A NOTE ON L²-SUMMAND VECTORS IN DUAL SPACES

ANTONIO AIZPURU

Departamento de Matemáticas, Universidad de Cádiz, Puerto Real, Cádiz, 11510, Spain e-mail: antonio.aizpuru@uca.es

and FRANCISCO J GARCÍA-PACHECO

Department of Mathematical Sciences, Kent State University, Kent, Ohio, 44242, The United States e-mail: fgarcia@math.kent.edu

(Received 16 September 2006; accepted 17 April 2008)

Abstract. It is shown that every L²-summand vector of a dual real Banach space is a norm-attaining functional. As consequences, the L²-summand vectors of a dual real Banach space can be determined by the L²-summand vectors of its predual; for every $n \in \mathbb{N}$, every real Banach space can be equivalently renormed so that the set of norm-attaining functionals is *n*-lineable; and it is easy to find equivalent norms on non-reflexive dual real Banach spaces that are not dual norms.

2000 Mathematics Subject Classification. Primary 46B20, 46C05, 46B04.

1. Introduction and background. A vector *e* of a real Banach space *X* is said to be an L²-summand vector if there exists a closed vector subspace *M* of *X* such that $X = \mathbb{R}e \oplus_2 M$; in other words, $\|\lambda e + m\|^2 = \|\lambda e\|^2 + \|m\|^2$ for every $\lambda \in \mathbb{R}$ and every $m \in M$. If $e \neq 0$, then the functional $e^* \in X^*$ such that $e^*(e) = 1$ and $M = \ker(e^*)$ is called the L²-summand functional associated to *e*. It satisfies $\|e^*\| = \frac{1}{\|e\|}$, where e^* is an L²-summand vector of X^* and $X^* = \mathbb{R}e^* \oplus_2 \ker(\widehat{e})$, where \widehat{e} denotes the element *e* in the bidual X^{**} (note that the L²-summand functional associated to e^* is \widehat{e} .) We refer the reader to [1] and [2] for a wider perspective about L²-summand vectors.

In this paper, it is shown that if e^* is an L²-summand vector of the dual Banach space X^* , then e^* must be a norm-attaining functional. From this fact, we conclude several consequences such as the following.

- (1) The L²-summand vectors of a dual real Banach space can be determined by the L²-summand vectors of its predual.
- (2) For every $n \in \mathbb{N}$, every real Banach space can be equivalently renormed so that the set of norm-attaining functionals is *n*-lineable.
- (3) It is easy to find equivalent norms on non-reflexive dual real Banach spaces that are not dual norms.

2. Main result and consequences.

THEOREM 2.1. Let X be a real Banach space and consider an L^2 -summand vector $e^* \in S_{X^*}$. Then, there exists an L^2 -summand vector $e \in S_X$ such that $e^*(e) = 1$.

Proof. Let us denote $X^* = \mathbb{R}e^* \oplus_2 \ker(e^{**})$, where $e^{**} \in S_{X^{**}}$ is the L²-summand functional associated to e^* . By Goldstine's theorem, for every $n \in \mathbb{N}$, there exists $x_n \in X$

so that $\|\widehat{x_n}\| \leq 1$ and

$$1 - e^*(x_n) = |e^{**}(e^*) - \widehat{x_n}(e^*)| \le \frac{1}{n}.$$

Now, $\hat{x_n} = e^*(x_n)e^{**} + (\hat{x_n} - e^*(x_n)e^{**})$; therefore

$$1 \ge e^*(x_n)^2 + \|\widehat{x}_n - e^*(x_n)e^{**}\|^2 = e^*(x_n)^2 + \sup\{(\widehat{x}_n - e^*(x_n)e^{**})(\lambda e^* + m^*) : \lambda \in \mathbb{R}, m^* \in \ker(e^{**}), \lambda^2 + \|m^*\|^2 \le 1\}^2 = e^*(x_n)^2 + \sup\{m^*(x_n) : m^* \in \ker(e^{**}), \|m^*\|^2 \le 1\}^2,$$

and hence,

$$\frac{2}{n} \ge (1 - e^*(x_n))(1 + e^*(x_n))$$

= 1 - e^*(x_n)²
\ge sup{m^*(x_n) : m^* \in ker(e^{**}), ||m^*||^2 \le 1}².

Now, let us see that the sequence $(\widehat{x}_n)_{n \in \mathbb{N}}$ converges to e^{**} , which will conclude the proof, since in that case $e^{**} \in \widehat{X}$ and e^* is norm-attaining. For every $n \in \mathbb{N}$, we have

$$\begin{aligned} \|e^{**} - \widehat{x_n}\| &= \sup\{(e^{**} - \widehat{x_n})(\lambda e^* + m^*) : \lambda \in \mathbb{R}, m^* \in \ker(e^{**}), \lambda^2 + \|m^*\|^2 \le 1\} \\ &= \sup\{\lambda (1 - e^*(x_n)) - m^*(x_n) : \lambda \in \mathbb{R}, m^* \in \ker(e^{**}), \lambda^2 + \|m^*\|^2 \le 1\} \\ &\le \sup\{1 - e^*(x_n) - m^*(x_n) : m^* \in \ker(e^{**}), \|m^*\|^2 \le 1\} \\ &\le \frac{1}{n} + \sqrt{\frac{2}{n}}. \end{aligned}$$

As a consequence, $(\widehat{x_n})_{n \in \mathbb{N}}$ converges to e^{**} and the proof is completed.

REMARK 2.2. In [1], it is proved that the set L_X^2 of all L^2 -summand vectors of a real Banach space X is a closed vector subspace (in fact, it is a Hilbert subspace), that is, L^2 -complemented in X (that is, there exists a closed vector subspace M of X such that $X = L_X^2 \oplus_2 M$). In addition, it is shown that $M = \bigcap \{ \ker(e^*) : e \in L_X^2 \}$, where each e^* is the L^2 -summand functional associated to each e.

REMARK 2.3. Recall that given a smooth Banach space X, the dual map of X is the map $J : X \longrightarrow X^*$ such that, for every $x \in X$, J(x) is the unique element in X^* such that ||J(x)|| = ||x|| and $J(x)(x) = ||x||^2$. The book [4] is an excellent reference for dual maps in smooth spaces.

COROLLARY 2.4. Let X be a real Banach space. Then, (1) the map

$$\begin{array}{l} \mathsf{L}^2_X \longrightarrow \mathsf{L}^2_{X^*} \\ e \longmapsto e^* \|e\|^2, \end{array}$$

$$(2.1)$$

where e^* denotes the L²-summand functional associated to e, is a surjective linear isometry and

(2) $L^2_{X^{**}} = L^2_{\widehat{X}}$.

Proof.

- (1) Let $J : L_X^2 \longrightarrow (L_X^2)^*$ denote the dual map. Since L_X^2 is a Hilbert space, we have that J is a surjective linear isometry. Now, given any $J(e) \in (L_X^2)^*$, let $\phi(J(e))$ denote a unique element of X^* such that $\phi(J(e))|_{L_X^2} = J(e)$ and $\phi(J(e))|_M = 0$, where $X = L_X^2 \oplus_2 M$. Consider the map $\phi : (L_X^2)^* \longrightarrow X^*$. It is easy to check that ϕ is a linear isometry. Let us show that the image of ϕ is $L_{X^*}^2$. In the first place, take any $e \in L_X^2$. We will show that $\phi(J(e)) = e^* ||e||^2$. Since $e^* ||e||^2|_M = 0$, it will be sufficient to show that $J(e) = \phi(J(e))|_{L_X^2} = e^* ||e||_{L_X^2}^2$. We have that $||e^*||e||^2|| = ||e||$ and $e^* ||e||^2(e) = ||e||^2$; therefore, $e^* ||e||^2|_{L_X^2} = J(e)$, and hence, $e^* ||e||^2 = \phi(J(e))$. In the second place, take any $e^* \in L_{X^*}^2$ with norm 1. According to Theorem 2.1, there exists $e \in L_X^2$ of norm 1 such that $e^*(e) = 1$. Similarly as above, $e^*|_{L_X^2} = J(e)$, and hence, $e^* = \phi(J(e))$. Finally, the map (2.1) is exactly $\phi \circ J$, and thus, it is a surjective linear isometry.
- (2) Trivially, we have that $L^2_{\widehat{X}} \subseteq L^2_{X^{**}}$. If $e^{**} \in L^2_{X^{**}}$ and $||e^{**}|| = 1$, then by Theorem 2.1, there is $e^* \in L^2_{X^*}$ with $||e^*|| = 1$ such that $e^{**}(e^*) = 1$. By applying the same argument, we deduce the existence of $e \in L^2_X$ with ||e|| = 1 such that $e^*(e) = 1$. Finally, $e^{**} = \widehat{e}$.

REMARK 2.5. Recall that a subset M of a Banach space is said to be *n*-lineable, where $n \in \mathbb{N}$, if $M \cup \{0\}$ contains a vector subspace of dimension n. We refer the reader to [3] for a wider perspective of lineability.

COROLLARY 2.6. Let X be a real Banach space. For every $n \in \mathbb{N}$, X can be equivalently renormed so that the set of norm-attaining functionals of X^* is n-lineable.

Proof. Let us fix $n \in \mathbb{N}$ and denote by NA (X) the set of norm-attaining functionals on X. According to [2], X can be equivalently renormed so that L_X^2 is *n*-lineable. Since L_X^2 and $L_{X^*}^2$ are linearly isometric by Corollary 2.4, we deduce that $L_{X^*}^2$ is *n*-lineable under this equivalent norm. Finally, Theorem 2.1 assures that $L_{X^*}^2 \subseteq NA(X)$, and thus, NA (X) is *n*-lineable as well.

REMARK 2.7. Recall that given any normable real topological vector space X, an equivalent norm $|\cdot|$ on its dual X^* is a dual norm (that is, it comes from a norm on X) if and only if Goldstine's theorem holds, in other words, the set { $\hat{x} \in X^{**} : |\hat{x}|^* \le 1$ } is ω^* -dense in { $x^{**} \in X^{**} : |x^{**}|^* \le 1$ }. We refer the reader to [5] for a wider perspective.

COROLLARY 2.8. Let X be a non-reflexive real Banach space X. Let $e^* \in S_{X^*}$ be such that there exists $e^{**} \in S_{X^{**}} \setminus S_{\widehat{X}}$ with $e^{**}(e^*) = 1$. Then, the equivalent norm on X^* given by

$$|x^*| = \sqrt{e^{**}(x^*)^2 + ||x^* - e^{**}(x^*)e^{**}||^2}$$

for all $x^* \in X^*$, is not a dual norm on X^* .

Proof. Otherwise, assume that $|\cdot|$ is a dual norm. Then, there exists an equivalent norm $|\cdot|$ on X such that $|\cdot|^* = |\cdot|$. Now, e^* is an L²-summand vector of norm 1 of $(X^*, |\cdot|)$; therefore, by Theorem 2.1, there exists $e \in (X, |\cdot|)$ with |e| = 1 such that $e^*(e) = 1$. Finally, both e^{**} and \hat{e} are the L²-summand functionals associated to e^* , and thus, $e^{**} = e$, which is impossible.

REFERENCES

1. A. Aizpuru and F. J. García-Pacheco, L²-summand vectors in Banach spaces, *Proc. Amer. Math. Soc.* 134 (7) (2006), 2109–2115.

2. A. Aizpuru and F. J. García-Pacheco, L²-summand vectors and complemented hilbertizable subspaces, *Boll. Unione Mat. Ital.* **10–B** (8) (2007), 1143–1148.

3. R. M. Aron, V. I. Gurariy and J. B. Seoane, Lineability and spaceability of sets of functions on \mathbb{R} , *Proc. Amer. Math. Soc.* **133** (3) (2005), 795–803.

4. R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces, in *Pitman monographs and surveys in pure and applied mathematics* **64** (Longman, Harlow, UK, 1993).

5. R. E. Megginson, An introduction to Banach space theory, in *Graduate texts in mathematics* 183 (New York, Springer-Verlag, 1998).