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This paper presents a procedure to solve the convex ordered median problem where the distances are
measured with �p-norms. In order to do that, we consider an approximated problem and develop an
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1. Introduction

Location analysis is one of the most active fields in Operations
Research; in fact, many different models have been developed in
the last decades to deal with different real world situations. No-
tice that a very important aspect of a location model is the correct
choice of the objective function and in most classical location mod-
els the objective function is the main differentiator. The median ob-
jective is to minimize the sum of the weighted distances from the
clients to the server. The center objective is to minimize the max-
imum weighted distance from a client to the server. The cent-dian
objective is a convex combination of the median and center objec-
tives; it aims to keep both the average cost behavior as well as the
highest cost in balance. Despite the fact that all three objectives (and
some more) are frequently encountered in the literature (see for ex-
ample [1]), not much has been done in the direction of a unified
framework for handling all of these objectives.

The increasing need for location models to better fit different real
situations, has made it necessary to develop new and flexible lo-
cation models. To that end, [2] introduced a new type of objective
function that generalizes the most popular objective functions men-
tioned above. This objective function, called ordered median func-
tion, applies a penalty to the weighted distance from a client to the
server, which is dependent on the position of that weighted distance
in the vector of all weighted distances from the clients to the server.
For example, a different penalty might be applied to a client if the
weighted distance to the server is in the 5th-position rather than
in the 2nd-position. It is even possible to neglect some customers
by assigning a zero penalty. This adds a “sorting”-problem to the
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underlying facility location problem, making formulation and solu-
tion much more challenging.

In the last years, these flexible objective functions have attracted
the attention of researchers. Puerto and Fernández [2,3] studied char-
acterizations of the solution set for the general formulations. For the
planar case with polyhedral gauges, [4] develops a polynomial time
algorithm and [5] applies these models to semiobnoxious location
problems. In network location problems, efforts have been devoted
to obtaining finite dominating sets and efficient algorithms to solve
this kind of problems [6–10]. Recently, the discrete versions of these
models have also been studied in [11–14]. Research in this area also
led to a recent monograph; see [15].

However, in continuous location theory, these models have only
dealt with smooth norms in [16] for the Euclidean case. In this pa-
per, we will consider these formulations when the distances are
measured with �p-norms. Notice that the measurement of the dis-
tances with �p-norms better fits to some real world situations (see
[17,18]). In particular, we will restrict ourselves to convex ordered
median problems and p ∈ [1, 2], similarly to other published studies
for the median problem, e.g. [19–24]. (Although we can find some
papers in the literature dealing with the median problem for p >2,
the solution procedure developed in those papers does not guaran-
tee a global convergence to an optimal solution; see [25,26].) For this
type of problems, we will develop an iterative procedure based on a
modified gradient descent method. Observe that this methodology
is complex because the objective function does not have a common
expression as sum of the weighted distances from the clients to the
server; in fact, it is pointwise defined. On the other hand, this pro-
cedure is very robust because we provide a common tool to solve
different classical models, for instance, median problems, center
problems, cent-dian problems, among others and new ones that can
be modelled under this formulation. Moreover, we are also providing
a method to solve well-known models for which currently no reso-
lution method has been published, such as the k-centrum problem.

http://www.sciencedirect.com/science/journal/cor
http://www.elsevier.com/locate/cor
mailto:antonio.rodriguezchia@uca.es


I. Espejo et al. / Computers & Operations Research 36 (2009) 2250 -- 2262 2251

The paper is organized as follows. In the next section, we present
the convex ordered median problem when the distances are mea-
sured with �p-norms. In Section 3, we introduce the approximated
ordered median problem through the hyperbolic approximation. In
Section 4, we develop a procedure for solving this problem. The pro-
posed algorithm and the convergence to the optimal solution are
given in Section 5. The paper ends with some computational results
and conclusions.

2. The model

In this section we present the convex ordered median problem
where the distances are measured with an �p-norm. Consider the
set of demand points in the plane A = {a1, . . . , aM} and two sets of
non-negative scalars � := {�1, . . . ,�M} and � := {�1, . . . ,�M}, where
�1� · · · ��M (as we will see later, this condition on the �-weights
provides the convexity property of the ordered median function).
The elements �i are weights corresponding to the importance given
to the existing facilities ai, i ∈ {1, . . . ,M} and the elements of � allow
one to choose among different kinds of objective functions. Given a
permutation � of {1, . . . ,M} verifying
��1‖x − a�1‖p� · · · ���M‖x − a�M‖p,
where ‖ · ‖p denotes the �p-norm, we define

d(i)(x) := ��i‖x − a�i‖p.
Notice that the order of the sequence depends on the point x.

The convex ordered median problem is given by the following
formulation:

min
x∈R2

F(x) =
M∑
i=1

�id(i)(x). (1)

For different choices of � we obtain different types of objec-
tive functions that include the classical location problems as me-
dian problems (� = (1, 1, . . . , 1)), center problems (� = (0, 0, . . . , 0, 1)),
�-cent-dian problems (� = (�,�, . . . ,�, 1) for 0 <� <1) and k centrum

problems (� = (0, . . . , 0,

k︷ ︸︸ ︷
1, . . . , 1)). Moreover, as already mentioned in

the Introduction, new useful objective functions can easily be mod-
elled under this formulation. For example, when locating a distri-
bution center of perishable goods where the goal is for the longer
distances and the total travel distance to be as small as possible, we
might consider the following � vector, � = (1, 2, . . . ,M).

We can also see that this objective function is pointwise de-
fined. This means that the objective function has different explicit
expressions as sum of the weighted distances to the demand points,
depending on the order of the sequence of the weighted distances.

Example 2.1. Consider two demand points a1 = (4, 1) and a2 = (1, 0).
For p = 1.5, �1 = �2 = 1 and �1 = 1, �2 = 2, we have that F(x) has
two different expressions as sum of the weighted distances at the
points xq = (2.8, 0.4) and xq+1 = (2.24, 0.32) (see Fig. 1).

Indeed, since �1‖xq − a1‖p = 1.47 <1.92 = �2‖xq − a2‖p we get

F(xq) = �1 · �1‖x − a1‖p + �2 · �2‖x − a2‖p
= ‖(2.8, 0.4) − (4, 1)‖1.5 + 2 · ‖(2.8, 0.4) − (1, 0)‖1.5
= 5.32.

Moreover, since �1‖xq+1−a1‖p=2.036 >1.341= �2‖xq+1 − a2‖p we
get

F(xq+1) = �2 · �1‖xq+1 − a1‖p + �1 · �2‖xq+1 − a2‖p
= 2 · ‖(2.24, 0.32) − (4, 1)‖1.5 + ‖(2.24, 0.32) − (1, 0)‖1.5
= 5.41.

Fig. 1. Bisector of a1 and a2.

In addition, since the �-weights are given in non-decreasing order,
we obtain a reformulation for F(x) (see [4]):

F(x) = max
�∈P(M)

F�(x),

where P(M) stands for the set of permutations of {1, . . . ,M} and
F�(x)=

∑M
i=1 �i��i‖x−a�i‖p. Hence, since F�(x) is a convex function

for each � ∈ P(M), F(x) is also convex (observe that �1� · · · ��M is
also a necessary condition for the convexity of F�(x), see [15,27]).

In order to obtain a better understanding of the ordered median
problem, we give some definitions. (For further details the reader is
referred to [15].)

Definition 2.1. Given ai, aj ∈ A, the bisector of ai and aj with respect

to ‖ ·‖p is defined as the set Bp(ai, aj)={x ∈ R2 : �i‖x−ai‖p =�j‖x−
aj‖p}.

Definition 2.2. Given � ∈ P(M), the ordered region O� is defined by

O� = {x ∈ R2 : ��1‖x − a�1‖p� · · · ���M‖x − a�M‖p}.

As an illustration of Definitions 2.1 and 2.2 we can see the bisector
line for the points a1 and a2 with p=1.5 in Fig. 1 (note that Bp(ai, aj)=
Bp(aj, ai)). Moreover, this bisector divides the plane into two ordered
regions O(1,2) and O(2,1). Observe that the ordered regions are not
necessarily convex.

The importance of the ordered regions is that the ordered median
objective function behaves like a classical median objective function
in these regions (F(x) = F�(x) for all x ∈ O� and � ∈ P(M)).

In what follows, we denote the interior of a set S by int(S).

3. The approximated ordered median problem

The solution procedure that we propose in this paper is based
on a modified version of the gradient descent method. However,
since the objective function of Problem (1) is not differentiable at the
demand points (nor in the bisector lines), we will use the so-called
hyperbolic approximation (see [20,21,23,28]).
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Consider h� : R2 → R2 given by h�(v)T := (h�,1(v),h�,2(v)) and

h�,j(v) := (v2j + �2)1/2, for j = 1, 2 and � >0 fixed. Problem (1) is then

approximated by

min
x∈R2

F�(x) :=
M∑
i=1

�id
�
(i)(x), (2)

where d�(i)(x)=�	i
‖h�(x−a	i

)‖p (weighted approximated distances)

for some 	 ∈ P(M) such that

�	1
‖h�(x − a	1

)‖p� · · · ��	M
‖h�(x − a	M

)‖p.

Since ‖h�(x−a	i
)‖p is strictly convex (see [23]), and �1� · · · ��M ,

we have that F�(x) is the maximum of strictly convex functions, and
consequently it is also strictly convex. Thus, Problem (2) has a unique
optimal solution.

We define the approximated bisector of ai and aj as

B�
p(ai, aj) = {x ∈ R2 : �i‖h�(x − ai)‖p = �j‖h�(x − aj)‖p}.

For a given 	 ∈ P(M), the approximated ordered region is

O�
	 = {x ∈ R2 : �	1

‖h�(x − a	1
)‖p� · · · ��	M

‖h�(x − a	M
)‖p}

and F�,	(x) :=
∑M

i=1 �i�	i
‖h�(x − a	i

)‖p. Observe that F�(x) = F�,	(x)

for any x ∈ O�
	 with 	 ∈ P(M). The error caused by replacing the

ordered median problem with the approximated problem can be
bounded as the following result shows.

Lemma 3.1. The following property is satisfied for any x ∈ R2

|F�(x) − F(x)|�
⎛
⎝ M∑
i=1

wi

⎞
⎠�M 21/p �1/2.

Proof. Given �,	 ∈ P(M), let �−1,	−1 ∈ P(M) be such that

F(x) =
M∑
i=1

�i��i ‖x − a�i‖p =
M∑
i=1

��−1
(i)

�i ‖x − ai‖p,

F�(x) =
M∑
i=1

�i�	i
‖h�(x − a	i

)‖p =
M∑
i=1

�
	−1
(i)

�i ‖h�(x − ai)‖p.

Moreover, we have that (see [22] for further details)

‖h�(x − ai)‖p − ‖x − ai‖p�21/p�1/2.

Therefore, since �1� · · · ��M , we get

|F�(x) − F(x)|�
M∑
i=1

|�
	−1
(i)

�i ‖h�(x − ai)‖p − ��−1
(i)

�i ‖x − ai‖p|

�

⎛
⎝ M∑
i=1

wi

⎞
⎠�M 21/p �1/2. �

We now analyze the case that x∗ is the optimal solution for Prob-
lem (2) and x∗ ∈ int(O�

	) for some 	 ∈ P(M). (Observe that the

optimal solution of Problem (2) does not necessarily belong to the
interior of an approximated ordered region.) Since F�(x) is differen-
tiable for x ∈ int(O�

	), x
∗ must satisfy ∇F�(x∗)=0. The jth component,

∇jF�(x), of the gradient vector ∇F�(x) for x ∈ int(O�
	) is

∇j F�(x) =
M∑
i=1

�i · �	i
· ‖h�(x − a	i

)‖1−p
p · hp−2

�,j (x − a	i
)

× (xj − a	i ,j
), j = 1, 2.

Setting these partial derivatives equal to zero and isolating the n
components of the optimal solution x∗ yields

x∗
j =

∑M
i=1 �i�	i

· ‖h�(x∗ − a	i
)‖1−p

p · hp−2
�,j (x∗ − a	i

) · a	i ,j∑M
i=1 �i�	i

· ‖h�(x∗ − a	i
)‖1−p

p · hp−2
�,j (x∗ − a	i

)

j = 1, 2.

The equations above suggest the following point iterative
scheme:

xq+1
j =

∑M
i=1 �i�	i

· ‖h�(xq − a	i
)‖1−p

p · hp−2
�,j (xq − a	i

) · a	i ,j∑M
i=1 �i�	i

· ‖h�(xq − a	i
)‖1−p

p · hp−2
�,j (xq − a	i

)

j = 1, 2, (3)

where the superscript q = 0, 1, 2, . . . , indicates the iteration number.
Notice that xq+1 is well defined for any xq ∈ R2, even in the

case that x∗ /∈ int(O�
	) for some 	 ∈ P(M) (obviously, in this case

∇F�(x∗) is not defined). Our goal in this paper is to develop a solution
procedure for Problem (2) using the expression above.

Remark 3.1. This iterative scheme has an expression similar to the
hyperbolic approximation Weiszfeld algorithm for the median prob-
lem (see [20]). However, the assignment of the �-weights to the de-
mand points is not fixed but depends on the ordered region to which
xq belongs. Indeed, this procedure does not guarantee that xq+1 ∈ O�

	
whenever xq ∈ int(O�

	) (see Example 4.1).

On the other hand, for xq ∈ int (O�
	), expression (3) can be rewrit-

ten as a modified gradient method, since

xq+1
j = xqj − D	

j (x
q), j = 1, 2, (4)

where

D	
j (x

q) = C−1
	,j (x

q) · ∇j F�,	(x
q),

∇j F�,	(x
q) =

M∑
i=1

�i · �	i
· ‖h�(xq − a	i

)‖1−p
p · hp−2

�,j (xq − a	i
)

× (xqj − a	i ,j
),

C	,j(x
q) =

M∑
i=1

�i · �	i
· ‖h�(xq − a	i

)‖1−p
p · hp−2

�,j (xq − a	i
). (5)

Observe that C	,j(x
q) >0 for j = 1, 2. Moreover, the index 	 in the

expressions above can be omitted, since in the case xq ∈ int(O�
	)

it is implicitly given by xq. However, the index 	 has been kept to
be consistent with the notation in the next sections for those cases
where xq does not belong to int(O�

	) for any 	 ∈ P(M).

4. Iterative procedure

In this section, we present a new iterative procedure to solve
Problem (2). In order to do that, we will generate a sequence {xq}q∈N

such that F�(xq+1) < F�(xq), for q�1. Since for xq ∈ int(O�
	) the itera-

tive scheme given by (4) may generate xq+1 such that xq+1 /∈O�
	, the

descent property ensured by the Weiszfeld algorithm for the median
problem might not be satisfied.

Example 4.1. Consider Example 2.1, i.e., a1 = (4, 1) and a2 = (1, 0)
are the demand points, p = 1.5, �1 = �2 = 1 and �1 = 1, �2 = 2.
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For xq = (2.8, 0.4) and � = 0.001, we have that �1‖h�(xq − a1)‖p =
1.47 <1.92 = �2‖h�(xq − a2)‖p, then, xq ∈ int(O�

(1,2)).

Hence, using (4), we get that xq+1 = (2.24, 0.32). We can check
that �1‖h�(xq+1 − a1)‖p = 2.036 >1.341 = �2‖h�(xq+1 − a2)‖p, or
equivalently, xq+1 ∈ int(O�

(2,1)). Thus, this is an example where xq ∈
int(O�

(1,2)) and xq+1 /∈O�
(1,2) (see Fig. 1).

Moreover, F�(xq)= 5.32 <5.41= F�(xq+1). Therefore, the iterative
scheme given by (4) does not guarantee the descent property.

In the following, our goal will be to propose a procedure that
allows us to obtain a sequence of points with decreasing objective
value. In order to do that, we distinguish between the cases xq in the
interior and xq on the boundary of an approximated ordered region.

4.1. xq in the interior of an approximated ordered region

Let xq be in the interior of an approximated ordered region O�
	

with 	 ∈ P(M), that is,

�	1
‖h�(xq − a	1

)‖p < · · · <�	M
‖h�(xq − a	M

)‖p.

In order to develop an iterative scheme that generates a sequence
with decreasing objective value, we propose a modification of ex-
pression (4) by introducing the stepsize K(xq) as follows:

xq+1
j = xqj − K(xq) · D	

j (x
q), j = 1, 2.

The following technical results allow us to define K(xq) such that
xq+1 ∈ O�

	 for xq ∈ int(O�
	).

Let dp(x, S) be the infimal distance function from a point x to the
set S measured with a �p-norm, that is,

dp(x, S) = inf{‖x − y‖p : y ∈ S}.

Lemma 4.1. For any ai, aj ∈ A, y ∈ B�
p(ai, aj) and x ∈ R2 we have that

‖h�(x − y)‖p�
|�i‖h�(x − ai)‖p − �j‖h�(x − aj)‖p|

�i + �j
.

Proof. Applying the triangular inequality we obtain that

�i‖h�(x − y)‖p��i‖h�(x − ai)‖p − �i‖h�(y − ai)‖p,
∀x, y, ai ∈ R2.

Moreover, since y ∈ B�
p(ai, aj), then �i‖h�(y−ai)‖p=�j‖h�(y−aj)‖p.

Thus,

�i‖h�(x − y)‖p��i‖h�(x − ai)‖p − �j‖h�(y − aj)‖p.
Again, applying the triangular inequality we have that

�i‖h�(x − y)‖p��i‖h�(x − ai)‖p − �j‖h�(y − x)‖p
− �j‖h�(x − aj)‖p,

or equivalently

‖h�(x − y)‖p�
�i‖h�(x − ai)‖p − �j‖h�(x − aj)‖p

�i + �j
,

∀x ∈ R2, y ∈ B�
p(ai, aj).

Analogously, interchanging ai and aj we have that

‖h�(x − y)‖p�
�j‖h�(x − aj)‖p − �i‖h�(x − ai)‖p

�i + �j
,

∀x ∈ R2, y ∈ B�
p(ai, aj)

and the result follows. �

Corollary 4.1. For any ai, aj ∈ A, B�
p(ai, aj) satisfies that

dp(x,B�
p(ai, aj))�

|�i‖h�(x − ai)‖p − �j‖h�(x − aj)‖p|
�i + �j

− 21/p�1/2, ∀x ∈ R2.

Proof. First, by [22] we have that ‖h�(x− y)‖p − ‖x− y‖p�21/p�1/2.
Therefore, applying Lemma 4.1, we obtain that

‖x − y‖p�
|�i‖h�(x − ai)‖p − �j‖h�(x − aj)‖p|

�i + �j
− 21/p�1/2,

∀y ∈ B�
p(ai, aj), ∀x ∈ R2,

and the result follows. �

Notice that this lower bound makes sense if it is positive. Now,
we will analyze the case where x ∈ int(O�

	), for some 	 ∈ P(M), and

�	t+1
‖h�(x − a	t+1

)‖p − �	t
‖h�(x − a	t

)‖p
�	t+1

+ �	t

− 21/p�1/2 >0,

∀t ∈ {1, . . . ,M − 1}. (6)

After that, we will study the case where t ∈ {1, . . . ,M−1} exists such
that condition (6) does not hold.

4.1.1. Condition (6) is fulfilled
Corollary 4.1 allows us to obtain a lower bound of the distance

from any point x ∈ R2 to any approximated bisector line defined
by two demand points. We will use this lower bound to obtain an
iterative scheme providing new iterates in the same ordered region
as the previous ones.

Given x ∈ int(O�
	), for some 	 ∈ P(M) and satisfying (6), we

consider the following algorithmic map 
	(x) = (
	,1(x),
	,2(x)),

with iterates given by xq+1 = 
	(x
q), where


	,j(x
q) = xqj − K(xq) · D	

j (x
q), j = 1, 2 (7)

with D	(xq) = (D	
1 (x

q),D	
2 (x

q)) defined by (5) and

K(xq) = min

⎧⎨
⎩1,

1

‖D	(xq)‖p

× min
t∈{1,.. .,M−1}

⎧⎨
⎩

�	t+1
‖h�(xq−a	t+1

)‖p−�	t
‖h�(xq−a	t

)‖p

�	t+1
+ �	t

−21/p�1/2
⎫⎬
⎭

⎫⎬
⎭ .

The expression that defines K(xq) is justified by the following lem-
mas.

Lemma 4.2. If xq ∈ int(O�
	) verifies (6), then xq+1 ∈ O�

	.

Proof. By definition of xq+1 and Corollary 4.1, we have the following
inequalities:

‖xq+1 − xq‖p�
|�	t+1

‖h�(xq − a	t+1
)‖p − �	t

‖h�(xq − a	t
)‖p|

�	t+1
+ �	t

− 21/p�1/2�dp(xq,B�
p(a	t

, a	t+1
)),

for any t ∈ {1, . . . ,M − 1}. Therefore, xq+1 ∈ O�
	. �

Lemma 4.3. If xq ∈ int(O�
	) verifies (6) and ∇ F�,	(x

q)�0, then

F�(xq+1) < F�(xq), ∀q�1.



2254 I. Espejo et al. / Computers & Operations Research 36 (2009) 2250 -- 2262

Proof. By Lemma 4.2, we have that xq,xq+1 ∈ O�
	, then F�(xq) =

F�,	(x
q) and F�(xq+1) = F�,	(x

q+1).

Depending on the value of K(xq) we distinguish two cases. If
K(xq)=1, then xq+1 is given by the classical iteration of theWeiszfeld
algorithm for the hyperbolic approximation function F�,	(·) and in

[20] it is proven that F�,	(x
q+1) < F�,	(x

q).

If K(xq)�1, we have that xq+1 is obtained by a modified gradient
method with stepsize lower than the Weiszfeld algorithm for the
function F�,	(·). Hence, since the Weiszfeld algorithm gives a descent

sequence, by convexity arguments we have that F�,	(x
q+1) < F�,	(x

q).
�

Lemma 4.4. Let xq ∈ int(O�
	) and denote x∗ the optimal solution of

Problem (2).

(i) If 
	(x
q) = xq then xq = x∗.

(ii) If xq = x∗ then 
	(x
q) = x∗.

Proof. If 
	(x
q) = xq, by the definition of 
	(x

q) we have that

∇ F�,	(x
q)=∇ F�(xq)=0 and then xq = x∗. Conversely, if xq = x∗, since

F�(xq) is differentiable in the interior of an ordered region we have
that ∇ F�(xq) = 0. Therefore, by the definition of 
	(x

q) we obtain

that 
	(x
q) = xq and the result follows. �

4.1.2. Condition (6) is not fulfilled
First, we define

T(xq) = {t ∈ {1, . . . ,M − 1} : xq does not satisfy (6)}, (8)

and let


̂	,j(x
q) = xqj − K̂(xq)D	

j (x
q), j = 1, 2, (9)

where D	
j (x

q) is given by (5) and

K̂(xq) = min

⎧⎨
⎩1,

1

‖D	(xq)‖p

×min
t /∈T(xq)

⎧⎨
⎩

�	t+1
‖h�(xq − a	t+1

)‖p−�	t
‖h�(xq−a	t

)‖p

�	t+1
+�	t

−21/p�1/2
⎫⎬
⎭

⎫⎬
⎭ .

If 
̂	(x
q) ∈ O�

	, then we define xq+1 = 
̂	(x
q). Otherwise, we

define xq+1=xq	 as the intersection point closest to xq of the segment

[xq, 
̂	(x
q)] with some bisector B�

p(at , at+1) with t ∈ T(xq). Observe

that this point belongs to O�
	. In both cases, we have guaranteed

the descent property because the Weiszfeld algorithm provides a
descent sequence (whenever ∇F�,	(x

q)�0) and the function F�,	(·) is
convex. Notice that by similar arguments as the ones in the proof of
Lemma 4.4 we have that 
̂	(x

q)= xq if and only if xq = x∗, where x∗
denotes the optimal solution of Problem (2).

Example 4.2. Consider Example 2.1, which means, a1 = (4, 1) and
a2 = (1, 0) are the demand points, p=1.5, �1 =�2 =1 and �1 =1.11,
�2 = 1.12. For � = 0.001, xq = (2.65, 0.3) ∈ int(O�

(1,2)) does not satisfy
condition (6),

�2‖h�(x − a2)‖p − �1‖h�(x − a1)‖p
�1 + �2

− 21/p�1/2 = −0.02 <0.

Using (9), we get that 
̂(1,2)(x
q)=(2.58, 0.40) ∈ int(O�

(1,2)). Therefore,

xq+1 = 
̂(1,2)(x
q) and F�(xq+1) = 3.77 <3.79 = F�(xq) (see Fig. 2).

Fig. 2. 
̂(1,2)(xq) ∈ O�
(1,2) .

Fig. 3. 
̂(1,2)(xq) /∈O�
(1,2) .

We now consider the above example but �1 = 1 and �2 = 2.
In this case, using (9), we get that 
̂(1,2)(x

q) = (2.08, 0.25), that is,


̂(1,2)(x
q) ∈ int(O�

(2,1)) and F�(xq)=5.14 <5.60=F�(
̂(1,2)(x
q)). Hence,

xq+1 = (2.62, 0.30), the intersection point between B�
p(a1, a2) and the

segment [xq, 
̂(1,2)(x
q)] (see Fig. 3). Moreover, F�(xq+1)=5.10 <5.14=

F�(xq).

4.2. xq belongs to the boundary of an ordered region

In order to obtain a procedure that allows us to obtain a new point
xq+1, such that F�(xq+1) < F�(xq), we first analyze the case where xq

belongs to only one bisector and then, we will study the general case
where xq belongs to more than one bisector.
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4.2.1. xq belongs to one bisector
In this case, the vector of weighted approximated distances from

the demand points to xq satisfies

(i) �	s
‖h�(xq − a	s

)‖p = �	s+1
‖h�(xq − a	s+1

)‖p, for some s ∈
{1, . . . ,M − 1},

(ii) �	i
‖h�(xq − a	i

)‖p <�	i+1
‖h�(xq − a	i+1

)‖p, for any i�s, i ∈
{1, . . . ,M − 1},

for some 	(s)= (	1, . . . ,	M) ∈ P(M). Equivalently, xq ∈ O�
	(s) ∩O�

	′(s)
,

with 	′(s) = (	1, . . . ,	s−1,	s+1,	s,	s+2 . . . ,	M) ∈ P(M). Obviously,
we have two different expressions of the ordered median objective
function for xq, as sum of the weighted approximated distances:

F�,	(s)(x
q) =

M∑
i�s,s+1

�i�	i
‖h�(xq − a	i

)‖p

+ �s�	s
‖h�(xq − a	s

)‖p
+ �s+1�	s+1

‖h�(xq − a	s+1
)‖p,

F�,	′(s)(x
q) =

M∑
i�s,s+1

�i�	i
‖h�(xq − a	i

)‖p

+ �s�	s+1
‖h�(xq − a	s+1

)‖p
+ �s+1�	s

‖h�(xq − a	s
)‖p,

with F�,	(s)(x
q) = F�,	′(s)(x

q).

Now we analyze the case where xq satisfies condition (6) for all
t�s, t ∈ {1, . . . ,M − 1}. After that, we will study the case where some
t�s exists for which xq does not satisfy (6).

Condition (6) is fulfilled:
In order to give an expression of xq+1 we define 
	(s)(x

q) =
(
	(s),1(x

q),
	(s),2(x
q)) as


	(s),j(x
q) = xqj − Ks(xq) · D	(s)

j (xq), j = 1, 2,

where D	(s)
j (xq) was defined in (5) and

Ks(x) = min

⎧⎨
⎩1,

1
‖�(x)‖p

×min
t�s

⎧⎨
⎩

�	t+1
‖h�(x−a	t+1

)‖p−�	t
‖h�(x−a	t

)‖p

�	t+1
+�	t

−21/p�1/2
⎫⎬
⎭

⎫⎬
⎭ , (10)

with �(x) = (�1(x),�2(x)) such that

�j(x) = max{|D	(s)
j (xq)|, |D	′(s)

j (xq)|}, j = 1, 2. (11)

If 
	(s)(x
q) ∈ O�

	(s) we define xq+1 =
	(s)(x
q). If 
	(s)(x

q) /∈O�
	(s)

and 
	′(s)(x
q) ∈ O�

	′(s)
, then we define xq+1 = 
	′(s)(x

q). In or-

der to give an expression of xq+1 when 
	(s)(x
q) /∈O�

	(s) and


	′(s)(x
q) /∈O�

	′(s)
we define the function G�,s

� : R2 → R as follows:

G�,s
� (x) = (1 − �)F�,	(s)(x) + �F�,	′(s)(x).

Notice that G�,s
� (x)= F�(x) for any x ∈ B�

p(a	s
, a	s+1

) ∩ (O�
	(s) ∪O�

	′(s)
)

and � ∈ [0, 1]. Taking this into account, we define the following

Fig. 4. 
(1,2,3)(xq) ∈ O�
(1,2,3) .

algorithmic map �∗ ,s(x) = (�∗ ,s
1 (x),�∗ ,s

2 (x)), with iterates given

by xq+1 = �∗ ,s(xq), where

�∗ ,s
j (xq) = xqj − Ks(xq)Ds

�∗ ,j(x
q), j = 1, 2,

with Ks(xq) defined by (10),

Ds
�∗ ,j(x

q) := [(1 − �∗)C	(s),j(x
q) + �∗C	′(s),j(x

q)]−1

× [(1 − �∗)∇j F�,	(s)(x
q) + �∗∇j F�,	′(s)(x

q)],

j = 1, 2, (12)

and �∗ ∈ (0, 1) such that �∗ ,s(xq) ∈ B�
p(a	s

, a	s+1
) ∩ (O�

	(s) ∪ O�
	′(s)

).

The existence of such �∗ ∈ (0, 1) is proven by Lemmas A.1 and A.2
in Appendix A.

Therefore, if we define the function

�xq (�) := �	s
‖h�(�,s(xq) − a	s

)‖p
− �	s+1

‖h�(�,s(xq) − a	s+1
)‖p, (13)

then �∗ satisfies that �xq (�
∗) = 0.

We summarize the iterative schemewhen xq ∈ B�
p(a	s

, a	s+1
) and

condition (6) is fulfilled:

xq+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩


	(s)(x
q) if 
	(s)(x

q) ∈ O�
	(s),


	′(s)(x
q) if 
	(s)(x

q) /∈O�
	(s)

and 
	′(s)(x
q) ∈ O�

	′(s)
,

�∗ ,s(xq) otherwise.

(14)

Example 4.3. Consider three demand points, a1 = (4, 1), a2 = (1, 0)
and a3=(4.5, 0.5), with �1=�2=�3=1 and �1=1, �2=2 and �3=3.
For p=1.5, �=0.001 and xq = (2.62, 0.30), we get that xq ∈ B�

p(a1, a2).
We can check that 
(1,2,3)(x

q)=(2.65, 0.30) ∈ int(O�
(1,2,3)). Therefore,

xq+1 = 
(1,2,3)(x
q) and F�(xq+1) = 10.82 <10.88 = F�(xq) (see Fig. 4).

On the other hand, continuing with Example 4.2, for xq =
(2.62, 0.30) and � = 0.001, we have that xq ∈ B�

p(a1, a2). For �1 = 1
and �2 = 2, we can check that 
(1,2)(x

q) = (2.05, 0.25) ∈ int(O�
(2,1))

and 
(2,1)(x
q) = (3.05, 0.57) ∈ int(O�

(1,2)). In addition, F�(xq) =
5.10 <5.63 = F�(
(1,2)(x

q)) and F�(xq) = 5.10 <5.63 = F�(
(2,1)(x
q)).

Hence, using (14) we have that xq+1 = �∗ ,1(xq) = (2.56, 0.39) (see
Fig. 5). Moreover, F�(xq+1) = 5.07 <5.10 = F�(xq).

Lemma 4.5. The function ��∗ ,s(·) is continuous in a neighborhood of
xq, provided that ��xq (�

∗)/���0, where � is defined by (13).
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Fig. 5. 
(1,2)(xq) ∈ O�
(2,1) , 
(2,1)(xq) ∈ O�

(1,2) .

Proof. The function ��∗ ,s(xq) depends on �∗, where �∗ satisfies that
�xq (�

∗)=0 (that is, �∗ also depends on xq). We prove the continuity

of ��∗ ,s(·) using the Implicit Function Theorem.
By definition, the function �x(�) is continuous and differentiable

with respect to x, and ��xq (�
∗)/���0. Since the hypotheses of the

Implicit Function Theorem are satisfied, a continuous function, H(·),
exists in a neighborhood of xq, N(xq), such that �=H(x) and �x(H(x))=
0, ∀x ∈ N(xq), and the result follows. �

Lemma 4.6. Let xq ∈ B�
p(a	s

, a	s+1
) and xq /∈B�

p(a	t
, a	t+1

), ∀t�s. If
xq+1�xq, where xq+1 is given by (14), then F�(xq+1) < F�(xq), ∀q�1.

Proof. Let xq+1�xq be given by (14). If either xq+1 = 
	(s)(x
q) or

xq+1=
	′(s)(x
q), we can prove that F�(xq+1) < F�(xq) by using similar

arguments as the ones in Lemma 4.3. We analyze the case where
xq+1 = �∗ ,s(xq). Since xq and �∗ ,s(xq) belongs to B�

p(a	s
, a	s+1

) ∩
(O�

	(s) ∪ O�
	′(s)

), we have that

F�(xq) = G�∗ ,s
� (xq) and F�(�∗ ,s(xq)) = G�∗ ,s

� (�∗ ,s(xq)).

In addition, G�∗ ,s
� (xq) can be rewritten like a sum of weighted dis-

tances as follows:

G�∗ ,s
� (x) =

M∑
i=1

�i‖h�(x − a	i
)‖p,

where �s = �∗(�s + �s+1)�	s
, �s+1 = (1 − �∗)(�s + �s+1)�	s+1

and

�i = �i�	i
, for i = 1, . . . ,M, with i�s, s + 1. Hence, �∗ ,s(xq) is given

by the map defining the approximated Weiszfeld algorithm with
smaller stepsize applied to a sum of weighted approximated dis-
tances, G�∗ ,s

� , at xq (see [20]). Thus, G�∗ ,s
� (�∗ ,s(xq)) <G�∗ ,s

� (xq) and
the result follows. �

Lemma 4.7. Let xq ∈ B�
p(a	s

, a	s+1
) and denote x∗ the optimal solution

of Problem (2). If xq+1 is given by (14), we have that:

(i) If xq+1 = xq then xq = x∗.
(ii) If xq = x∗ then xq+1 = x∗.

Proof. Statements (i) and (ii) when xq+1 = 
	(s)(x
q) or xq+1 =


	′(s)(x
q) can be proven analogously to Lemma 4.4. Therefore we

focus the proof on the case where 
	′(s)(x
q) /∈O�

	′(s)
, 
	(s)(x

q) /∈O�
	(s)

and �∗ ,s(xq) = xq.
First, we prove that F�(xq) < F�(y) for any y(�xq) ∈ B�

p(a	s
, a	s+1

)∩
(O�

	(s) ∪O�
	′(s)

). Indeed, using that �∗ ,s(xq)= xq, by the definition of

�∗ ,s(xq), we have that ∇ G�∗ ,s
� (xq)= (0, 0). In addition, since G�∗ ,s

� (·)
is a strictly convex function (recall that G�,s

� (·) is the weighted sum of

approximated distances), we have that xq is the minimum of G�∗ ,s
� (·).

Moreover, G�∗ ,s
� (y) = F�(y) for any y ∈ B�

p(a	s
, a	s+1

) ∩ (O�
	(s) ∪

O�
	′(s)

). Therefore, F�(xq)=G�∗ ,s
� (xq) <G�∗ ,s

� (y)= F�(y) for any y(�xq) ∈
B�
p(a	s

, a	s+1
) ∩ (O�

	(s) ∪ O�
	′(s)

).

Second, we prove that F�,	(s)(x
q) < F�,	(s)(y), for all y(�x

q) ∈ O�
	(s).

Indeed, we have that: (1) the function F�,	(s)(y) increases when y

moves from xq along B�
p(a	s

, a	s+1
) within (O�

	(s) ∪ O�
	′(s)

) and (2)


	(s)(x
q) /∈O�

	(s). Therefore, by convexity arguments, no direction of

decrease exists in O�
	(s), that is, F�,	(s)(x

q) < F�,	(s)(y) for any y(�xq) ∈
O�
	(s). Analogously, we can obtain that F�,	′(s)(x

q) < F�,	′(s)(y) for all

y(�xq) ∈ O�
	′(s)

and the result follows.

For the statement (ii), if �∗ ,s(xq)=xq+1�xq we have proved that
F�(xq) > F�(xq+1), contradicting that x∗ is the optimal
solution. �

Condition (6) is not fulfilled:
Let xq ∈ B�

p(a	s
, a	s+1

) be such that it does not satisfy condition

(6) for some t ∈ {1, . . . ,M−1}, t�s, and T(xq) given by (8) (notice that
s ∈ T(xq)). We define 
̂	(s)(x

q) = (
̂	(s),1(x
q), 
̂	(s),2(x

q)) as


̂	(s),j(x
q) = xqj − K̂s(xq) · D	(s)

j (xq), j = 1, 2, (15)

where D	(s)
j (xq) was defined in (5) and

K̂s(x) = min

⎧⎨
⎩1,

1
‖�(x)‖p

× min
t /∈T(xq)

⎧⎨
⎩

�	t+1
‖h�(x−a	t+1

)‖p − �	t
‖h�(x−a	t

)‖p

�	t+1
+�	t

− 21/p�1/2
⎫⎬
⎭

⎫⎬
⎭ ,

and �(x) is given by (11).
Analogously, we define 
̂	′(s)(x

q). If 
̂	(s)(x
q) ∈ O�

	(s), we define

xq+1 = 
̂	(s)(x
q). If 
̂	(s)(x

q) /∈O�
	(s) and 
̂	′(s)(x

q) ∈ O�
	′(s)

, then we

define xq+1 = 
̂	′(s)(x
q). In order to give an expression of xq+1 when


̂	(s)(x
q) /∈O�

	(s) and 
̂	′(s)(x
q) /∈O�

	′(s)
, we define the following map

̂
�∗ ,s

(x) = (̂
�∗ ,s
1 (x), ̂

�∗ ,s
2 (x)), as

̂
�∗ ,s
j (xq) = xqj − K̂s(xq)Ds

�∗ ,j(x
q), j = 1, 2, (16)

where Ds
�∗ ,j(x

q) was given by (12) and �∗ satisfies that �xq (�
∗) = 0,

(see (13)). From Lemma A.2 in Appendix A, we have that ̂
�∗ ,s

(xq) ∈
B�
p(a	s

, a	s+1
) but we have not guaranteed that ̂

�∗ ,s
(xq) ∈ O�

	(s) ∪

O�
	′(s)

. If ̂
�∗ ,s

(xq) ∈ O�
	(s) ∪ O�

	′(s)
, we define xq+1 = ̂

�∗ ,s
(xq). If

̂
�∗ ,s

(xq) /∈O�
	(s) ∪ O�

	′(s)
, we define xq+1 = xq�∗ , where xq�∗ is the
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intersection point closest to xq of the segment [xq, ̂
�∗ ,s

(xq)] and a
bisector B�

p(at , at+1), for some t(�s) ∈ T(xq).
We summarize the iterative schemewhen xq ∈ B�

p(a	s
, a	s+1

) and

condition (6) is not fulfilled:

xq+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


̂	(s)(x
q) if 
̂	(s)(x

q) ∈ O�
	(s),


̂	′(s)(x
q) if 
̂	(s)(x

q) /∈O�
	(s)

and 
̂	′(s)(x
q) ∈ O�

	′(s)
,

̂
�∗ ,s

(xq) if 
̂	(s)(x
q) /∈O�

	(s), 
̂	′(s)(x
q) /∈O�

	′(s)

and ̂
�∗ ,s

(xq) ∈ O�
	(s) ∪ O�

	′(s)
,

xq�∗ otherwise.

(17)

In the first three cases, since xq+1 can be obtained by a modi-
fied gradient method with stepsize lower than the Weiszfeld algo-
rithm (analogously to Lemma 4.7), we have that F�(xq+1) < F�(xq). For
the last case, we now prove the descent property. Let xq+1 = xq�∗ . If
xq�∗ ∈ O�

	(s), by the descent property of Weiszfeld algorithm we have

that F�,	(s)(x
q)=G�∗ ,s

� (xq) >G�∗ ,s
� (̂

�∗ ,s
(xq))=F�,	(s)(̂

�∗ ,s
(xq)). Hence,

since xq�∗ belongs to the segment defined by xq and ̂
�∗ ,s

(xq), using

the strict convexity of F�,	(s)(·), we obtain that F�,	(s)(x
q) > F�,	(s)(x

q
�∗ ).

Therefore, since xq, xq�∗ ∈ O�
	(s)we have that F�(xq) > F�(x

q
�∗ ). Analo-

gously, we can obtain that F�(xq) > F�(x
q
�∗ ) when xq�∗ ∈ O�

	′(s)
.

Moreover, by using similar arguments as the ones in the proof
of Lemmas 4.4 and 4.7, we have that xq is the optimal solution of

Problem (2) when 
̂	(s)(x
q) = xq, 
̂	′(s)(x

q) = xq or ̂
�∗ ,s

(xq) = xq.

Observe that under conditions of Lemma 4.5 the function ̂
�∗ ,s

(·) is
also continuous in a neighborhood of xq.

Example 4.4. Consider three demand points a1=(4, 1), a2=(1, 0) and
a3 = (3,−0.5), p=1.5, �1 =�2 =�3 =1 and �1 =1, �2 =2 and �3 =5.
For xq=(2.28, 0.9) and �=0.001, we have that xq ∈ B�

p(a1, a2) and xq ∈
O�
(3,1,2) ∩O�

(3,2,1). In addition, xq satisfies condition (6) neither for a2

and a3 nor for a1 and a3. Using (15), we can verify that 
̂(3,1,2)(x
q)=

(1.97, 0.47) /∈O�
(3,1,2) and 
̂(3,2,1)(x

q) = (3.04, 0.82) /∈O�
(3,2,1). In this

case, using (16) we get that xq+1=̂
�∗ ,1

(xq)=(2.41, 0.66) ∈ O�
(3,1,2)∪

O�
(3,2,1) (see Fig. 6). Moreover, F�(xq+1) = 13.28 <13.91 = F�(xq).

Consider now the above example but �1 = 1.1, �2 = 1.2,
�3 = 1.3. For xq = (2.23, 1) and � = 0.001, we have that xq ∈
B�
p(a1, a2) and xq ∈ O�

(1,2,3) ∩ O�
(2,1,3). Moreover, xq satisfies

condition (6) neither for a2 and a3 nor for a1 and a3. Using
(15), we can verify that 
̂(1,2,3)(x

q) = (2.60, 0.93) /∈O�
(1,2,3) and


̂(2,1,3)(x
q) = (2.68, 0.93) /∈O�

(2,1,3). Hence, using (16) we have that

̂
�∗ ,1

(xq)=(2.29, 0.87) ∈ O�
(3,1,2), that is, ̂

�∗ ,1
(xq) /∈O�

(1,2,3)∪O�
(2,1,3).

Thus, xq+1 = (2.27, 0.91), where (2.27, 0.91) is the intersection point

between the segment [xq, ̂
�∗ ,1

(xq)] and bisector B�
p(a2, a3) (see

Fig. 7). Moreover, F�(xq+1) = 6.28 <6.48 = F�(xq).

4.2.2. xq belongs to more than one bisector
Finally, we study the case where xq belongs to k bisector lines

with k >1. For this case, the procedures developed in the previous
section may not give a point xq+1 with lower objective value. More-
over, since xq belongs to more than one bisector, we may have to

Fig. 6. ̂�∗ ,1(xq) ∈ O�
(3,1,2) ∪ O�

(3,2,1) .

Fig. 7. ̂�∗ ,1(xq) /∈O�
(1,2,3) ∪ O�

(2,1,3) .

deal simultaneously with many different ordered regions and the
search for a point xq+1 with lower objective function would be a
very difficult task. Therefore, in order to simplify the procedure, we
will first verify if xq is an optimal solution for Problem (2).

In order to check the optimality of xq, we compute �F�(xq) which
is given by (see [29])

�F�(xq) = co{∪∇F�,	(x
q) : 	 ∈ �(xq)},

where �(xq) := {	 ∈ P(M) : F�,	(x
q) = F�(xq)}.

Therefore, xq is the optimal solution of Problem (2) if and only if
(0, 0) ∈ co(

⋃
	∈�(xq) ∇F�,	(x

q)).

In the following, we analyze the case when xq is not the optimal
solution. Define the set S(xq) as follows:

S(xq) = {s ∈ {1, . . . ,M − 1} : �	s
‖h�(xq − a	s

)‖p
= �	s+1

‖h�(xq − a	s+1
)‖p}.

We will distinguish between xq satisfying condition (6) for all
t /∈ S(xq) and xq not satisfying (6), for some t /∈ S(xq).

Condition (6) is fulfilled:
For each 	 ∈ �(xq), we define 
S

	(x
q) = (
S

	,1(x
q),
S

	,2(x
q)) as


S
	,j(x

q) = xqj − KS(xq) · D	
j (x

q), j = 1, 2, (18)
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where D	
j (x

q) was defined in (5),

KS(xq) = min

⎧⎨
⎩1,

1
‖�S(xq)‖p

× min
t /∈S(xq)

⎧⎨
⎩

�	t+1
‖h�(xq − a	t+1

)‖p−�	t
‖h�(xq−a	t

)‖p

�	t+1
+�	t

−21/p�1/2
⎫⎬
⎭

⎫⎬
⎭ ,

and �S(xq) = (�S1(x
q),�S2(x

q)) is defined by

�Sj (x
q) = max

	∈�(xq)
{|C−1

	,j (x
q)∇jF�,	(x

q)|}, j = 1, 2. (19)

If some 	 ∈ �(xq) exists such that 
S
	(x

q) ∈ O�
	, we define xq+1 =


S
	(x

q), where 	 is the first found permutation with that condition. If


S
	(x

q) /∈O�
	, for all 	 ∈ �(xq), in order to give an expression of xq+1,

we consider a sufficiently small neighborhood of xq, N(xq). If 	 ∈
�(xq) exists such that the intersection point between the boundary
of N(xq) and the segment [xq,
S

	(x
q)] belongs to O�

	, we define xq+1

as this intersection point, denoted by xq	. Otherwise, since xq is not

an optimal solution, there exists a decrease direction in B�
p(as, as+1),

for some s ∈ S(xq). We compare the objective value for each of these
intersection points between the boundary of N(xq) and B�

p(as, as+1),

for any s ∈ S(xq). Define xq+1 as the intersection point with the
lowest objective value, denoted by xqs .

Condition (6) is not fulfilled:
Let T(xq) defined as (8). Notice that S(xq) ⊂ T(xq). For each 	 ∈

�(xq), we define the map 
̂S
	(x

q) = (
̂S
	,1(x

q), 
̂S
	,2(x

q)) as


̂S
	,j(x

q) = xqj − K̂S(xq) · D	
j (x

q), j = 1, 2, (20)

where D	
j (x

q) was defined in (5),

K̂S(xq) = min

⎧⎨
⎩1,

1
‖�S(xq)‖p

× min
t /∈T(xq)

⎧⎨
⎩

�	t+1
‖h�(x − a	t+1

)‖p−�	t
‖h�(x−a	t

)‖p

�	t+1
+�	t

−21/p�1/2
⎫⎬
⎭

⎫⎬
⎭ ,

and �(xq) is given by (19). If there exists some 	 ∈ �(xq) such that

̂S

	(x
q) ∈ O�

	, we define xq+1 = 
̂S
	(x

q). If 
̂S
	(x

q) /∈O�
	, for all 	 ∈

�(xq), we proceed like in the case satisfying (6).
Notice that by using similar arguments as the ones in the

proof of Lemmas 4.3 and 4.4, we have that F�(
S
	(x

q)) < F�(xq)

(F�(
̂S
	(x

q)) < F�(xq)) and xq coincides with the optimal solution

of Problem (2) if and only if 
S
	(x

q) = xq (
̂S
	(x

q) = xq), for some

	 ∈ �(xq).

5. The algorithm and properties

In this section we summarize the complete iterative scheme de-
fined in the previous section and we also study the convergence of
the proposed algorithm.

We give the expression of the algorithm depending on the relative
position of the current iteration, xq, with respect to the bisector lines
and ordered regions. In order to do that, we define the algorithmic

map T� : x → T�(x) as

xq+1 = T�(xq) =

⎧⎪⎨
⎪⎩
T�,1(xq) if |�(xq)| = 1,

T�,2(xq) if |�(xq)| = 2,

T�,3(xq) if |�(xq)| >2,
(21)

where

T�,1(x
q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


	(x
q) if xq satisfies (6),

∀t ∈ {1, . . . ,M − 1} (see (7)),


̂	(x
q) if xq does not satisfy (6), for some

t ∈ {1, . . . ,M − 1} and 
̂	(x
q) ∈ int(O�

	)

(see (9)),
xq	 otherwise (see the definition of xq	

in the paragraph above of
Example 4.2),

T�,2(x
q) =

{
T+
�,2(x

q) if xq satisfies (6), ∀t ∈ {1, . . . ,M − 1},
T−
�,2(x

q) otherwise,

with

T+
�,2(x

q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩


	(s)(x
q) if 
	(s)(x

q) ∈ O�
	(s),


	′(s)(x
q) if 
	(s)(x

q) /∈O�
	(s)

and 
	′(s)(x
q) ∈ O�

	′(s)
(see (14)),

�∗ ,s(xq) otherwise,

T−
�,2(x

q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


̂	(s)(x
q) if 
̂	(s)(x

q) ∈ O�
	(s),


̂	′(s)(x
q) if 
̂	(s)(x

q) /∈O�
	(s)

and 
̂	′(s)(x
q) ∈ O�

	′(s)
(see (17)),

̂
�∗ ,s

(xq) if 
̂	(s)(x
q) /∈O�

	(s), 
̂	′(s)(x
q) /∈O�

	′(s)

and ̂
�∗ ,s

(xq) ∈ O�
	(s) ∪ O�

	′(s)
,

xq�∗ otherwise

and

T�,3(x
q) =

{
T+
�,3(x

q) if xq satisfies (6), ∀t ∈ {1, . . . ,M − 1},
T−
�,3(x

q) otherwise,

where (see Section 4.2.2)

T+
�,3(x

q) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩


S
	(x

q) if 
S
	(x

q) ∈ O�
	

for some 	 ∈ �(xq) (see (18)),

xq	 if xq	 ∈ O�
	 for some 	 ∈ �(xq),

xqs otherwise,

T−
�,3(x

q) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩


̂S
	(x

q) if 
̂S
	(x

q) ∈ O�
	

for some 	 ∈ �(xq) (see (20)),

x̂q	 if xq	 ∈ O�
	 for some 	 ∈ �(xq),

x̂qs otherwise.

In the previous section, we have proved that the sequence {xq}q∈N

generated by (21) verifies the descent property. Moreover, xq+1 =xq

if and only if xq coincides with the optimal solution of Problem (2).
Taking into account these results, we give the following convergence
result.
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Theorem 5.1. The sequence {xq}q∈ N converges to the optimal solu-
tion of Problem (2) provided that ��xq (�

∗)/���0, where � was defined
by (13).

Proof. We can assume, without loss of generality, that T�(xq)�xq,
for any q, where T�(xq) was defined in (21). Otherwise, we would
have that the whole sequence converges to xq in a finite number of
steps.

Since the sequence {xq}q∈ N is bounded (see Lemma A.3
in Appendix A), by the Bolzano–Weierstrass Theorem, at least one
accumulation point exists. We will prove by contradiction that the
sequence contains a unique accumulation point. Let us assume that
the sequence {xq}q∈ N has two accumulation points p1�p2 and con-
sider a ball B1, centered at p1 such that p2 /∈B1. Thus, we can choose
a subsequence {xnk }k∈N verifying:

(i) {xnk } → p1.
(ii) xnk+1 = T�(xnk ) /∈B1, for all k�1.

Observe that this choice is possible because the non-existence of
this sequence would imply that p2 was not an accumulation point
different from p1.

In addition, in case p1 satisfies (6) we can choose xnk satisfying
(6), whereas in case p1 does not satisfy (6) we can choose xnk not
satisfying (6). Moreover, without loss of generality, we can choose
xnk , for k�1, verifying one of the following conditions depending
on the cases:

(a) xnk ∈ int(O�
	), if p1 ∈ int(O�

	) for some 	 ∈ P(M) or if xq ∈
int(O�

	), ∀q >N, for some N >0 and 	 ∈ �(p1).

(b) xnk ∈ O�
	 ∩O�

	′ , if xq ∈ O�
	 ∩O�

	′ , ∀q >N, for some N >0 and 	,	′ ∈
�(p1).

(c) xnk ∈ O�
	 ∩ O�

	′ and xnk+1 ∈ int(O�
	) (xnk+1 ∈ int(O�

	′ )), if xq ∈
int(O�

	) exists ∀N >0 and q >N and xq /∈ int(O�
	) ∀q >N for some

	,	′ ∈ P(M).
(d) xnk ∈ O�

	 ∩ O�
	′ and xnk+1 ∈ O�

	′′ ∩ O�
	′′′ , with 	,	′,	′′,	′′′ ∈

P(M), otherwise. (Observe that this case considers the sequence
{xq}q∈N such that xq ∈ O�

	q
∩ O�

	′
q
, with 	q,	

′
q ∈ P(M), ∀q >N,

and N >0. Hence, since the number of bisector lines is finite
there exist 	,	′,	′′,	′′′ ∈ P(M) (not necessarily all pairwise dif-
ferent) such that we can select a subsequence verifying this
condition.)

Notice that this choice of the subsequence {xnk } implies, when
xnk satisfies (6), that xnk+1 = 
	(x

nk ) for the cases (a) and (c) and

xnk+1 =�∗ ,s(xnk ) for the case (b), for all k�1. Analogously, we can
provide an expression of xnk+1 when xnk does not satisfy (6).

Moreover, the function T�(·) is continuous. For the cases (a) and
(c), the continuity follows from the definition of�	(·), and in the case

(b), by Lemma 4.5. In the case (d), xnk+1 is given by the intersection

of [xnk , ̂
�∗ ,s

(xnk )] and the bisector line given by O�
	′′ ∩O�

	′′′ . Hence,

since ̂
�∗ ,s

(xnk ) is a continuous function and the bisector line is
fixed, the function of xnk that defines this intersection point is also
continuous.

We prove the convergence only for xnk+1 = �∗ ,s(xnk ), for all
k�1. The remaining cases can be proven by using an argument
similar to this one.

Since �∗ ,s(·) is continuous, we get that

lim
k→∞

T�(xnk ) = lim
k→∞

�∗ ,s(xnk ) = �∗ ,s(p1) = T�(p1).

On the other hand, by hypothesis, {xnk+1}k�1={�∗ ,s(xnk )}k�1 does

not belong to B1. Thus, 
�∗ ,s(p1) cannot belong to the interior of B1.

Therefore, p1��∗ ,s(p1), then, by Lemma 4.6, F(p1) > F(
�∗ ,s(p1)).

However, since we have assumed that the sequence does not
converge in a finite number of steps, we have that xnk��∗ ,s(xnk )
and �∗ ,s(xnk )�xnk+1 , then applying Lemma 4.6 we get

F�(xnk ) > F�(T�(xnk )) = F�(�∗ ,s(xnk )) = F�(xnk+1) > F�(xnk+1 ).

Taking limit when k goes to infinity

F�(p1)�F�(�∗ ,s(p1))�F�(p1), (22)

what contradicts that F�(p1) > F�(
�∗ ,s(p1)).

Therefore, the sequence contains a unique accumulation point,
that is, {xq}q∈ N converges to a unique point. Let x∗ be the limit.

Now, we prove that x∗ is the optimal solution of Problem (2).
By (22), it follows that F�(p1) = F�(�∗ ,s(p1)). Then, by Lemma 4.6,
we have that p1 = �∗ ,s(p1) = T�(p1). By Lemma 4.7 we have that
x∗ coincides with the optimal solution of Problem (2) and the result
follows. �

Notice that in the previous proof we have assumed that the set
of points belonging to more than one bisector line is finite (the case
where two bisector lines coincide can be considered as only one
bisector), that is, the intersection of any two bisector lines is given
by isolated points (it can be obtained by an adequate perturbation).
Therefore, the subsequence considered in the proof can be chosen in
such a way that it does not contain points belonging to more than
two bisector lines.

6. Computational results

In this section, we present the computational study for solving
Problem (2). The algorithm described in Section 5 was coded in
MATHEMATICA and run on a PENTIUM IV computer, with a 1.60GHz
processor and 540MB RAM.

For each M, we solve 15 different randomly generated problems:
demand points with values in [0, 10000] the weights �i and �i in
[0, 1], for i = 1, . . . ,M, with �1� · · · ��M .

All computational tests were performed for values of the param-
eter p= 1, 1.5 and 2. The constant � used in the hyperbolic approxi-
mation is fixed to 0.0001. The stopping rule was ‖xq−xq+1‖p�10−5.

Table 1 summarizes the results obtained for the approximated
ordered median algorithm for �p distances, with p = 1.5. The size
of each test problem is indicated in the first column of this table.
The next four columns report the Mean, Min, Max and the Standard
Deviation of the time needed to solve each test problem in CPU
seconds. The remaining four columns give the results for the number

Table 1
Numerical results for p = 1.5.

M Time Iterations

Mean Min Max STD.D Mean Min Max STD.D

100 0.85 0.45 1.56 0.31 18.87 10 25 4.72
500 5.95 2.66 16.48 4.2 18.87 10 28 6.13

1000 23.51 4.75 64.42 17.88 26.93 8 60 16.1
2000 35.19 15.87 67.87 18.88 17.07 8 32 8.07
4000 54.06 27.17 78.17 16.40 13.13 7 20 3.81
8000 126.65 47.33 409.78 109.91 15.27 6 47 12.41

12 000 192.99 81.37 343.00 94.54 15.27 7 27 7.15
16 000 205.47 127.09 439.52 82.03 12.2 8 25 4.41
20 000 380.28 139.01 948.78 232.56 17.54 7 44 10.57
25 000 572.23 199.23 1410.25 222.34 18.41 7 47 12.7
30 000 825.33 529.55 2112.58 254.51 15.15 7 27 10.12
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Table 2
Numerical results for p = 2.

M Time Iterations

Mean Min Max STD.D Mean Min Max STD.D

100 0.79 0.20 1.36 0.40 16.6 7 29 6.28
500 4.69 1.0 12.29 3.05 15.67 7 29 6.4

1000 17.17 5.95 38.91 9.05 19.2 7 40 8.91
2000 37.58 13.39 65.86 18.31 19.6 7 52 12.28
4000 58.06 23.61 87.79 18.46 13.8 6 21 4.18
8000 101.74 64.33 169.02 32.86 11.53 8 20 3.62

12 000 130.87 84.03 258.09 42.84 10.53 7 20 3.20
16 000 257.25 93.62 568.74 156.98 15.0 6 32 8.68
20 000 370.21 130.26 843.97 202.96 19.99 8 42 12.57
25 000 551.35 201.31 1001.25 212.43 17.15 7 47 15.7
30 000 820.83 486.66 2012.74 214.1 16.51 7 37 10.21

Table 3
Numerical results for p = 1.

M Time Iterations

Mean Min Max STD.D Mean Min Max STD.D

100 0.79 0.19 1.64 0.51 20.67 8 49 11.42
500 5.27 1.69 15.42 4.26 20.87 10 44 9.78

1000 13.77 4.70 32.26 6.99 20.8 9 36 8.95
2000 44.63 11.28 144.45 40.25 23.2 6 75 21.06
4000 60.63 21.95 160.92 40.83 15.47 6 41 10.24
8000 130.70 42.86 310.81 92.37 16.33 6 40 11.27

12 000 226.61 95.81 431.45 98.01 18.33 8 33 7.43
16 000 414.40 109.84 994.97 300.04 23.27 3 62 8.8
20 000 610.2 230.26 1443.07 222.66 24.96 8 35 11.24
25 000 934.85 401.31 1661.78 199.54 20.54 8 40 14.61
30 000 1220.44 486.66 2410.4 248.21 19.11 7 38 12.15

of iterations performed by the method before the stopping rule was
satisfied.

Tables 2 and 3 summarize the results obtained for p = 2 and 1,
respectively.

Notice that the standard deviation of the computational times
is relatively bigger for problems with a large number of demand
points. This is because the iterates that simultaneously belong to
many bisector lines need more time to find a decreasing direction
and it is more likely to occur as larger is the number of demand
points. In addition, the computational times are lower for the case
p = 2, because in this case the bisector lines are curves with an
easier handling of analytical expressions and the iterations can be
computed faster.

For the case p=1, the times are longer because even for the case
of the median problem, the rate of convergence is lower when the
iterate has a common component with a demand point. Notice that
this case was also solved by [4,30] as a particular case of polyhedral
norms. They develop a solution procedure based on the iterative res-
olution of linear programming problems on each linearity domain
of the objective function. A detailed analysis of the theoretical com-
putational complexity of the procedure is given in those references.
However, the computational times are not reported.

For the sake of completeness, the computational results obtained
for solving the k-centrum problem with �2-norm are included in
Table 4. We have considered that the number of components equal
to one in the �-vector is 0.2 · M�. Observe that the time and the
number of iterations to solve this problem are larger than that
needed to solve the standard ordered median problem. We think
that this is due to the fact that, in most of the cases analyzed, the se-
quence obtained by the algorithm is included in a bisector line and,
there, the stepsize is lower than in the interior of an ordered region.
In addition, in order to solve this problem, we have used the same
implementation used to solve the standard convex ordered problem
and the results obtained could be improved with a new implemen-
tation that exploits the particular properties of k-centrum problem.

Table 4
Numerical results for the k-centrum problem for p = 2.

M Time Iterations

Mean Min Max STD.D Mean Min Max STD.D

100 1.76 0.62 3.97 1.24 31.73 13 89 24.11
500 5.63 2.04 14.52 3.81 25.73 8 58 13.73

1000 25.32 4.78 96.73 22.35 30.53 6 88 20.32
2000 243.89 53.93 454.27 135.78 123.93 18 229 72.33
4000 326.24 58.03 672.33 205.44 80.2 14 171 51.95
8000 171.00 64.63 380.37 86.66 19.87 8 43 9.24

12 000 275.05 132.03 547.36 135.49 20.47 11 41 9.54
16 000 419.30 132.50 1451.8 331.98 21.67 8 80 18.12
20 000 581.27 146.67 1201.78 292.65 21.99 8 42 12.72
25 000 855.54 259.51 1951.22 212.33 22.52 7 46 15.24
30 000 1231.23 686.88 2512.76 214.39 18.31 7 39 11.54

Table 5
Numerical results for the k-centrum problem for p = 1.5.

M Time Iterations

Mean Min Max STD.D Mean Min Max STD.D

100 2.24 0.60 10.34 2.77 35.4 8 152 38.84
500 7.78 2.15 16.47 4.07 33.47 13 68 15.78

1000 24.86 3.29 67.22 17.11 33.53 8 62 15.69
2000 245.99 51.93 470.65 138.98 103.35 20 209 62.39
4000 341.43 57.03 662.55 207.54 90.12 15 170 50.95
8000 182.30 59.63 399.61 96.95 29.98 7 45 10.81

12 000 275.15 112.03 555.64 155.92 22.23 10 45 10.36
16 000 445.65 120.12 1399.81 301.01 25.56 7 78 17.01
20 000 591.77 150.91 1403.72 295.96 24.44 8 41 12.11
25 000 851.55 247.73 1995.12 202.25 27.53 8 43 10.41
30 000 1355.38 625.31 2223.12 158.45 19.51 7 41 12.94

Table 6
Numerical results for the k-centrum problem for p = 1.

M Time Iterations

Mean Min Max STD.D Mean Min Max STD.D

100 1.71 0.46 6.12 1.75 31.13 10 131 30.21
500 13.97 2.27 48.25 13.77 41.6 11 121 28.47

1000 45.95 3.35 69.42 19.33 35.25 9 59 14.03
2000 355.67 53.84 495.34 155.02 115.29 20 201 60.24
4000 445.98 59.88 631.28 237.62 95.22 14 175 55.53
8000 295.04 58.55 421.10 99.59 32.04 7 65 15.81

12 000 479.59 153.31 554.69 96.76 25.94 10 55 10.01
16 000 649.67 220.52 1451.55 352.25 29.64 7 79 19.39
20 000 798.88 350.63 1703.45 345.34 22.56 7 46 10.10
25 000 957.23 447.48 2392.34 265.23 26.94 8 53 12.37
30 000 1559.43 725.25 2824.22 225.96 21.34 7 49 13.29

Tables 5 and 6 summarize the results obtained for solving the
k-centrum problem with p = 1.5 and 1, respectively.

Finally, we have also compared the solution times of our proce-
dure for the special case of the Weber problem �1=· · ·=�M =1 with
the classical approximated Weiszfeld algorithm (see [20]). The ex-
tra computational effort induced by (then superfluous) the decom-
position into the ordered regions is considerable (depending on the
values of p and the sizes of the problem, the solution times can vary
from one to 20 times more than the classical method). Moreover,
this procedure need approximately half of the number of iterations
used by the classical method.

7. Concluding remarks

In this paper, we have presented a resolution procedure for the
convex ordered median problem with �p-norms. This approach be-
comes a very robustmethodology because of the flexibility of this ob-
jective function, which allows us to deal simultaneously with many
classical models of Location Theory as well as with new ones. In-
deed, this paper provides a common methodology to solve median,
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center and cent-dian problems, among others. Moreover, this pro-
cedure allows us to solve well-known types of problems for which
currently no resolution method has been published, for example, the
k-centrum problem with �p distances.

On the other hand, in the literature, solution procedures for the
ordered median problem have only been developed for the case of
polyhedral gauges. Therefore, this paper is the first approach to deal
with ordered median problems using smooth gauges. Hence, this
paper opens a new avenue of research to deal with ordered location
problems using these types of gauges.

Finally, after reading this paper, one might suggest that the orig-
inal problem could be solved with the application of a Diagonal
algorithm by selecting a decreasing sequence {�n}n∈N. However,
the sequence generated by this method could be non-convergent.
For instance, it would be possible to find a sequence, such that,

xq /∈B
�q
p (ai, aj), x

q+1 ∈ B
�q
p (ai, aj) and xq+1 /∈B

�q+1
p (ai, aj) for q >N, with

N >0. In this case, the sequence does not leave the approximated
bisector B�q (ai, aj) and consequently it might not converge.

Appendix A.

Lemma A.1. For any � ∈ [0, 1] we have that �,s(xq) ∈ O�
	(s) ∪ O�

	′(s)
.

Proof. First, we prove that ‖Ds
�(x

q)‖p�‖�‖p, for any � ∈ [0, 1].
Define gj(�) =Ds

�,j(x
q) (see (12)), for j = 1, 2, then

gj(�) =
(1 − �)∇j F�,	(s)(x

q) + �∇j F�,	′(s)(x
q)

(1 − �)C	(s),j(x
q) + �C	′(s),j(x

q)
.

Hence gj(�) is a linear rational function of � and does not have vertical
asymptote because C	(s),j >0 and C	′(s),j >0, for j = 1, 2. Therefore,

|gj(�)|� max{|gj(0)|, |gj(1)|}, for j = 1, 2, and � ∈ [0, 1]. Moreover, for

� = 0, G�,s
� (x)= F�,	(s)(x), then |Ds

0,j(x)| = |D	(s)
j |��j(x) and for � = 1,

G�,s
� (x) = F�,	′(s)(x), then |Ds

1,j(x)| = |D	′(s)
j |��j(x). Hence,

|Ds
�,j(x

q)|� max{|Ds
0,j(x

q)|, |Ds
1,j(x

q)|} = �j(x),

j = 1, 2, ∀� ∈ [0, 1].

Therefore,

‖�,s(xq) − xq‖p�
�	t+1

‖h�(x − a	t+1
)‖p − �	t

‖h�(x − a	t
)‖p

�	t+1
+ �	t

− 21/p�1/2�dp(xq,B�
p(a	t

, a	t+1
)),

for all t�s, t ∈ {1, . . . ,M − 1} and the result follows. �

Lemma A.2. For xq ∈ B�
p(a	s

, a	s+1
) and xq /∈B�

p(a	t
, a	t+1

) ∀t�s, such
that 
s

	(s)(x
q) /∈O�

	(s) and 
s
	′(s)(x

q) /∈O�
	′(s)

, with 	(s) = (	1, . . . ,	M)

and 	′(s)=(	1, . . . ,	s−1,	s+1,	s,	s+2, . . . ,	M), there exists at least one

value �∗ ∈ (0, 1) such that �∗ ,s(xq) ∈ B�
p(a	s

, a	s+1
)∩ (O�

	(s) ∪O�
	′(s)

).

Proof. Given xq, the function �xq (�) (see (13)) is continuous. In ad-
dition, if � = 0, we have that �,s(xq) = 
	(s)(x

q) ∈ O�
	′(s)

, and

then �xq (0) >0. On the other hand, if � = 1 we have that �,s(xq) =

	′(s)(x

q) ∈ O�
	(s) and then �xq (1) <0. Hence, using the continuity of

�xq (�), there exists a value �∗ ∈ (0, 1) such that �xq (�
∗) = 0, that is,

�	s
‖h�(�∗ ,s(xq) − a	s

)‖p = �	s+1
‖h�(�∗ ,s(xq) − a	s+1

)‖p.

Therefore, by Lemma A.1 we have that �∗ ,s(xq) ∈ B�
p(a	s

, a	s+1
) ∩

(O�
	(s) ∪ O�

	′(s)
), and the result follows. �

Lemma A.3. The sequence generated by the algorithm given in (21) is
bounded.

Proof. Let {xq}q∈N be the sequence generated by the algorithm given
in (21). Notice that either xq is obtained by a modified gradient
method with stepsize lower than the one of the Weiszfeld algorithm
or xq belongs to a sufficiently small neighborhood of xq−1. In any
case, since the Weiszfeld algorithm gives a sequence contained in
the convex hull of the existing facilities, we have that {xq}q∈N is
bounded. �
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