk-NN and bands distance
have one or two parameters that control their behavior. To esti-
mate the value of the parameters we have performed a separate
10-CV test with each training set. In k-NN classifiers we have con-
sidered the odd values 1, 3, 5, . . ., 49 for k. In e-ball and e-ballk-NN

methods we have considered 30 values in the [0,2] interval for e,
and the odd values 1, 3, 5, . . .,19 for k.

To use the bands distance we have employed the method of
adjustment of hyperplanes to multiclass problems presented in
Eq. 4. Here the learning of bands or hyperplanes has two parame-
ters that control its behavior: e and F. e controls the locality of the
learning method, to allow from a very local to a global learning. F
controls the strength or degree to avoid directions where there
are points of other classes and allows from ignore these points to
avoid them at all costs.

To learn the bands distance we have considered the values 0, 1,
2, 4, 6, 8, 10, 15 for the F parameter, and different real values for the
e parameter, depending on the case base. In nearly all the synthetic
datasets we have used e values 0.1, 0.2, 0.3, . . .,1; and in most of the
UCI-Repository datasets we have used e values 0.2, 0.4, 0.6, . . .,2. In
short, we have tested a great amount of combinations and em-
ployed a lot of computational time to obtain these results.

3.2. Datasets

We have used 68 datasets: 18 well-known UCI-Repository data-
sets [3], a reduced version of 1000 instances from the Granada
handwritten digits1 (Table 1), and 49 synthetic bases. The bases
from the UCI-Repository are frequently used in scientific literature,
facilitating comparisons with experimental results obtained by other
classifiers introduced in other papers.

The synthetic datasets are useful to study classifiers in a con-
trolled environment. They are constructed ad hoc over the
[0,1] � [0,1] square and have 500 instances. We want to study
the influence of the distribution of classes, so we consider (Fig. 9):
1 The Granada handwritten digits dataset has 11,000 instances of handwritten
digits, 256 numeric attributes (16 � 16 grid) and 10 classes. This database is private
and has been yielded up by IPSA (Investigación y Programas S.A.).
Bands (5, 10, and 20): point class is assigned according to 5, 10
or 20 horizontal bands.
Gaussian: point class is assigned according to four Gaussian dis-
tributions with variance 0.025.
Rings with constant area (3, 6, and 9): the space is divided into
3, 6 or 9 nested rings with equal areas and different radii, one
class per ring. The total area of the regions has no influence
and we can study the influence of the shape and number of
classes.
Rings with constant radius (3, 6, and 9): the space is divided
into 3, 6 or 9 nested rings with equal radii and different areas,
one class per ring.
Sines (3, 6, and 9): they have two classes, and the decision
boundary is a sine curve with 3, 6 or 9 [0,2p]-intervals fitted
in [0,1] � [0,1].
Squares (2, 4, 6, and 8): the space is divided into a 2 � 2, 4 � 4,
6 � 6, or 8 � 8 grid. All the variants have four classes with the
same amount of space; therefore the total area of the classes
has no influence.

It seems reasonable that k-NN could have difficulties if the
optimal k value is not constant along the whole space, i.e., if
in some regions k must be greater than in others. In such condi-
tions it may be feasible for e-ball and bands methods to exhibit a
better behavior because in some regions k-NN will take into ac-
count too many or too few points, but e-balls and bands will
consider only the ‘‘relevant” points (near enough but not too
remote).

We have generated three variants for all the synthetic datasets
(except for the Gaussian dataset) to test if k-NN methods are in
trouble when the optimal k value varies along the space. Densely
populated regions have more points and the optimal k value will
be higher. So, in these variants, points are distributed with differ-
ent probabilities across the space (Fig. 10), and we get a space with
different point density (and optimal k value).

In the uniform variant the points are uniformly distributed
along the space. In the half variant points are distributed in two
clearly different regions: 30% in the left half of the space
(x < 0:5) and the remaining 70% in the right half (x P 0:5). In the
progressive variant the point’s acceptance probability is propor-
tional to the addition of its coordinates (xþ y): the point density
progressively increases from the bottom-left corner to the top-
right one.
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Fig. 9. Some synthetic datasets. Different symbols indicate different classes and lines represent the decision boundaries.
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Fig. 10. Points distribution of the variants in the synthetic data sets.

2 In spite of the fact that the results with the Cleveland dataset could seem
bnormally lower, we must take into account that these results are obtained

nsidering five classes, while experiments with this dataset have been concentrated
n simply distinguishing presence (values 1–4) from absence (value 0) of heart

disease.
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4. The results

We use different ways to compare the behavior of the algo-
rithms to avoid misleading results from a particular method. For
each classifier we have calculated the mean accuracy, the improve-
ment of mean accuracy vs. the basic method (Euclidean distance
with 1-NN or k-NN), the mean accuracy broken down under differ-
ent datasets, and we have also performed a paired two-tailored t-
Student’s test with a significance level of 95%.

4.1. Results with 1-NN

Table 2 shows the pairwise comparison using the t-Student’s
test with 1-NN using the typical distances of the Geometry and
the new distance based on bands. In Tables 3 and 4 the comparison
is broken down under UCI-Repository and synthetic datasets.
These three tables show that 1-NN with the bands distance signif-
icantly improve the results of the other distances very frequently.
This fact appears independently of the category taken into consid-
eration: UCI-Repository, Synthetic and ‘‘all datasets”.

Table 5 shows the mean accuracy of the classifiers broken down
in UCI-Repository, Synthetic and ‘‘all datasets”. The bands distance
attains the best results in all the categories. So with no prior infor-
mation about the dataset, bands distance is a good election.

Table 6 shows the number of datasets where the heuristics
choose each distance. In other words, the number of bases in which
each distance with the 1-NN classifier attains the best results with
the UCI-Repository, Synthetic and all the datasets. Bands distance
exhibit the best behavior by far: attains the best results in more
than half of the datasets in each category. So, this table again indi-
cates that with no prior information about the dataset is advisable
to employ the bands distance.

Table 72 shows the detailed results obtained by each one of the
1-NN classifiers with these distances in the UCI-Repository datasets.
Observing this table, we could point out the good results of the
bands distance, higher than other distances in the Tic–Tac–Toe
(+21.92%) and Waveform-21 (+8.10%) datasets, and lower in Granada
Digits (�10.80%), Led 24 (�9.16%) and Letter Recognition (�8.20%)
datasets. But the bands distance attains an overall improvement in
the UCI-Repository datasets (Tables 3 and 5), and attains the best re-
sults in 12 of the 19 UCI-Repository bases (Table 6). If there are lots
of irrelevant features, the bands distance suffers a higher degrada-
tion than the correlated distances (see the results in the Led 7 and
Led 24, and Waveform-21 and Waveform-40 datasets), and a very
lower degradation than the distances that do not employ correlation.
So, if the base case has irrelevant features, is particularly important
to employ some previous method to eliminate them, and make sub-
sequently the proper classification.

As regards the synthetic datasets, bands distance attains the
best results (Table 5). The outstanding results attained in the
Gauss, all the rings (with constant radius and area), and most of
the sines datasets are due to the fact that is possible to approxi-
mate any figure in R2 by means of straight lines, and for example
the rings could be locally approximated with bands.

It was predictable worse results in the squares datasets, but the
difference with the other distances is not too big, and the bands
distance even attains the best results in two variants of the squares
datasets.
a
co
o



Table 6
Number of datasets where each distance is chosen by the heuristics (attains the best
results) in the UCI-Repository, Synthetic and all the datasets

Distance UCI Synt. All

Euclidean 4 6 10
Euclidean with correlation 4 0 4
Manhattan 0 1 1
Manhattan with correlation 1 6 7
Chebychev 3 9 12
Chebychev with correlation 3 6 9
Bands 12 27 39

Number of datasets 19 49 68

Bands distance attains the best results in more than half of the datasets.

Table 3
Pairwise comparison of statistically significant differences between 1-NN classifiers
with different distances in the UCI-Repository datasets

Cheb C Cheb Manh C Manh Eucl C Eucl

Bands 6–11–2 8–9–2 9–9–1 10–8–1 6–10–3 7–10–2
Eucl 2–15–2 1–18–0 4–13–2 9–10–0 1–16–2
Eucl C 3–14–2 2–16–1 5–14–0 9–10–0
Manh 1–10–8 0–10–9 2–9–8
Manh C 0–13–6 2–12–5
Cheb 2–14–3

Each cell contains, respectively, the number of statistically significant wins, ties and
losses between the method in the row and the method in the column. Bands dis-
tance attains the best results.

Table 4
Pairwise comparison of statistically significant differences between 1-NN classifiers
with different distances in synthetic datasets

Cheb C Cheb Manh C Manh Eucl C Eucl

Bands 30–13–6 21–27–1 29–14–6 22–27–0 27–21–1 21–26–2
Eucl 22–18–9 1–47–1 21–20–8 5–44–0 13–28–8
Eucl C 19–23–7 7–26–16 21–22–6 9–27–13
Manh 20–20–9 0–45–4 21–19–9
Manh C 1–43–5 9–19–21
Cheb 21–19–9

Each cell contains the number of statistically significant wins, ties and losses
between the method in the row and the method in the column. Bands distance
attains the best results.

Table 2
Pairwise comparison of statistically significant differences between 1-NN classifiers
with different distances

Cheb C Cheb Manh C Manh Eucl C Eucl

Bands 36–24–8 29–36–3 38–23–7 32–35–1 33–31–4 28–36–4
Eucl 24–33–11 2–65–1 25–33–10 14–54–0 11–44–10
Eucl C 22–37–9 9–42–17 26–36–6 18–37–13
Manh 21–30–17 0–55–13 23–28–17
Manh C 1–56–11 11–31–26
Cheb 23–33–12

Each cell contains, respectively, the number of statistically significant wins, ties and
losses between the method in the row and the method in the column. Bands dis-
tance attains the best results.

Table 5
Results of the classifiers with UCI-Repository, Synthetic and all the datasets

Distance UCI (%) Synt. (%) All (%)

Euclidean 80.18 85.22 83.81
Euclidean with correlation 81.05 84.49 83.53
Manhattan 70.34 84.64 80.65
Manhattan with correlation 77.86 81.93 80.79
Chebychev 80.17 85.25 83.83
Chebychev with correlation 80.93 82.59 82.12
Bands 82.54 88.20 86.62

Bands distance attains very good results.
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Surprisingly, the bands distance does not obtain the best result
in any variant of the bands datasets. Often the best results are ob-
tained by distances that employ the correlation of the attributes
with the class, and the worst results are obtained by distances
without correlation. In spite of everything, the bands distance ob-
tains results near to the best ones. To explain the results with the
bands datasets we must take into account that in practice the
bands usually are nearly parallel to X axis, but having a small var-
iation because they are calculated based on a set of specific points
in the vicinity. In addition to this fact, sometimes there are more
close points of other classes that belong to neighbor bands. Espe-
cially we must take into account that correlated distances obtain
better results because the correlation detects the irrelevant feature
more accurately than the bands. So, an axis parallel band is the
most favorable situation to correlated distances. If the bands were
not axis parallel, the bands distance would continue identifying the
direction of the bands and would obtain similar results, but corre-
lated distances would suffer degradation until their results be sim-
ilar to the non-correlated distances. In this situation the distance
based on bands would attain the best results in all the variants.

4.2. Results with k-NN

Tables 8–10 show the pairwise comparison using the t-Stu-
dent’s test with the k-NN classifiers using the bands distance,
and the other methods. These tables show that k-NN method with
the bands distance exhibits a clearly superior behavior to A (k-NN),
B (e-ball) and D (e-ballk-NN), and is only frequently better than
methods C (k-NN Heur), E (e-ball Heur), F (e-ballk-NN Heur) and
F1 (e-ball1-NN Heur).

The high number of datasets where the k-NN method with
bands distance is significantly better or worse than C, E and F
methods, suggests that datasets where is better to employ one or
other kind of methods are different. So it would be possible to im-
prove the behavior of a classifier performing a previous evaluation
over the training set to determine the method that attains better
results.

Table 11 shows the mean accuracy of all the classifiers broken
down in UCI–Repository, Synthetic and ‘‘All datasets”. k-NN meth-
od with bands distance attains the best results in all the categories.
Table 12 shows the number of bases each classification method at-
tains the best results with the UCI-Repository, Synthetic and ‘‘All
datasets”. k-NN method with bands distance attains the best re-
sults in nearly half of the case bases, both overall and in the UCI-
Repository and synthetic sets. So, with no prior information about
the dataset, it is advisable to employ the k-NN method with bands
distance.

Table 132 shows the detailed results obtained in the UCI-Repos-
itory datasets by each classification method. We can underline that
k-NN with bands distance attains higher results than the other
methods in the case bases Tic–Tac–Toe (+14.51%) and Liver Disor-
der (+6.37%), and lower in Letter Recognition (�8.12%) and Glass
(�6.07%). In the UCI-Repository datasets, k-NN with bands distance
attains the best mean accuracy and the best results in nine of the
19 datasets (Tables 11 and 12).

The presence of irrelevant attributes affects in different degree
the mean accuracy of the k-NN methods with bands distance,
depending on the specific case base. So, for example, in the Led 7
and Led 24 datasets the presence of 17 irrelevant features clearly
affect the results. But, in the Waveform-21 and Waveform-40 the
19 irrelevant features almost do not affect the results. To sum up
we can indicate that if the case base has irrelevant features it is



Table 7
Results of the 1-NN method with the basics measures of distance and the bands distance with the UCI-Repository datasets

Eucl (%) Eucl C (%) Manh (%) Manh C (%) Cheb (%) Cheb C (%) Bands (%)

IR 95.33 96.00 96.00 94.67 94.00 94.67 96.67
WI 94.94 96.07 94.94 92.70 95.51 96.63 98.31
PI 69.92 70.83 68.36 70.57 69.53 68.36 72.79+
GL 70.09 68.69 66.82 65.89 73.36 72.90 67.29
CL 52.48 54.13 50.83 55.12 52.48 56.44 57.43+
GD 96.70 96.40 64.60� 73.30� 96.30 95.10� 85.90�
SN 87.02 88.94 79.33� 84.62 86.54 87.50 88.46
LD 61.74 60.00 57.97 57.39 61.16 60.00 66.38
ZO 96.04 74.26� 91.09� 96.04 97.03 96.04
TT 75.57 74.84 56.37� 76.51 75.57% 76.72 98.64+
L7 60.02 60.00 59.88� 60.00 60.02 60.00 59.92
L24 48.98 63.08+ 10.20� 62.98+ 48.98 63.08+ 53.92+
W21 77.06 76.22 76.38 74.78� 76.62 75.86 85.16+
W40 73.24 77.82+ 68.04� 75.70+ 73.22 76.98+ 83.52+
SO 100.00 97.87 53.19� 97.87 100.00 97.87 100.00
F1 73.55 73.64 73.26 73.73 73.64 73.55 74.77+
F2 95.50 95.40 95.40 95.40 95.50 95.31 95.97
F3 99.25 99.34 99.16 99.34 99.25 99.34 99.34
LR 96.02 93.65� 91.55� 77.72� 95.49� 90.32� 87.82�

‘‘þ”/‘‘�” represents statistically significant improvement/degradation over the Euclidean distance according to a paired two-tailored t-test at a 95% confidence level.

Table 9
Pairwise comparison of statistically significant differences between classifiers in the
UCI-Repository datasets

F1 F E D C B A

Bands 4–12–3 3–13–3 5–11–3 3–13–3 3–14–2 4–12–3 5–12–2
A 0–16–3 0–16–3 0–16–3 0–16–3 1–17–1 1–15–3
B 0–19–0 0–19–0 0–19–0 0–18–1 3–15–1
C 1–14–4 1–14–4 1–14–4 1–14–4
D 0–19–0 0–19–0 0–19–0
E 0–19–0 0–19–0
F 0–19–0

Each cell contains, respectively, the number of statistically significant wins, ties and
losses between the method in the row and the method in the column. k-NN with
the bands distance is on a statistical significant level with D, F and F1 methods.
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advisable to employ a previous method to remove them, and pre-
vent their negative effect over the performance of the classifier.

As regards the synthetic datasets, k-NN with the bands distance
attains the best overall results (Tables 11 and 12) with outstanding
results in the Gauss, all the rings (with constant radius and area),
and most of the sines datasets. It was predictable worse results
in all the squares datasets, but it obtains the best results in the uni-
form 2 � 2 squares.

Again, the bands distance does not obtain the best results in any
variant of the bands datasets. Methods that employ the heuristics
and weight the relevance of each attribute by its correlation with
the class are in the first positions: C (k-NN Heur), E (e-ball Heur)
and F (e-ballk-NN Heur). In spite of everything, k-NN with the bands
distance attains to improve the results of the methods that do not
employ correlation: a (k-NN), B (e-ball) and D (e-ballk-NN). The rea-
sons of these results with the bands datasets were previously dis-
cussed in Section 4.1. We must take into account that an axis
parallel band is the most favorable situation to correlated
distances.

5. Conclusions and future work

In this work we have proposed a new distance measure, bands
distance, that could be employed in classification problems in con-
junction with a classification method. We have made tests with
1-NN and k-NN methods with this new distance. We have studied
its utility and have made an exhaustive comparison in 68 datasets
employing six basic distances of the Geometry.

The new distance measure has been revealed very useful. When
employing the 1-NN method, bands distance attains the highest
Table 8
Pairwise comparison of statistically significant differences between classifiers

F1 F E

Bands 16–39–13 15–40–13 17–38–13
A 0–53–15 0–53–15 0–53–15
B 2–55–11 2–55–11 2–55–11
C 3–58–7 3–58–7 3–58–7
D 2–55–11 2–55–11 2–55–11
E 0–68–0 0–68–0
F 0–68–0

Each cell contains, respectively, the number of statistically significant wins, ties and los
bands distance significantly improve the methods C, E, F, and F1 slightly, and very frequ
mean accuracy and the best results in most of the datasets. When
employing k-NN method, bands distance attains good results,
although they are quite irregular. In some domains the improve-
ment is quite important, even increasing the accuracy in Tic–
Tac–Toe almost 15% with k-NN and 22% with 1-NN. In some UCI-
Repository domains, she suffers a quite important degradation.

With synthetic datasets, the bands distance attains the best re-
sults in all the variants of the rings with constant area and radius,
and tends to attain good results with sinus datasets. With squares
and horizontal bands the results are average. It was predictable
worse results in the squares datasets, but it is especially surprising
the results with the horizontal bands. We have analyzed the causes
of this behavior, where an axis parallel band is the most favorable
situation to the correlated distances. If the dataset has irrelevant
features, it seems particularly important to employ some method
D C B A

23–39–6 14–43–11 25–37–6 27–36–5
0–63–5 1–53–14 1–62–5
0–67–1 6–48–14
14–47–7

ses between the method in the row and the method in the column. k-NN with the
ently the other methods.



Table 10
Pairwise comparison of statistically significant differences between classifiers in synthetic datasets

F1 F E D C B A

Bands 12–27–10 12–27–10 12–27–10 20–26–3 11–29–9 21–25–3 22–24–3
A 0–37–12 0–37–12 0–37–12 0–47–2 0–36–13 0–47–2
B 2–36–11 2–36–11 2–36–11 0–49–0 3–33–13
C 2–44–3 2–44–3 2–44–3 13–33–3
D 2–36–11 2–36–11 2–36–11
E 0–49–0 0–49–0
F 0–49–0

Each cell contains, respectively, the number of statistically significant wins, ties and losses between the method in the row and the method in the column. k-NN with the
bands distance significantly improves C, E, F and F1 methods, and very frequently improve the others.

Table 13
k-NN method results with the UCI-Repository datasets

A (%) B (%) C (%) D (%) E (%) F (%) Bands

IR 96.00 96.00 96.00 96.00 96.00 96.00 96.00
WI 97.19 97.19 96.63 97.19 95.51 96.63 98.88
PI 75.39 73.31 76.30 73.31 75.52 75.52 76.30
GL 71.50 71.03 72.90 71.50 73.36 75.23 69.16
CL 57.10 58.42 58.09 58.42 57.43 57.43 58.09
GD 96.70 95.70 96.70 96.70 95.70 96.70 93.50
SN 87.02 87.02 88.94 87.98 90.87 90.38 87.50
LD 65.22 63.48 65.22 65.51 63.48 65.51 71.88þ
ZO 96.04 96.04 97.03 97.03 96.04 97.03 96.04
TT 84.24 82.57� 78.18� 84.24 80.90 80.90 98.75þ
L7 74.48 74.36 74.48 74.36 74.36 74.36 74.48
L24 72.34 73.80þ 73.74þ 73.80þ 73.52þ 73.52þ 70.14�
W21 85.42 85.04 85.42 85.04 85.04 85.04 86.64þ
W40 84.54 84.62 85.40 84.62 84.46 84.46 85.86þ
SO 100.00 100.00 100.00 100.00 100.00 100.00 100.00
F1 80.68 82.93þ 80.58 82.93þ 82.93þ 82.93þ 81.05þ
F2 96.34 96.62 96.25 96.62 96.62 96.62 96.44
F3 99.44 99.53 99.44 99.53 99.53 99.53 99.44
LR 96.02 96.42þ 96.02 96.42þ 96.42þ 96.42þ 88.30�

‘‘+”/‘‘�” represents statistically significant improvement/degradation over A (k-NN
basic method) according to a paired two-tailored t-test at a 95% confidence level.

Table 12
Number of datasets where each classifier attains the best results with the UCI–
Repository, Synthetic and all the datasets

Code Classifier UCI Synt. All

A k-NN 4 4 8
B e–ball 8 9 17
C k-NN Heur 6 12 18
D e–ballk-NN 10 9 19
E e–ball Heur 7 11 18
F e–ballk-NN Heur 9 11 20
Bands k-NN Bands distance 9 24 33

Number of datasets 19 49 68

Table 11
Results of the classifiers with UCI–Repository, Synthetic and all the datasets

Classifier UCI (%) Synt. (%) All (%)

A k-NN 85.03 85.89 85.65
B e-ball 84.95 86.06 85.75
C k-NN Heur 85.12 88.14 87.30
D e-ballk-NN 85.33 86.09 85.88
E e-ball Heur 85.14 88.11 87.29
F e-ballk-NN Heur 85.48 88.13 87.39
Bands k-NN Bands distance 85.70 88.83 87.96

k-NN with the bands distance attains the best results in all the sections.
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to previously eliminate them, and make subsequently the proper
classification.

The value of the e parameter that controls the locality of the
method must be big enough to include the information of the sur-
roundings of the point, but not too large, where it is affected by fur-
ther points, outliers or points of other groups. We have employed
the same e value with all the datasets, but it is possible to employ
different values in different points or areas of the space. This part is
closely connected with clustering, and it is out of the scope of
this work, so we consider it as a line of future work. Here it is pos-
sible to employ known clustering techniques to determine the size
of the cloud where the point is placed, and choose an appropriate e
value.

It is remarkable that now we have much more knowledge than
raw points, and we could try to extract information from the
hyperplane that each point has learned. This knowledge could af-
fect a subset of points or all the dataset points. When lots of points
correspond to a pattern, this behavior could be interpreted in a glo-
bal way, and, for example, we could propose the projection of these
bands to a perpendicular hyperplane to reduce dimensionality.
This feature selection could be understood as a coordinate trans-
formation. It is also possible to identify situations where points lo-
cally ‘‘draw” a circumference or an arc, and then propose a
conversion to the polar coordinates selecting as center the curva-
ture center of the figure. In any case, the original problem is trans-
formed into another one equivalent, but easier to solve and
frequently easier to understand too.

It is interesting to employ the bands learned by the points to ex-
tract information about the case base. We could retain some points
together with its bands, and employ this information in classifica-
tion tasks. We could try different approaches to select the points
that must be kept. For example, we could retain the most represen-
tative points, or some points of each cloud, or frontier points,. . .In
this way, it is possible to reduce the amount of stored information
to do classification tasks. A different approach consists in learning
big bands, in such a way that it will retain information about every
‘‘important” band or cloud of points. We would learn higher level
information, and forget specific points. A third approach could be
a hierarchical classification: we could learn these metabands or
‘‘big bands” and retain information about specific points. When a
new point must be classified and is far away from metabands, or
some points ‘‘see” it at a similar distance, we can employ then spe-
cific points to classify it.
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Appendix A. adjust multiH minimization using the Lagrangian-
constrained minimization method

To use the bands distance in classification tasks, we suggested
that you should learn the direction of the band of each known
point that better fits its vicinity. In Section 2.2 we recommended
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that you should find the hyperplane H (or the equivalent vector
v ¼ H?) that minimizes adjust multiH . We have defined the multi-
class adjustment of a hyperplane v ¼ H? as (Eq. 4):

adjust multiHðp; PÞ ¼
X
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where F 2 Rþ0 , n is the number of attributes, E¼ðp; eÞ is the set of
points of the same class that p, E6¼ðp; eÞ is the set of points of other
classes, pj is the jth attribute of p, xij is the jth attribute of xi, and
vj ¼ cos aj is the jth director cosine of H.

P
xi2E¼ðp;eÞ only collects

information from points of the class of p, and
P

xi2E6¼ðp;eÞ from other
classes.

adjust multiH minimization could be tackled as a constrained
optimization problem using the Lagrange multipliers method to
obtain a more straightforward solution. In this way we could turn
the original problem into solving a system of n + 1 equations, easier
to solve. In some datasets the number of attributes, and accord-
ingly n, could be high. So, we have employed a numerical method
of approximation to the solution in the experiments.

In general, given two functions f ðx1; x2; . . . ; xnÞ and
gðx1; x2; . . . ; xnÞ with first partial derivatives, if we want to find
the points of the surface given by gðx1; x2; . . . ; xnÞ ¼ 0, that mini-
mizes or maximizes the value of the function f ðx1; x2; . . . ; xnÞ, we
can use the Lagrangian-constrained minimization method. Func-
tion gðx1; x2; . . . ; xnÞ behaves as a restriction, and according to the
Lagrange multipliers theorem, the point p, where the maximum
or minimum is placed, simultaneously must satisfy the equations

g x1; x2; . . . ; xnð Þ ¼ 0
of x1; x2; . . . ; xnð Þ

ox1
¼ k

og x1; x2; . . . ; xnð Þ
ox1

of x1; x2; . . . ; xnð Þ
ox2

¼ k
og x1; x2; . . . ; xnð Þ

ox2

..

.

of x1; x2; . . . ; xnð Þ
oxn

¼ k
og x1; x2; . . . ; xnð Þ

oxn

with some scalar k. After solving this system of nþ 1 equations and
nþ 1 variables (x1; x2; . . . ; xn and k), the function f could be evalu-
ated in each solution point to check if a maximum or minimum is
reached.

We want to find the hyperplane H that minimizes adjust multiH ,
and we can face the problem finding the vector v ¼ H? that mini-
mizes adjust multiH . So we must minimize the function
adjust multiH with the constraint

Pn
i¼1v2

i ¼ 1 because v ¼ H? must
be a unitary vector perpendicular to the hyperplane H, i.e., its com-
ponents are the director cosines of H. We must find the values
v1; v2; . . . ; vn and k that solve the following set of equations:

Xn

i¼1

v2
i � 1 ¼ 0

oadjust multiH v1; v2; . . . ; vnð Þ
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o
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i¼1v2
i � 1

ov1
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o
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i � 1

ov2

..

.

oadjust multiH v1; v2; . . . ; vnð Þ
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¼ k
o
Pn

i¼1v2
i � 1

ovn
If we calculate partial derivatives with respect to vk, we obtain

o
Pn

i¼1v2
i � 1

ovk
¼ o
Pn

i¼1v2
i

ovk
¼
Xn

i¼1

ov2
i

ovk
¼ ov2

k

ovk
¼ 2vk

and

oadjust multiH v1; v2; . . . ; vnð Þ
ovk

¼
o
P

xi2E¼ðp;eÞ
Pn
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We can rewrite the previous expression as:

oadjust multiH v1; v2; . . . ; vnð Þ
ovk

¼

2
Xn

j¼1

X
xi2P

Fclass xið Þ xij � pj

� �
xik � pkð Þe�

4
e2
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� �
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where now we do not distinguish points of the class of p from
points of other classes, P is the set of points, and the function
Fclass xið Þ is defined as:

Fclass xið Þ ¼
1 if class xið Þ ¼ classðpÞ
�F otherwise

�

So, replacing the value of the partial derivatives in the previous sys-
tem of equations and simplifying we obtain:

Xn

i¼1

v2
i � 1 ¼ 0

Xn
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X
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� �
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Xn
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X
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� �
xi2 � p2ð Þe�

4
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4
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4
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So, the original minimization problem of the function adjust multiH

in n-dimensional space has been converted into solving a system of
nþ 1 equations and nþ 1 variables.
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