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a b s t r a c t

A theoretical method has been considered to determine the suitable form of the glass–crystal

transformation function, and to calculate the kinetic parameters by using differential scanning

calorimetry data, obtained from experiments carried out under non-isothermal regime. It is an integral

method, which is based on a transformation rate independent of the thermal history and expressed as

the product of two separable functions of absolute temperature and the volume fraction transformed.

Considering the same temperatures for the different heating rates, one obtains a constant value for

temperature integral, and therefore a plot of a function of the volume fraction transformed versus the

reciprocal of the heating rate leads to a straight line with an intercept of zero, if the reaction mechanism

is correctly chosen. Besides, by using the first mean value theorem to approach the temperature integral,

one obtains a relationship between a function of the temperature and other function of the volume

fraction transformed. The logarithmic form of the quoted relationships leads to a straight line, whose

slope and intercept allow to obtain the activation energy and the frequency factor, respectively. The

theoretical method has been applied to the crystallization kinetics of the Ge0.13Sb0.23Se0.64 glassy alloy

and it has been found that the kinetic model of normal grain growth is most suitable to describe the

crystallization of the quoted alloy. The values obtained for the activation energy, E, and the logarithm of

the frequency factor, K0, have been 188.3 kJ mol�1 and 36.7 (K0 in s�1), respectively. The phases at which

the alloy crystallizes after the thermal process have been identified by X-ray diffraction. The

diffractogram of the transformed material suggests the presence of microcrystallites of Sb2Se3 and

GeSe, remaining in a residual amorphous matrix.

& 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The glass–crystal transformation has been studied intensively
by the researchers of the last six decades, especially since Duwez
et al. [1] published their introduction to the preparation of glassy
alloys by quenching technique. These materials have received
great attention in the past 50 years due to their unique isotropic,
structural and chemical properties [2,3]. An understanding of the
kinetics of crystallization in glasses is important for the
manufacturing of glass–ceramics and in preventing devitrifica-
tion. Differential scanning calorimetry (DSC) is valuable for the
quantitative study of crystallization in different glassy systems.
This study of crystallization kinetics has been widely discussed in
the literature [4–7] during the last half century. Thus, it is well-
known that the theoretical basis for interpreting DSC results is
provided by the formal theory of transformation kinetics as
developed by Johnson–Mehl–Avrami (JMA) [8–10], which is a
completely general theory and which has been originally derived
for non-isothermal conditions as well as for isothermal. In the
case of isothermal crystallization with nucleation frequency and
growth rate independent of time, the JMA general expression can
be easily integrated, giving a straightforward equation. It should
be noted, however, that the quoted equation strictly applies only
to isothermal experiments [11]. Nevertheless, many authors have
used the above-mentioned equation to derive expressions
describing non-isothermal transformations [12,13]. This fact
shows an incomplete understanding of the formal theory of
transformation kinetics, as Henderson has suggested in a notable
work [14].

In this work, a theoretical method is considered to determine
the most adequate form of the transformation function, e(x), and
to calculate the kinetic parameters: activation energy and
frequency factor, by using DSC data obtained from experiments
carried out with different heating rates. The quoted method
assumes that the reaction rate depends only on the volume
fraction transformed and temperature, and that these variables
are independent ones [15,16]. In addition, the present work
applies the above-mentioned method to the analysis of the
crystallization kinetics of the Ge0.13Sb0.23Se0.64 glassy semicon-
ductor and the results obtained reveal that the quoted crystal-
lization does not fulfil correctly the JMA model. However, it seems
that the kinetic model of normal grain growth, Rn, is the most
adequate to describe the crystallization of the glass studied.
2. Theoretical background

The main finality of the kinetic analysis of a glass–crystal
transformation under non-isothermal regime is the determination
of the corresponding parameters: activation energy, E, kinetic
exponent, n, and frequency factor, K0, in addition to the analytical
form of the transformation function e(x). It is well-known that
the methods used to evaluate the quoted parameters are usually
classified as differential and integral methods [15]. Both types of
methods may be classified further as being based on data acquired
Table 1
Theoretical kinetic model equations considered

Model e(x)

Johnson–Mehl–Avrami (JMA) n(1�x)[�ln(1�x)](n�1)/n

Three-dimensional diffusion 3/2[(1�x)�1/3
�1]�1

Mampel unimolecular law, n ¼ 1 1�x

Normal grain growth (1�x)n
for one or more heating rates. It is considered that an integral
method based on data recorded for various heating rates could
give results which are more reliable and less affected by errors,
since the quoted method evaluates the whole experimental data
set and it is based on the primary experimentally acquired data,
x and T. The integral method proposed in this work assumes, as in
most solid-state transformations, that the reaction rate, dx/dt, for
thermal treatments under non-isothermal regime can be ex-
pressed as a product of two separable functions of absolute
temperature, T, and the volume fraction transformed, x [16]

dx=dt ¼ KðTÞf ðxÞ (1)

where K(T) is the reaction rate constant and e(x) a function of x

and reflects the mechanism of transformation.
Some authors [17] introduce two further requirements: that

e(x) is independent of the heating rate, b, and that the
temperature dependence of the reaction rate constant, K, is
exponential, Arrhenius type, K(T) ¼ K0 exp(�E/RT), which allows
to calculate the activation energy.

In accordance with the literature [15], by integrating Eq. (1)
with the usual change of the variable time into temperature, one
obtains

Frs ¼

Z xs

xr

dx

f ðxÞ
¼

1

b

Z Ts

Tr

KðTÞdT ¼
1

b
Irs (2)

where xr, xs are two different degrees of conversion, Tr, Ts are their
corresponding temperatures, and it is considered a heating rate
b ¼ dT/dt.

It should be noted that by means of Eq. (2) different values of
F(x) function are obtained from the same temperature intervals
using DSC scans at different heating rates. Consequently, it is
assumed that the kinetic parameters are independent of the
crystallized volume fraction and that the values obtained for the
quoted parameters are just the averages over the transformation.
Once the above considerations are assumed, for two selected
temperatures Tr and Ts, one can determine pairs of values of x, i.e.,
(xr1, xs1), (xr2, xs2),y for the experimental data at different heating
rates. From these pairs and using various kinetic model functions,
such as those given in Table 1, the values of Frs1, Frs2,y can be
calculated according to Eq. (2). As the temperatures Tr and Ts are
the same for all the experiments, considering again Eq. (2), it
follows that Irs is constant, and therefore the plots of the values of
Frs versus 1/b have to lead to a straight line with an intercept of
zero, if the analytical form of e(x) is correctly chosen. The
procedure may be repeated for other pairs of temperatures and,
consequently, other straight lines will be obtained for the correct
form of e(x), by using the best correlation coefficient to choose
the suitable kinetic model function. Nevertheless, it is well-known
that for the crystallization of glassy alloys, the experimental DSC
data are generally analyzed with the framework of formal theory
of nucleation and growth, and then the mostly used expression of
e(x) is the JMA equation [8–10] (Table 1) with n called kinetic
exponent.
F(x) Label

[�ln(1�x)]1/n An

1�(2/3)x�(1�x)2/3 D

�ln(1�x) R1

[1�(1�x)1�n]/(1�n) Rn
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Fig. 1. Normalized y(x) and z(x) functions obtained from the theoretical JMA model

with kinetic exponent, n ¼ 2.5. The broken lines show the theoretical xq and xp

values corresponding to the quoted model.
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2.1. Applicability of the JMA equation under non-isothermal regime

The JMA equation was originally adapted to analyze isothermal
DSC data. Henderson [5,14] and De Bruijin et al. [6] have shown
that the validity of the quoted equation can be extended in non-
isothermal regime if the entire nucleation process takes place
during the early stages of the transformation, and it becomes
negligible afterward. This case has been referred to as ‘‘site
saturation’’ in the literature [18]. Thus, it seems necessary to
develop a simple and reliable method to test the applicability of
the JMA equation. In this sense, we define the functions y(x) and
z(x) that can be easily obtained by a simple transformation of
experimental data. The quoted functions are proportional to the
e(x) and f ðxÞFðxÞ ¼ f ðxÞ

R x
0 dx0=f ðx0Þ functions, respectively, which

are invariant with respect to the experimental variables.
When the continuous heating regime is used, it is necessary to

define y(x) ¼ (DHc)(dx/dt)exp(E/RT), with DHc the total enthalpy
change associated with the transformation, and considering
Eq. (1), one obtains

yðxÞ ¼ A1f ðxÞ (3)

where A1 ¼ (DHc) K0 is a constant.
In the case of z(x) function, by using the substitution u0 ¼ E/RT0,

the temperature integral
R T

T0
KðT 0ÞdT 0, Eq. (2), is transformed in an

exponential integral of order two, which can be expressed, in
accordance with the literature [19], by an alternating series, and
Eq. (2) in the interval of transformed volume fraction (0px0px)
becomes

FðxÞ ¼
K0E

bR

e�u0

u02

X1
k¼0

ð�1Þkðkþ 1Þ!

u0k

" #u

u0

(4)

Given that T4T0 (T0 is the starting temperature) and, therefore,
u0 ¼ qu with q41, Eq. (4) can be expressed as

FðxÞ ¼
K0E

bR

e�u

u2

X1
k¼0

ð�1Þkðkþ 1Þ!

uk
ð1� Q Þ with

Q ¼
1

q2
e�ðq�1Þu

P1
k¼0ðð�1Þkðkþ 1Þ!Þ=qkukP1

k¼0ðð�1Þkðkþ 1Þ!Þ=uk
(5)

Bearing in mind that in most glass–crystal transformation
u ¼ E/RTb1, usually E/RTX25 [11] the exponential function
e�(q�1)u

51. Moreover, it should be noted that, in practice, the
quoted temperatures T and T0 do not differ by more than 5–10%, in
accordance with the literature [13] and it be verified that, in the
worse case (difference of 10%), the quotient of the series in the Q

function is approximately 1. Accordingly, the quoted Q function is
negligible in comparison with the unit, and Eq. (5) becomes

FðxÞ ¼
K0E

bR

e�u

u2

X1
k¼0

ð�1Þkðkþ 1Þ!

uk

¼
K0T

b
exp

�E

RT

� �� �
S

E

RT

� �
(6)

where the function S(E/RT) is defined as S(u) ¼ S(E/RT) ¼
(1/u)Sk ¼ 0

N [(�1)k(k+1)!/uk].
Next, we define the z(x) ¼ (DHc)T2(dx/dt) function and bearing

in mind Eqs. (1) and (6), one obtains

zðxÞ ¼ A2f ðxÞFðxÞ (7)

and considering again the assumption E/RTX25 [11], it is possible
to use only the first term of the series of Eq. (6), and the
approximation S (E/RT)ERT/E is sufficiently accurate. It should be
noted that A2 ¼ (DHc)bE/R is a constant.

From Eqs. (3) and (7) invariant with respect to the experi-
mental variables it can be obtained a reliable test of applicability
of the JMA model. Thus, considering for the quoted model the
corresponding f(x) function, given in Table 1, taking the derivative
of Eq. (3) with respect to x and equalling to zero the resulting
expression leads to

d½f ðxÞ�

dx

����
xq

¼ ½� lnð1� xqÞ�
ðn�1Þ=n �

n� 1

n
½� lnð1� xÞ��1=n ¼ 0 (8)

This equation allows to obtain an expression of xq, which
depends on the kinetic exponent

xq ¼ 0 for np1

xq ¼ 1� exp½�ðn� 1Þ=n� for n41
(9)

and gives a maximum value for the y(x) function.
In the case of the z(x) function, taking the derivative of Eq. (7)

with respect to x and setting the resulting expression equal to zero
yields

d½f ðxÞ�

dx

����
xp

FðxpÞ þ 1 ¼ 0 (10)

the condition that must be fulfilled by xp at the maximum of the
z(x) function.

Introducing into Eq. (10) the functions e(x), and F(x) ¼
R

0
xdx0/

f(x0), taken from the JMA model one obtains

lnð1� xpÞ ¼ �1; i:e:; xp ¼ 0:632 (11)

the value of the volume fraction transformed, which gives a
maximum value for the z(x) function. This value is a characteristic
of the quoted model, and, accordingly, it can be used as a simple
test of its applicability [16]. Both y(x) and z(x) functions are
usually normalized within the (0,1) range, as it is shown in Fig. 1
for the JMA model with kinetic exponent n ¼ 2.5.

2.2. Calculating kinetic parameters

Once by means of Eq. (2) it is possible to find the most
probable kinetic mechanism of the studied transformation, it is
necessary to calculate the values of the kinetic parameters E and
K0 [15]. Assuming an Arrhenian temperature dependence for K(T)
in Eq. (2), the simplest approach of Irs is to use the first mean value
theorem for definite integrals, obtainingZ Ts

Tr

exp
�E

RT

� �� �
dT ¼ ðTs � TrÞ exp

�E

RT̄

� �
(12)
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where T̄ belongs to the (Tr, Ts) range, and accordingly, the
logarithmic form of Eq. (2) can be written as

ln
b

Ts � Tr
¼ ln

K0

Frs
�

E

RT̄
(13)

For two selected volume fraction transformed xr and xs, one can
determine a pair of values of T, i.e., (Tri, Tsi) corresponding to each
bi value. The plot of ln[b/(Ts�Tr)] versus 1/T̄ leads to a straight line
whose slope, �E/R, and intercept, ln(K0/Frs), allow the calculation
of E and K0, respectively. The procedure may be repeated for other
pairs of transformed fraction and, consequently, other straight
lines are obtained.
3. Experimental details

The Ge0.13Sb0.23Se0.64 glassy alloy was prepared in our
laboratory in bulk form, by the standard melt quenching method.
The components of the quoted alloy, with a purity of 99.999%,
were pulverized to less than 64mm, mixed in adequate propor-
tions and introduced into a quartz ampoule. The content of the
quoted ampoule was sealed under a vacuum of 10�2 Pa, heated in
a rotating furnace at around 1225 K for 72 h and then quenched in
water with ice to avoid crystallization. The amorphous state of the
material was confirmed by a diffractometric X-ray scan in a
Siemens D500 diffractometer. The homogeneity and composition
of the samples were verified through scanning electron micro-
scopy (SEM) in a JEOL, scanning microscope JSM 820. The
calorimetric measurements were carried out in a Perkin-Elmer
DSC7 with an accuracy of 70.1 K. The samples weighing about
20 mg were crimped in aluminum pans, and scanned at room
temperature through their glass transition temperature, Tg, at
different heating rates of 2, 4, 8, 16, 32 and 64 K min�1. An empty
aluminum pan was used as reference, and in all cases, a constant
60 ml min�1 flow of nitrogen was maintained in order to provide a
constant thermal blanket within the DSC cell, thus eliminating
thermal gradients and ensuring the validity of the applied
calibration standard from sample-to-sample. The glass transition
temperature was considered as a temperature corresponding to
the inflection of the lambda-like trace on the DSC scan, as shown
in Fig. 2. With the aim of explaining clearly in this section whether
all the volume of glass crystallize or not, we have introduced in
this work a final section where the possible crystalline phases are
identified. The diffractogram of the crystallized material shows
the detected crystalline phases together with a residual amor-
Fig. 2. Typical DSC trace of Ge0.13Sb0.23Se0.64 glassy alloy at a heating rate of

32 K min�1. The hatched area shows the area between Ti and T.
phous matrix (see Section 5). Maybe this glassy remainder can
explain the observed deviation from the Avrami model of the
experimental data corresponding to the glass–crystal transforma-
tion of the Ge0.13Sb0.23Se0.64 glassy alloy.
4. Results

The typical DSC trace of Ge0.13Sb0.23Se0.64 semiconductor glass
obtained at b ¼ 32 K min�1 and plotted in Fig. 2 shows three
characteristic phenomena which are resolved in the temperature
region studied. The first one (T ¼ 493.3 K) corresponds to the glass
transition temperature, Tg, the second one (T ¼ 601.6 K) to the
extrapolated onset crystallization temperature, Tc, and the last one
(T ¼ 618.3 K) to the peak temperature of crystallization, Tp, of the
quoted semiconductor glass. It should be noted that the DSC data
for the different heating rates, quoted in Section 3, show values of
the quantities Tg, Tc and Tp which increase with increasing b, a
property which has been reported in the literature [4,20,21].

The analysis of the glass–crystal transformation kinetics of the
quoted semiconductor involves to know the experimental values
of the quantities, which are obtained from the thermograms
corresponding to the heating rates, quoted in Section 3. The values
of the mentioned quantities are given in Table 2, where Ti and Tp

are the temperatures at which transformation begins and that
corresponding to the maximum transformation rate, respectively,
and DT is the width of the peak of the DSC trace. The
crystallization enthalpy, DH, is also obtained for each of the
heating rates. The area limited by the peak of the DSC trace is
directly proportional to the total amount of crystallized material.
The volume fraction transformed, x, at any temperature, T, is given
by x ¼ AT/A, where A is the total area limited by the exotherm of
the peak between the temperature, Ti, where the crystallization
just begins and the temperature, Tf, where the crystallization is
completed and AT is the area between the initial temperature and
a generic temperature T, (see Fig. 2). The quotients between the
ordinates of the peak of the DSC curve and the total area of the
same give the corresponding crystallization rates, which allow to
plot the curves of dx/dt versus T for the different heating rates
represented in Fig. 3. It should be noted that the values of the
quantity (dx/dt)|p increase in the same proportion as the heating
rates, a property which has been widely discussed in the literature
[20,21].

4.1. Glass–crystal transformation

The developed theory in preceding sections has been applied to
the glass–crystal transformation of the Ge0.13Sb0.23Se0.64 glassy
semiconductor. Accordingly, to choose the most adequate kinetic
mechanism, we show in Table 3 the temperatures Tr, Ts and the
corresponding volume fractions transformed, at the different
heating rates quoted in Section 3. With the help of the functions of
Table 1 and by using the least squares method, Table 4 was
Table 2
Characteristic temperatures and enthalpies of the crystallization processes of the

Ge0.13Sb0.23Se0.64 alloy

Quantity Experimental value, b(K min�1)

2 4 8 16 32 64

Tg (K) 474.0 478.0 481.3 494.2 495.3 499.2

Ti (K) 558.7 564.5 570.9 576.5 584.4 599.7

Tp (K) 581.1 588.0 597.5 607.7 618.3 631.3

DT (K) 42.2 43.0 47.5 50.1 60.2 56.7

DH (mJ mg�1) 32.0 29.8 30.7 25.7 31.9 26.4
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Table 3
Volume fraction transformed corresponding to various temperatures Tr, Ts at

different heating rates

T(K) b (K min�1)

2 4 8 16 32 64

586 0.78292 0.38514 0.09168 0.00427 – –

592 0.95280 0.67019 0.26311 0.03484 0.00438 –

602 – 0.97180 0.70939 0.26672 0.04969 0.00022

608 – – 0.90830 0.53357 0.14471 0.00901

Table 4
Correlation coefficients corresponding to kinetic mechanisms of Table 1 for the

Ge0.13Sb0.23Se0.64 glassy alloy

Mechanism label Tr ¼ 586 K Tr ¼ 592 K Tr ¼ 602 K

Ts ¼ 592 K Ts ¼ 602 K Ts ¼ 608 K

A2 0.9639 0.9734 0.9699

A3 0.8252 0.8653 0.8384

D 0.9874 0.9825 0.9730

R1 0.9073 0.9007 0.9140

R2.2 0.9916 0.9877 0.9866

Table 5
Temperatures corresponding to various volume fractions transformed x at different

heating rates

x b (K min�1)

2 4 8 16 32 64

0.1 570.4 577.8 586.4 596.4 605.7 618.3

0.4 578.2 586.3 595.1 605.3 616.1 628.7

0.8 586.5 595.1 604.3 614.2 626.4 639.5

0.9 589.4 598.2 607.7 617.4 630.6 643.8

Fig. 4. Plots of normalized y(x) and z(x) functions obtained from experimental data

corresponding to the non-isothermal glass–crystal transformation of the

Ge0.13Sb0.23Se0.64 alloy.

Fig. 3. Crystallization rate versus temperature of the exothermal peaks at different

heating rates.
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obtained, where the correlation coefficients for each plot of Frs

versus 1/b are given. The quoted coefficients are calculated for the
straight lines which pass through the computed points (1/b, Frs)
and the origin of the axes, because as it has been already
mentioned, the intercept of the plot has to be zero. It should be
noted that the best correlation coefficients are obtained for the
kinetic model Rn with n ¼ 2.2 in accordance with Table 4. The
same result was obtained for all cases which, for the sake of
simplicity, are not listed in this work. Next, to calculate the kinetic
parameters E and K0, we have chosen the volume fractions
transformed and the corresponding temperatures for each b,
which are given in Table 5. According to Eq. (13), the plots of ln[b/
(Ts�Tr)] versus 1/T̄ lead to straight lines whose slopes and
intercepts provide the mean values: E ¼ 188.3 kJ mol�1 and
ln K0 ¼ 36.7 (K0 in s�1), respectively.

On the other hand, we have used the applicability test of the
JMA model considering the functions: y(x)p(dx/dt)exp(E/RT) and
z(x)pT2(dx/dt). The quoted normalized functions corresponding
to experimental data of the Ge0.13Sb0.23Se0.64 alloy are shown in
Fig. 4, which reveals that the quoted model is not fulfilled by the
crystallization of the mentioned alloy. It should be noted that the
quoted functions show maximum values xq ¼ 0.2882 and
xp ¼ 0.5206, according to Fig. 4. These x values are notably
different from the corresponding to the JMA model, xp ¼ 0.6321
and xq ¼ 0.4204, in accordance with Eq. (9) and n ¼ 2.2. These
results seem to confirm again that the kinetic model of normal
grain growth, Rn, is the most suitable to describe the crystal-
lization of the alloy studied. In this point, it is interesting to
denote that, according to the literature [22], the driving force of
grain growth is a force which minimizes the grain boundary
energy and which leads to a reduction of the total surface area of
the grains. The above-mentioned energy strongly depends on the
relative crystal orientation of grains on both sides of the boundary
[23,24]. Due to the idea of a strong orientation dependence of the
grain boundary energy, there will be a remarkable difference in
the properties of grain aggregates as compared with many other
cellular structures [25]. It should be noted that, most existing
theories on this subject have not considered the crystal orienta-
tion effect on grain growth; although during the last two decades
some authors [26] have included in their works the crystal
orientation dependence of grain boundary energy. The quoted
authors have found that the orientation effect does not essentially
modify the growth law while it makes the distribution functions
for grain sizes and for the number of grain sides broader. They
have claimed that the broadness of distribution functions comes
from the wetting phenomena of low-energy grain boundaries.
Moreover, in accordance with the literature [27], other important
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Fig. 5. (A) Diffractogram of the Ge0.13Sb0.23Se0.64 glassy alloy. (B) Diffraction peaks of crystallized alloy in DSC.
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idea is to consider that the mean size of the grains grows
proportionally to t1/2.

With the aim to explain the probable physical nature of the
obtained mechanism, normal grain growth, for the glass–crystal
transformation of the Ge0.13Sb0.23Se0.64 alloy, we assume the
above-mentioned ideas as the essential basis of the quoted
physical nature. Thus, it is possible to consider, according to the
literature [28], that the grain growth process, probably elapses
with accelerating rate. Accordingly, this process is non-linear and
the crystal growth rate, u, must depend explicitly on time. This
dependence can be expressed as a power law in accordance with
the literature [28–30].

Besides, it is interesting to compare the described mechanism
in the present work with mechanisms of crystallization of
other glasses. In this sense, we have found a large similarity
between the quoted mechanism and the crystallization
mechanism of the Ag0.16As0.42Se0.42 glassy semiconductor,
described by us in our paper in press [31]. In the article
in press a theoretical method has been developed bearing in
mind-oriented nucleation and oriented growth processes.
These processes are non-linear and the corresponding rates
must depend explicitly on time. In the case of the normal
grain growth mechanism obtained in this work, two
essential ideas have been already assumed: the crystal orientation
effect on grain growth and that the mean size of the grains grows
proportionally to t1/2. Bearing in mind the quoted ideas it is
possible to consider the kinetic model of normal grain growth,
obtained for the Ge0.13Sb0.23Se0.64 alloy, as a particular case of the
theoretical method developed in the article of the Ref. [31].
5. Identification of the crystalline phases

Taking into account the crystallization exothermal peaks
shown by the Ge0.13Sb0.23Se0.64 glassy alloy, it is recommended
to try to identify the possible phases that crystallize during the
thermal treatment applied to the samples by means of adequate
XRD measurements. For this purpose, in Fig. 5 we show the most
relevant portions of the diffractograms for the as-quenched glass
and for the material submitted to the thermal process. Fig. 5A has
broad humps characteristic of the amorphous phase of the
starting material at diffraction angles (2y) between 201 and 601.
The diffractogram of the transformed material after the crystal-
lization process (Fig. 5B) suggests the presence of microcrystal-
lites of Sb2Se3 and GeSe indicated with K and J, respectively,
remaining a residual amorphous matrix. The Sb2Se3 phase found
crystallizes in the orthorhombic system [32] with a unit cell
defined by a ¼ 11.633, b ¼ 11.780 and c ¼ 3.895 Å.
6. Conclusions

An integral method has been considered to determine the
reaction mechanism model and to calculate the kinetic parameters
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by using DSC data, obtained from non-isothermal processes. The
assumptions and approximations on which the quoted method is
based are the following:
(i)
 It is assumed that the glass–crystal transformation rate
depends on two independent variables: the volume fraction
transformed, x, and the temperature, T.
(ii)
 It is supposed that over adequate ranges of x and b values, the
analytical forms of e(x) and K(T) functions do not change,
and consequently the transformation kinetics does not
change.
(iii)
 The temperature dependence obeys the Arrhenius relation-
ship.
(iv)
 It is carried out the approximation of taking T̄ used to
calculate the temperature integral, as the average of the
considered temperature interval.
The analysis of the kinetic mechanism is based on assumptions
(i) and (ii), whilst the calculation of the kinetic parameters may be
performed only if the three assumptions and the approximation
quoted before, are used together.

The theoretical method considered has been applied to the
crystallization kinetics of the Ge0.13Sb0.23Se0.64 glassy alloy.
According to the study carried out, it is possible to establish that
the kinetic model of normal grain growth with n ¼ 2.2 is the most
suitable to describe the crystallization of the material analyzed.
The results obtained for the kinetic parameters: E ¼ 188.3 kJ
mol�1 and ln K0 ¼ 36.7 are in good agreement with the corre-
sponding values given in the literature for similar alloys. This fact
confirms the reliability of the method considered.

Finally, the identification of the crystalline phases has been
made by recording the X-ray diffraction pattern of the trans-
formed material. This pattern shows the existence of microcrys-
tallites of Sb2Se3 and GeSe in a residual amorphous matrix.
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[16] J. Málek, Thermochim. Acta 267 (1995) 61.
[17] J.W. Graydon, S.J. Thorpe, D.W. Kirk, Acta Metall. 42 (1994) 3163.
[18] J.W. Cahn, Acta Metall. 4 (1956) 572 (Acta Metall. 4 (1956) 449).
[19] J. Vázquez, C. Wagner, P. Villares, R. Jiménez-Garay, Acta Mater. 44 (1996) 4807.
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