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Abstract. It is shown that every L2-summand vector of a dual real Banach space
is a norm-attaining functional. As consequences, the L2-summand vectors of a dual
real Banach space can be determined by the L2-summand vectors of its predual; for
every n ∈ �, every real Banach space can be equivalently renormed so that the set of
norm-attaining functionals is n-lineable; and it is easy to find equivalent norms on
non-reflexive dual real Banach spaces that are not dual norms.
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1. Introduction and background. A vector e of a real Banach space X is said to
be an L2-summand vector if there exists a closed vector subspace M of X such that
X = �e ⊕2 M; in other words, ‖λe + m‖2 = ‖λe‖2 + ‖m‖2 for every λ ∈ � and every
m ∈ M. If e �= 0, then the functional e∗ ∈ X∗ such that e∗ (e) = 1 and M = ker(e∗) is
called the L2-summand functional associated to e. It satisfies ‖e∗‖ = 1

‖e‖ , where e∗ is
an L2-summand vector of X∗ and X∗ = �e∗ ⊕2 ker (̂e), where ê denotes the element e
in the bidual X∗∗ (note that the L2-summand functional associated to e∗ is ê.) We refer
the reader to [1] and [2] for a wider perspective about L2-summand vectors.

In this paper, it is shown that if e∗ is an L2-summand vector of the dual Banach
space X∗, then e∗ must be a norm-attaining functional. From this fact, we conclude
several consequences such as the following.

(1) The L2-summand vectors of a dual real Banach space can be determined by the
L2-summand vectors of its predual.

(2) For every n ∈ �, every real Banach space can be equivalently renormed so that
the set of norm-attaining functionals is n-lineable.

(3) It is easy to find equivalent norms on non-reflexive dual real Banach spaces
that are not dual norms.

2. Main result and consequences.

THEOREM 2.1. Let X be a real Banach space and consider an L2-summand vector
e∗ ∈ SX∗ . Then, there exists an L2-summand vector e ∈ SX such that e∗(e) = 1.

Proof. Let us denote X∗ = �e∗ ⊕2 ker(e∗∗), where e∗∗ ∈ SX∗∗ is the L2-summand
functional associated to e∗. By Goldstine’s theorem, for every n ∈ �, there exists xn ∈ X
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so that ‖x̂n‖ ≤ 1 and

1 − e∗(xn) = |e∗∗(e∗) − x̂n(e∗)| ≤ 1
n
.

Now, x̂n = e∗(xn)e∗∗ + (x̂n − e∗(xn)e∗∗); therefore

1 ≥ e∗(xn)2 + ‖x̂n − e∗(xn)e∗∗‖2 = e∗(xn)2

+ sup{(x̂n − e∗(xn)e∗∗) (λe∗ + m∗) : λ ∈ �, m∗ ∈ ker(e∗∗), λ2 + ‖m∗‖2 ≤ 1}2

= e∗(xn)2 + sup{m∗(xn) : m∗ ∈ ker(e∗∗), ‖m∗‖2 ≤ 1}2,

and hence,

2
n

≥ (1 − e∗(xn)) (1 + e∗(xn))

= 1 − e∗(xn)2

≥ sup{m∗(xn) : m∗ ∈ ker(e∗∗), ‖m∗‖2 ≤ 1}2.

Now, let us see that the sequence (x̂n)n∈� converges to e∗∗, which will conclude the
proof, since in that case e∗∗ ∈ X̂ and e∗ is norm-attaining. For every n ∈ �, we have

‖e∗∗ − x̂n‖ = sup{(e∗∗ − x̂n)(λe∗ + m∗) : λ ∈ �, m∗ ∈ ker(e∗∗), λ2 + ‖m∗‖2 ≤ 1}
= sup{λ (1 − e∗(xn)) − m∗(xn) : λ ∈ �, m∗ ∈ ker(e∗∗), λ2 + ‖m∗‖2 ≤ 1}
≤ sup{1 − e∗(xn) − m∗(xn) : m∗ ∈ ker(e∗∗), ‖m∗‖2 ≤ 1}

≤ 1
n

+
√

2
n
.

As a consequence, (x̂n)n∈� converges to e∗∗ and the proof is completed. �
REMARK 2.2. In [1], it is proved that the set L2

X of all L2-summand vectors of a real
Banach space X is a closed vector subspace (in fact, it is a Hilbert subspace), that is,
L2-complemented in X (that is, there exists a closed vector subspace M of X such that
X = L2

X ⊕2 M). In addition, it is shown that M = ⋂{ker(e∗) : e ∈ L2
X }, where each e∗

is the L2-summand functional associated to each e.

REMARK 2.3. Recall that given a smooth Banach space X , the dual map of X is
the map J : X −→ X∗ such that, for every x ∈ X , J(x) is the unique element in X∗ such
that ‖J(x)‖ = ‖x‖ and J(x)(x) = ‖x‖2. The book [4] is an excellent reference for dual
maps in smooth spaces.

COROLLARY 2.4. Let X be a real Banach space. Then,
(1) the map

L2
X −→ L2

X∗

e �−→ e∗‖e‖2,
(2.1)

where e∗ denotes the L2-summand functional associated to e, is a surjective linear
isometry and

(2) L2
X∗∗ = L2

X̂
.
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Proof.
(1) Let J : L2

X −→ (L2
X )∗ denote the dual map. Since L2

X is a Hilbert space, we have
that J is a surjective linear isometry. Now, given any J(e) ∈ (L2

X )∗, let φ(J(e))
denote a unique element of X∗ such that φ(J(e))|L2

X
= J(e) and φ(J(e))|M = 0,

where X = L2
X ⊕2 M. Consider the map φ : (L2

X )∗ −→ X∗. It is easy to check
that φ is a linear isometry. Let us show that the image of φ is L2

X∗ . In the first
place, take any e ∈ L2

X . We will show that φ(J(e)) = e∗‖e‖2. Since e∗‖e‖2|M = 0,
it will be sufficient to show that J(e) = φ(J(e))|L2

X
= e∗‖e‖2

L2
X

. We have that
‖e∗‖e‖2‖ = ‖e‖ and e∗‖e‖2(e) = ‖e‖2; therefore, e∗‖e‖2|L2

X
= J(e), and hence,

e∗‖e‖2 = φ(J(e)). In the second place, take any e∗ ∈ L2
X∗ with norm 1. According

to Theorem 2.1, there exists e ∈ L2
X of norm 1 such that e∗(e) = 1. Similarly as

above, e∗|L2
X

= J(e), and hence, e∗ = φ(J(e)). Finally, the map (2.1) is exactly
φ ◦ J, and thus, it is a surjective linear isometry.

(2) Trivially, we have that L2
X̂

⊆ L2
X∗∗ . If e∗∗ ∈ L2

X∗∗ and ‖e∗∗‖ = 1, then by
Theorem 2.1, there is e∗ ∈ L2

X∗ with ‖e∗‖ = 1 such that e∗∗(e∗) = 1. By applying
the same argument, we deduce the existence of e ∈ L2

X with ‖e‖ = 1 such that
e∗(e) = 1. Finally, e∗∗ = ê. �

REMARK 2.5. Recall that a subset M of a Banach space is said to be n-lineable,
where n ∈ �, if M ∪ {0} contains a vector subspace of dimension n. We refer the reader
to [3] for a wider perspective of lineability.

COROLLARY 2.6. Let X be a real Banach space. For every n ∈ �, X can be equivalently
renormed so that the set of norm-attaining functionals of X∗ is n-lineable.

Proof. Let us fix n ∈ � and denote by NA (X) the set of norm-attaining functionals
on X . According to [2], X can be equivalently renormed so that L2

X is n-lineable. Since
L2

X and L2
X∗ are linearly isometric by Corollary 2.4, we deduce that L2

X∗ is n-lineable
under this equivalent norm. Finally, Theorem 2.1 assures that L2

X∗ ⊆ NA (X), and thus,
NA (X) is n-lineable as well. �

REMARK 2.7. Recall that given any normable real topological vector space X , an
equivalent norm ⎪⎪·⎪⎪ on its dual X∗ is a dual norm (that is, it comes from a norm on
X) if and only if Goldstine’s theorem holds, in other words, the set {̂x ∈ X∗∗ :

⎪⎪⎪x̂
⎪⎪⎪∗ ≤

1} is ω∗-dense in {x∗∗ ∈ X∗∗ :
⎪⎪⎪x∗∗⎪⎪⎪∗ ≤ 1}. We refer the reader to [5] for a wider

perspective.

COROLLARY 2.8. Let X be a non-reflexive real Banach space X. Let e∗ ∈ SX∗ be such
that there exists e∗∗ ∈ SX∗∗\SX̂ with e∗∗(e∗) = 1. Then, the equivalent norm on X∗ given
by

⎪⎪⎪x∗⎪⎪⎪ =
√

e∗∗ (x∗)2 + ‖x∗ − e∗∗ (x∗) e∗∗‖2

for all x∗ ∈ X∗, is not a dual norm on X∗.

Proof. Otherwise, assume that ⎪⎪·⎪⎪ is a dual norm. Then, there exists an equivalent
norm |·| on X such that |·|∗ = ⎪⎪·⎪⎪. Now, e∗ is an L2-summand vector of norm 1 of
(X∗,⎪⎪·⎪⎪); therefore, by Theorem 2.1, there exists e ∈ (X, |·|) with |e| = 1 such that
e∗(e) = 1. Finally, both e∗∗ and ê are the L2-summand functionals associated to e∗, and
thus, e∗∗ = e, which is impossible. �
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